Breakout Group 1:
Technical challenges and needs of academic and industrial software infrastructure research and development

Breakout Session Chair: Satoshi Matsuoka (Tokyo Tech./NII)
Breakout Session Secretary: Michael Heroux (Sandia NL)
Slides: Satoshi Matsuoka and Jack Dongarra (UTK/ORNL)

IESP Workshop 2, June 28-29, Paris, France
Objectives of Group1 at This Meeting

• Roadmaps for open software R&D towards exascale
 – From 2009 to 2020

• Important Software Component Identifications
 – Existing Components – how far do they scale?
 – Missing Components – how do we start R&D?

• (Collaboration scenarios)

• (Vendor relations – acceptance, support, etc.)
 – Sufficient “exascale” market?
 – Or, more widespread demand and community forces leveraged?
Dimensions of petascale software roadmaps

• Time – Petascale now 2009 to Exascale 2018-2020
 – Yearly timeline
• System and other software components/concerns
 – E.g., programming, HA/FT, libraries, I/O & filesystems
• Architectural Diversities
 – Homogeneous vs. heterogeneous cores/ISA
 – Multithreaded shared memory vs. distributed memory
• Target system sizes---peta to exascale
 – # of compute cores
 – # of nodes
 – Other parameters, such as memory, NW, and I/O
Issues facing the software components

- Extreme parallelism and Scale
- Tightening memory/bandwidth bottleneck
- High Availability despite continuous faults
- Huge power / facility requirements
- Heterogeneity and other complexities
Tightening memory/bandwidth bottleneck

Future Architecture Trends, or the “n^2 (component density) vs. n (I/O BW) problem“

• Very Dense computation
 – Vector/SIMD/Multithreading arch.
 – Power consumption and programming the issue

• Good absolute local memory BW
 – 1TB/s per chip soon, fast/opto signaling, 3-D packaging
 – but deepening memory hierarchy

• Relatively poor node I/O channel and NW BW
 – (only) 40Gb/100Gb soon, long distance signaling hard
 – There might be breakthroughs, (e.g. planar laser diode emission), but…

• Very poor Disk Storage BW
 – SSDs are just boosts, no exception to the laws of physics
Architecture analysis and strawman targets

• Target system size and market
 – 1999/6: 2 systems Rpeak > 1TF, 70 machines > 100GF, 1 rack =~ 64GFlops (80 PentiumIII-S’s), x20
 – 2009/6: 3 systems Rpeak > 1PF, 44 machines > 100TF, 1 rack =~ 10TF (200 Nehalem EPs), x100
 – 2019/6: a few exaflops (Rpeak > 1EF) ~28 machines > 100PF, 1 rack 1PF?, x500~1000

• Strawman Architectures circa 2018-20 (need to add memory)
 – Assume scaling down 45nm => 13~15nm, x10 transistors
 – Homogeneous arch: 100 cores/chip (x10), 16 FP issues/core (x4), 3.5 Ghz clock (x1.3) => 5TF/Chip, 10TF/node, 100 nodes/rack
 • 1 rack: 1 PetaF, 20,000 cores, 100 nodes
 • 1 Exa system: 20,000,000 cores (x100 BG)/ 100,000 nodes (x10 BG) / 1,000 racks (x4 ES)
 – Heterogeneous arch: 2500 (simple SIMD-Vector) cores/chip, 4 FP issues/core (x2), 2Ghz (x1.3) => 20TF/chip, 40TF node, 50 nodes/rack
 • 1 rack: 2 PetaF, 250,000 cores / 50 nodes
 • 1 Exa system: 125 million cores / 25,000 nodes / 500 racks
 – May want to consider memory, power and other parameters
Software Components

- High Availability/Fault Management
 - Prevention, Tolerance, Detection, Recovery e.g., checkpointing

- Programming Languages and Models
 - Traditional: OpenMP + MPI
 - PGAS languages and variants
 - Accelerator languages: CUDA, OpenCL
 - Others? (Locally-synchronous languages)

- Compilers and Runtime Systems
 - Support for speculative computing, transactional memories, high asynchrony
 - Performance monitoring and feedback, auto-tuning
 - Debugging, verification, etc.

