European Exascale Software Initiative

April 12, 2010
Oxford, UK

Jean-Yves Berthou
European Exascale Software Initiative (EESI)

Context in Europe

DEISA, Distributed European Infrastructure for Supercomputing Applications

PRACE, Partnership for Advanced Computing in Europe (PRACE)
European Exascale Software Initiative (EESI)

Context in Europe

PRACE History and first steps

- 2004: HPCEUR
- 2005:
- 2006: HET
- 2007: PRACE MoU
- 2008: PRACE Preparatory

EU-Grant: INFSO-RI-211528, 10 Mio. €

Phase:
- 2009: PRACE Implementation Phase
- 2009-
- 2010-
- 2011-
- 2012-
- 2013:

Foreseen: PRACE Tier-0 centres providing HPC-capability service in a legal entity
European Exascale Software Initiative (EESI)

Context in Europe

PRACE – A Partnership with a Vision

- Provide world-class HPC systems for world-class science
- Support Europe in attaining global leadership in public and private research and development

... and a Mission

- Create a world-leading persistent high-end HPC infrastructure managed as a single legal entity
 - Deploy 3 – 6 systems of the highest performance level (Tier-0)
 - IBM BlueGene/P in Jülich will be the first European Tier-0 system
 - Ensure a diversity of architectures to meet the needs of European user communities
 - Provide support and training
European Exascale Software Initiative (EESI)

Performance Development in Top500

IESP Booth/SC'09, J. Dongarra
European Exascale Software Initiative (EESI)

Average Number of Cores Per Supercomputer
Top20 of the Top500

Exponential growth in parallelism for the foreseeable future

IESP Booth/SC’09, J. Dongarra
Factors that Necessitate Redesign

- **Steepness of the ascent from terascale to petascale to exascale**
- Extreme parallelism and hybrid design
 - Preparing for million/billion way parallelism
- Tightening memory/bandwidth bottleneck
 - Limits on power/clock speed implication on multicore
 - Reducing communication will become much more intense
 - Memory per core changes, byte-to-flop ratio will change
- Necessary Fault Tolerance
 - MTTF will drop
 - Checkpoint/restart has limitations
- **Software infrastructure does not exist today**

IESP Booth/SC’09, J. Dongarra
European Exascale Software Initiative (EESI)

Exascale Computing

- Exascale systems are likely feasible by 2017±2
- 10-100 Million processing elements (cores or cores) with chips perhaps as dense as socket, clock rates will grow more slowly
- 3D packaging likely
- Large-scale optics based interconnects
- 10-100 PB of aggregate memory
- Hardware and software based fault management
- Heterogeneous cores
- Performance per watt — stretch goal 100 GF/watt of sustained performance ⇒ >> 10 - 100 MW Exascale system
- Power, area and capital costs will be significantly higher than for today’s fastest systems

Google: exascale computing study

IESP Booth/SC’09, J. Dongarra
European Exascale Software Initiative (EESI)

A Call to Action

- Hardware has changed dramatically while software ecosystem has remained stagnant
- Previous approaches have not looked at co-design of multiple levels in the system software stack (OS, runtime, compiler, libraries, application frameworks)
- Need to exploit new hardware trends (e.g., manycore, heterogeneity) that cannot be handled by existing software stack, memory per socket trends
- Emerging software technologies exist, but have not been fully integrated with system software, e.g., UPC, Cilk, CUDA, HPCS
- Community codes unprepared for sea change in architectures
- No global evaluation of key missing components

www.exascale.org
International Community Effort

- We believe this needs to be an international collaboration for various reasons including:
 - The scale of investment
 - The need for international input on requirements
 - US, Europeans, Asians, and others are working on their own software that should be part of a larger vision for HPC.
 - No global evaluation of key missing components
 - Hardware features are uncoordinated with software development

www.exascale.org

IESP Booth/SC’09, J. Dongarra
European Exascale Software Initiative (EESI)

IESP Goal

Improve the world’s simulation and modeling capability by improving the coordination and development of the HPC software environment.

