
Revolutionary Approaches

William Gropp
Thomas Sterling

2

Where can revolutionary
approaches succeed?

• Very difficult: displace workable
solutions
♦ PDE Simulation, Many-body

computations are well-served by
current programming models
• Doesn’t mean things couldn’t be better,

but evolution of these models likely to be
sufficient

• Option: consider possible roadblocks
(e.g., resilience)

3

Where can revolutionary
approaches succeed?

• Merely difficult: enable new
application area
♦  Applications that have given up on

extreme scale computing
♦ Applications with poorly scaling

current applications and where
scaling can be related to the current
programming models (not just the
implementations of current models)

4

Where can revolutionary
approaches succeed?

• Complement other (non-
revolutionary) approaches
♦ E.g., replace/augment parallel

coordination (MPI) with new
approach, but retain node compiler,
other runtime support

5

Where can revolutionary
approaches succeed

• Overcome roadblocks to Exascale
♦ E.g., Power, resilience, scalability
♦ These need to be quantified (to hear

some tell it, there are no problems

6

Chicken and Egg

•  How do we identify and develop new
application areas?
♦ Explore revolutionary architectural and

programming approaches
•  E.g., graph applications with latency-hiding hardware
• How do we match ideas with application

opportunities?
♦ Engage application developers

• How do we develop interest in the absence of
hardware or software?

♦ Engage algorithm developers
• How do we provide a workable and believable

performance model?

7

Specific Reports

1.  How to quantify the need for new approaches
(requirements from exascale hardware)?

2.  How to identify unserved application areas?
3.  How to identify practical components to

augment current programming/runtime/os
capabilities?

4.  How to motivate some (any) applications
developers to consider new approaches?

5.  What are the potential technologies?
6.  What do we do about the existing niche

approaches?

8

Need for New Approaches

• What quantitative evidence do
we have that some part of the
current software stack will not
work at Exascale?

• What needs to be done to get
more data?

9

Finding New Application
Areas

• What application areas are good
candidates for Exascale but are not
currently considered or likely to
use Exascale?

• How can we identify others?

10

Augment Current Approaches

• Where are the opportunities for
augmenting current approaches?
(Consider programming models,
runtime, OS, I/O, fault tolerance,
…)

• What is the expected benefit (be
quantitative)?

11

Engaging Applications

• How can we engage
representatives of applications?
♦ E.g., Paper designs, prototypes,

simulators? See
www.csm.ornl.gov/~anish12/
hips08cmrdy.pdf

12

Potential Technologies

• What examples do we have of
technologies that might have
revolutionary impact?
♦ This can’t be an exhaustive list;

rather an “existence proof”
♦ Some technologies may be well-

known but not widely applied. In
such cases, address why that might
change

13

Where is the Middle?

• What needs could be satisfied by
technologies/approaches that may
not be considered revolutionary
but are not widely deployed? Is
there danger that development will
bifurcate into already in
widespread use and revolutionary,
with no room for current niche
techniques?

14

15

Specific Reports

1.  How to quantify the need for new approaches
(requirements from exascale hardware)?

2.  How to identify unserved application areas?
3.  How to identify practical components to

augment current programming/runtime/os
capabilities?

4.  How to motivate some (any) applications
developers to consider new approaches?

5.  What are the potential technologies?
6.  What do we do about the existing niche

approaches?

16

Need for New Approaches

• What quantitative evidence do
we have that some part of the
current software stack will not
work at Exascale?

• What needs to be done to get
more data?

17

How to quantify the need for new
approaches (requirements from

exascale hardware)
•  Consider architecture component candidates that meet

constraints of power = 20MW; node architecture,
communications network

•  Identify candidate application characteristics determined
against software stack

•  Quantify reliability, communications, energy efficiency
♦  reliability factor is the ratio of the average time incurred per

failure for fault tolerance to the mean time between failures.
♦  communications factor is the ratio of average time per

communication to the mean time between communications.
♦  energy-efficiency speedup is the ratio of the energy-efficiency

obtained by executing the programs in parallel to that in serial
•  Develop models to provide data for bounds and trade-offs

against metrics

18

19

Finding New Application
Areas

• What application areas are good
candidates for Exascale but are not
currently considered or likely to
use Exascale?