- IO and Filesystems (or perhaps more generally persistent storage models)

- Low level OS and Systems issues
 - virtualization, fault mgmt, memory mgmt, power mgmt, jitter/timing, …

- Numerical Libraries
 - (Lots of issues here, but should be prioritized by applications requirements)

- Systems Management and Configuration
 - (Goal should be to make future systems easier to manage than current Petascale systems)

- Networking and Integration with Broader Infrastructures
 - (Making these systems integrate with other things in the environment … whether its clouds, global filesystems, real-time data streams, etc.)
Group 1 plans

• Initially roughly agree on architectural roadmaps circa 2012 (10-30PF), 2015-6(100-300PF), 2018-20(1EF) (10-15 min)

• Split into two groups: (5 min => until 3:50 PM)
 – Intra-node issues: programming models, concurrency and fine-grained resource mgmt., languages, node OS
 – Inter-node issues: HA/resiliency/FT, Power, global config. Mgmt., I/O
 – Prioritize discussions, identify cross-subgroup issues

• Reconvene at the end of the day and identify the cross-subgroup issues, to prepare for tomorrow (10 min)
Technology Assumptions

<table>
<thead>
<tr>
<th>Year</th>
<th>Technology</th>
<th>#cores / socket</th>
<th>Issues /core</th>
<th>Nodes</th>
<th>Memory</th>
<th>Storage</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>32-28nm</td>
<td>8-16</td>
<td>4-8</td>
<td>10,000</td>
<td>HDD + SSD</td>
<td>100Gb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500-1000</td>
<td>2</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015-16</td>
<td>18-15nm</td>
<td>24-48</td>
<td>8-16</td>
<td>30,000</td>
<td>3-D SOC?</td>
<td>SSD + HDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000-2000</td>
<td>2</td>
<td>15,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-2020</td>
<td>9-13nm?</td>
<td>100-200</td>
<td>8-16</td>
<td>100,000</td>
<td>3-D SOC</td>
<td>SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000-4000</td>
<td>2</td>
<td>50,000</td>
<td></td>
<td>SOC</td>
<td></td>
</tr>
</tbody>
</table>

2009/05/21
Roadmap Formulation Strategy (strawman) for IESP2

• Consider each software component / area, in operation at centers or close to deployment

• If standard / open source component exists
 – Then investigate status quo circa 2009 wrt scalability
 – If project exists to enhance scalability
 • Then identify roadmap until project termination
 • If need to continue then identify the timeline gap till 2018-20 exa
 – Else (R&D gap identification)
 • Identify research challenges envision project req.
 • Attempt to create scalability timeline to 2018-20 exa

• Else (component does not exist in open source)
 – Identify why the component does not exist
 – Conduct R&D gap identification as above
Collaboration Scenarios

1. Almost no collaboration
 - Periodic workshops, status reports of regions
 - Voluntary and ad-hoc usage of products of various projects

2. Loosely coupled collaboration
 - Focused meetings & workshops covering respective components & concerns of the software stack
 - Comparison of technical milestones, esp. for similar developments and application usage
 - Cross pollinating deployments of

3. Collaboration with Standardization
 • Definition of standards, test suites, and benchmarks, and their public availability

4. Tightly Coupled collaboration
 • International governance & funding structure
 • Cross-continental development teams (e.g., LHC/EGEE)
Roadmap Requirements (by Jack)

- Specify ways to re-invigorate the computational science software community throughout the international community.
- Include the status of computational science software activities across industry, government, and academia.
- Be created and maintained via an open process that involves broad input from industry, academia and government.
- Identify quantitative and measurable milestones and timelines.
- Be evaluated and revised as needed at prescribed intervals.
- Roadmap should specify opportunities for cross-fertilization of various agency activities, successes and challenges.
- Agency strategies for computational science should be shaped in response to the roadmap.
- Strategic plans should recognize and address roadmap priorities and funding requirements.
Research Topics to consider (by Jack)

- Contributors
- Priorities
- Existing expertise
- SW sustainability
- Developing new programming models and tools that address extreme scale, multicore, heterogeneity and performance
- Develop a framework for organizing the software research community
- Encourage and facilitate collaboration in education and training

2009/05/21
Roadmap/Milestone

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Software/Language Issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborative workshops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinated research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priorities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staffing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>