Workshops:

Build an international plan for developing the next generation open source software for scientific high-performance computing

www.exascale.org

IESP Booth/SC’09, J. Dongarra
European Exascale Software Initiative (EESI)

Where We Are Today:

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC08 (Austin TX) meeting to generate interest</td>
<td>Nov 2008</td>
</tr>
<tr>
<td>Funding from DOE’s Office of Science & NSF Office of Cyberinfrastructure and sponsorship by Europeans and Asians</td>
<td>Apr 2009</td>
</tr>
<tr>
<td>US meeting (Santa Fe, NM) April 6-8, 2009</td>
<td>Jun 2009</td>
</tr>
<tr>
<td>65 people</td>
<td></td>
</tr>
<tr>
<td>NSF’s Office of Cyberinfrastructure funding</td>
<td></td>
</tr>
<tr>
<td>European meeting (Paris, France) June 28-29, 2009</td>
<td>Oct 2009</td>
</tr>
<tr>
<td>70 people</td>
<td></td>
</tr>
<tr>
<td>Outline Report</td>
<td></td>
</tr>
<tr>
<td>Asian meeting (Tsukuba Japan) October 18-20, 2009</td>
<td></td>
</tr>
<tr>
<td>Draft roadmap</td>
<td></td>
</tr>
<tr>
<td>Refine Report</td>
<td></td>
</tr>
<tr>
<td>SC09 (Portland OR) BOF to inform others</td>
<td>Nov 2009</td>
</tr>
<tr>
<td>Public Comment</td>
<td></td>
</tr>
<tr>
<td>Draft Report presented</td>
<td></td>
</tr>
</tbody>
</table>

www.exascale.org
European Exascale Software Initiative (EESI)

Motivations for launching EESI

Coordinate the European contribution to IESP

Enlarge the European community involved in the software roadmapping activity

Build and consolidate a vision and roadmap at the European Level, including applications, both from academia and industry
European Exascale Software Initiative (EESI)

EESI main Goals

Build a **European vision and roadmap** to address the **challenge of performing scientific computing** on the new generation of computers which will provide multi-Petaflop performances in 2010 and Exaflop performances in 2020.

- Investigate how Europe is located, its strengths and weaknesses, in the overall international HPC landscape and competition
- Identify priority actions
- Identify the sources of competitiveness for Europe induced by the development of Peta/Exascale solutions and usages
- Investigate and propose programs in education and training for the next generation of computational scientists
- Identify and stimulate opportunities of worldwide **collaborations**
European Exascale Software Initiative (EESI)

EESI main tasks

Coordination of the European participation in IESP
- Make a thorough assessment of needs, issues and strategies
- Develop a coordinated software roadmap
- Provide a framework for organizing the software research community
- Engage and coordinate vendor community in crosscutting efforts
- Encourage and facilitate collaboration in education and training

Cartography of existing HPC projects and initiatives in Europe, US and ASIA

Coordination of “disciplinary working groups” at the European level
- *Four groups* “Application Grand Challenges”
- *Four groups* “Enabling technologies for Petaflop/Exaflop computing”

Synthesis, dissemination and **recommendation** to the European Commission
EESI expected outputs

A **roadmap** and **set of recommendations** to the funding agencies shared by the European HPC community, on software - tools, methods and applications - to be developed for this new generation of supercomputers.
European Exascale Software Initiative AGENDA

Initial International workshop
- Constitution of WG, Setup of guidelines, organisation modes
- Initial cartography of existing HPC projects, initiatives in Europe, US and ASIA

Enabling technologies for Exaflop computing
- Hardware roadmap, links with vendors
- Software eco-systems
- Numerical, libraries, solvers and algorithms
- Scientific software engineering

Application Grand Challenges
- Industrial and Engineering Applications (Transport, Energy)
- Weather, Climatology and Earth Sciences
- Fundamental Sciences (Chemistry, Physics)
- Life science, Health, BPM

Internal workshop: presentation of each working group results and roadmaps
- Synthesis of all contributions and production of a set of recommendations
- Presentation of EESI results to the EC