• How can we identify others?

20

How to identify unserved application
areas?

•  Anything that runs for a long time (days, weeks)
♦  One way to cope with flat clock speeds is to run longer, such people

and applications are candidates for new methods
•  Look at scaling laws

♦  Algorithms whose time or data movement power laws make them
prohibitive at exascale

•  Applications for which extracting more parallelism is known to
be hard
♦  But can we do anything for them?

•  Big data sources from instruments (accelerators, light
sources, telescopes, etc.)
♦  Often have planned computing trajectories which are an opportunities

to examine for exascale potential. Those groups, unlike SKA, who have
not recognized exascale.

•  Applications or researchers who currently rely on one or a
small number of simulations
♦  Scaling up through UQ enhances confidence in research and brings

larger computing needs
•  Applications for which MPI+X are known to be hard to

implement or perform
♦  E.g. phylogenetics, anomaly detection, noisy/graph problems

21

22

Augment Current Approaches

• Where are the opportunities for
augmenting current approaches?
(Consider programming models,
runtime, OS, I/O, fault tolerance,
…)

• What is the expected benefit (be
quantitative)?

23

How to identify practical components to
augment current programming / runtime/

os capabilities?

•  A very important point to consider is that we need
a means to share information between components
of the stack and applications. This allows us to
reach a higher plane of existence that will allow for
a holistic approach to performance, power,
programmability, resources, and resiliency.

•  Some of this work cannot be done without
prototype systems and these prototypes need to
be funded even if they don’t immediately
demonstrate the promise of added productivity /
advancement of the state of the art, and … and …
and …

•  Some of the co-design centers in Japan, Europe
and the USA and will most likely be willing to work
on these new architectural ideas. We should make
use of them if we can.

24

1: Applications

If a lot of information is available on the state of the system, the
bleeding edge applications _will_ make use of it to make the
machine usable. How to provide this information is going to be one
of the key considerations. A standards based approach will allow
different vendors to plug-and-play into this model of programming,
computing, and analysis.

•  Need to identify common patterns: parallel motifs, memory
operations (gather-scatter, etc), I/O"

•  Need to identify canned solutions that are broadly used"
•  Need to solve issues related to small memory footprint"
•  Need to consider issues related to power "
•  Need to change the way programmers think about data /

increase data locality"

25

2: Tools for application
development

•  compilers that are more open and reason at a higher level to do
translations to improve data locality, provide info on why loops didn't
parallelize, etc. (example caravel from LANL, PGI’s compiler with
directive disgnostics, cray vectorizing compiler)

•  tools for hierarchical memory management. A very simple
example is visualization, or even gather-scatter at different
scales: on-socket, on-node, and on-machine.

•  Storage solutions at all levels need better interfaces that reduce the
burden on the programmer

•  debuggers that can work on a subset (e.g. totalview/stat from LLNL)
•  performance tools that work with compilers to give better feedback on

why performance is not optimal, also something that works better with
the runtime / os to do power optimization, and resource management /
allocation / reallocation to adapt to changing system conditions

•  Provide information back to applications (see dumb programmers in #3
on next slide)

•  New tools that we don’t know about yet, like power analysis and
optimization, data locality / movement optimizers, scalability analysis,
runtime network bandwidth reallocator, in-situ analysis, concurrency
analysis …

26

3: Runtime / OS

Runtime / OS should not assume that developers are dumb or
unwilling to go the extra mile. You don't have to fix everything
in the stack: if applications have more information on the state of
the program, they can (and will) handle a lot of failures and
inefficiencies given the right tools

•  provide more information to application
•  don't pull the rug from under the feet of the application (how

most schedulers work today)
•  dynamic adaptation and resource management interfaces to

allow applications to compensate for lost hardware assets
•  in situ, viz, etc are part of resource management and need to

be considered seriously
•  OS is probably going to play a limited role and is expected to

be light weight
•  power and resiliency problems are best solved in conjunction

with applications

27

28

Engaging Applications

• How can we engage
representatives of applications?
♦ E.g., Paper designs, prototypes,

simulators? See
www.csm.ornl.gov/~anish12/
hips08cmrdy.pdf

#4 How to motivate some (any)
application (and system sw)
developers to consider new

approaches?