Updated cartography of existing HPC projects, initiatives in Europe, US and ASIA

Final conference: public presentation of project result

T0: June 1, 2010
T0+5: October 2010
T0+12: 1 month
T0+13: 3 months
T0+16: 1 month
T0+17: 1 month
T0+18: November 2011
European Exascale Software Initiative AGENDA

Industrial and Engineering Applications (Transport, Energy)
Chair: Philippe Ricoux/TOTAL
Vice-Chair: Jean-Claude André/CERFACS

- 5 months
- 8 months
- 1 month
- 3 months
- 1 month
- 1 month

June 1, 2010
October 2010
June 2011
December 2011
European Exascale Software Initiative AGENDA

Weather, Climatology and Earth Sciences
Chair: Giovanni Aloisio / ENES-CMCC
Vice-Chair: Massimo Cocco/ INGV

T0 5 months
June 1, 2010

T0+5 8 months
October 2010

T0+12 1 month
June 2011

T0+13 3 months

T0+16 1 month

T0+17 1 month

T0+18 1 month
December 2011

June 2011
European Exascale Software Initiative AGENDA

Fundamental Sciences
(Chemistry, Physics)
Chair: Godehard Sutmann/CECAM
Vice-Chair: Jean-Philippe Nominé/CEA

Timeline:
- T0: June 1, 2010
- T0+5: October 2010
- T0+12: June 2011
- T0+17: December 2011
European Exascale Software Initiative AGENDA

Life science, Health, BPM
Chair: Modesto Orozco/ BSC
Vice-Chair: Janet Thorton/EMBL-EBI

T0 5 months T0+5 8 months T0+12 1 month T0+13 3 months T0+16 1 month T0+17 1 month T0+18

June 1, 2010 October 2010 June 2011 December 2011
European Exascale Software Initiative AGENDA

Hardware roadmap, links with Vendors
Chair: Herbert Huber/STRATOS-LRZ
Vice-Chair: Sanzio Bassini/CINECA

June 1, 2010 October 2010 June 2011 December 2011
European Exascale Software Initiative AGENDA

Software eco-systems
Chair: Franck Cappello/INRIA-NCSA
Vice-Chair: Bernd Mohr/JSC

INRIA

Jülich Forschungszentrum

T0
T0+5
T0+12
T0+13
T0+16
T0+17
T0+18

5 months
8 months
1 month
3 months
1 month
1 month

June 1, 2010
October 2010
June 2011
December 2011
European Exascale Software Initiative AGENDA

Numerical, libraries, solvers and algorithms
Chair: Iain Duff/ STFC-Rutherford Appleton Laboratory
Vice-Chair: Andreas Grothey/ Edinburgh University

T0
June 1, 2010

T0+5
October 2010

T0+12
June 2011

T0+16
December 2011

T0+18
T0+17
T0+13
T0+12
T0+11
T0+10
T0+9
T0+8
T0+7
T0+6
T0+5
T0+4
T0+3
T0+2
T0+1
T0

5 months
8 months
1 month
3 months
1 month
1 month
3 months
1 month

European Exascale Software Initiative AGENDA

Scientific software engineering
Chair: David Emerson/STFC-Daresbury Lab.
Vice-Chair: Andrew Jones/NAG

June 1, 2010
October 2010
June 2011
December 2011
European Exascale Software Initiative AGENDA

Link with US and ASIA

Joint IESP/EESI workshops: present EESI Working Groups outputs, include inputs from US and ASIA, identification of US, ASIA and European cross actions.

Initial International workshop: presentation of each working group results and roadmaps

Synthesis of all contributions and production of a set of recommendations

Final conference: public presentation of project results

Weather, Climatology and Earth Sciences
Industrial and Engineering Applications (Transport, Energy)
Life science, Health, BPM
Fundamental Sciences (Chemistry, Physics)
Scientific software engineering
Software eco-systems
Hardware roadmap, links with vendors
Numerical, libraries, solvers and algorithms

Enabling technologies for Exaflop computing

Application Grand Challenges

Joint IESP/EESI workshops: present EESI Working Groups outputs, include inputs from US and ASIA, identification of US, ASIA and European cross actions

June 1, 2010
October 2010
June 2011
December 2011
EESI Partners around the world