30

How to motivate?

•  Find influential and wiling parties
and turn them into evangelists

• Make it easy (relatively) to try
and adopt innovative approaches

• Give the risk takers measurable
goals so they know what success
looks like

• Make the rewards greater than
the costs - though no guarantees

• Make it painful or embarrassing to
avoid innovation

Carrot
Approac
h

Stick
Approac
h

31

Carrot Approaches

•  Develop and publicize promising and
practical components/tools
♦  fund experimentation to discover which

components/tools are promising and quantify
their benefits

♦  components/tools can’t be research prototypes
and by definition buggy

♦ must be fairly painless to use
♦ must allow incremental adoption

•  Offer early access or lots of time to
innovative hw
♦  If you want to be one of the first to get access

to an advanced system, show that you can
make good use of it (examples - RoadRunner
and ASC early science runs)

32

Carrot Approaches,
continued

• Bribery - offer to fund students and
post-docs

• Appeal to our competitive nature –
design a public competition
♦  For example a competition in which we

reward recasting memory intensive
algorithms/modules/apps into compute
intensive sw while maintaining fidelity

• Find a leader and pay/coerce/cajole
into being an evangelist
♦ Can we identify such leaders?

33

Stick Approaches

•  Scare them with analyses of our likely
futures
♦ For example telling ASC code teams they

will not be able to do bulk synchronous
operations got their attention

•  Publish the true costs of computing, i/o,
and storage
♦ For example telling users the costs of

storing 1PB of data (~$100K per year) has
motivated people to change their behavior

♦ Continue to motivate by reporting each
user’s or code’s costs on a continuous
basis or embarrassing them with peers
(report top ten power hogs)

34

Stick Approaches, continued

• Recast scheduling mechanisms
away from core/node-hours to
kw/hours, for example

• Direct app and system sw teams to
evaluate risky options - I find this
rarely works unless program
directors are on the ball and
persistent

35

36

Potential Technologies

• What examples do we have of
technologies that might have
revolutionary impact?
♦ This can’t be an exhaustive list;

rather an “existence proof”
♦ Some technologies may be well-

known but not widely applied. In
such cases, address why that might
change

Potential Revolutionary
Technologies

Subgroup Discussions
William Gropp, UIUC
Thomas Sterling, IU

38

Needs for Revolutionary HW/SW
Technologies

• Performance = efficiency *
scalability * availability * unit-
speed

• Power bounds and energy
• Resilience
• Productivity

♦ Generality
♦ Portability
♦ Programmability

39

Strategic Technologies

•  Paradigm shift and Execution Model
•  Programming model(s)
•  Runtime system software
•  Processors with global semantics/mechanisms
•  Packaging and interconnect
•  Commodity component
•  New algorithms for parallelism, resource

allocation, locality
•  New classes of algorithms (e.g., stochastic

communication avoiding, extreme hierarchical
parallelism)

40

Some Anticipated HW
Technologies

•  Stacked dies
•  Closer-in optics

♦ Maybe socket to socket
♦ WDM?

•  Power Efficient Cores (PEC)
•  Single thread optimized cores for

Amdahl
•  Multi/Many core
•  Heterogeneity
•  Torus topology but depends on

workflow?

41

Some Detailed Technologies
•  Global address space

♦  e.g., E-registers
♦  Fine grain psuedo access; rapid load
♦  More than PGAS – must be able to move virtual data in

physical space without address change
•  Message-driven computing

♦  E.g., active messages
•  New programming abstractions

♦  Expressing parallelism of algorithms
♦  Expressing locality in codes
♦  Expressing other attributes to inform system about:

•  Energy, fault response, granularity (of locality)

•  (Many) Lightweight user threads
♦  Low overhead context switching, suspension, instantiation, termination
♦  HW support for user thread signaling for “trampolining”

•  Rich semantics lightweight synchronization for finer grain
control and continuation migration.

