IESP-8 Working Group on:

Revolutionary Approaches
Approaches for Delivering Disruptive New Technology

Thomas Sterling
Indiana University
Sandia National Laboratories

William Gropp
University of Illinois Urbana Champagne

April 12, 2012
What is “Revolutionary”?

- Decoupled from conventional practices
- Exploitive of ideas (new?) not incorporated in traditional thinking
- Benefits from new opportunities that can only be exploited through non-typical means
- Dramatic change, with potentially disruptive consequences
- Inappropriate if near equivalent results may be realized through incremental progressions
- Essential if offers only viable path to achieving critical goals
- Controversial, risky, and unpopular
- May be less risky than ineffective application of common strategies
Summary from IESP-7 (Cologne) Working Group on Revolutionary Approaches

• Considered revolutionary methods potentially essential to addressing strategic challenges to Exascale

• Principal focus
 – High impact candidates for revolutionary methods
 – Disruptive effects and means of mitigation

• Challenges that may require revolutionary solutions
 – Efficiency, scalability, resilience, power, programming, correctness

• Possible revolutionary opportunities
 – Paradigm, execution model, runtime system, intelligence/introspection
 – Programming: semantics of parallelism and asynchrony control
Strategic Challenges

• Performance
 – Efficiency: latency, overhead, contention
 – Scalability: starvation, resource management, scheduling

• Energy
 – Bounded power
 – Minimized energy

• Reliability
 – Continued operation in the presence of faults

• Programmability
 – System transparency
 – Portability across system classes, scales, and generations

• Generality
 – STEM
 – Knowledge management and understanding
Concepts towards a new Paradigm

• Split-phase transactions
 – Avoid blocking
 – e.g., lightweight multi-threading

• Message-driven computation
 – Move work to data
 – Parcels and Percolation

• Constraint-based synchronization
 – Declarative criteria for work
 – Event driven

• Data-directed execution
 – Merger of flow control and data structure
 – Exploits intrinsic parallelism implicit within meta-data structures

• Shared name space
Working Group Charter

• Determine approaches for delivering disruptive new technologies.
• Establish how to devise a full system software architecture.
• Who are the recipients?
• What are the delivered technologies required and their form?
• How to mitigate disruptive aspect (non-traditional) of new technologies to facilitate processing of legacy codes?
• Next steps?
Preliminary Modalities of Delivery

• Concepts
 – Paradigm
 – Execution model
 – Abstract machine model
 – User interface semantics

• Research
 – Theoretical findings
 – Emulations and simulations
 – Experimental results

• Proof-of-concept prototype systems
 – API
 – Runtime and operating system software
 – Architecture and hardware design
 – Physical components and deployed systems
Production-grade Modalities of Delivery

- Open-source reference implementation
- Community provided tools
- Independent software vendor developed & maintained
- Vendor-provided commercial total system products
Today’s Discussion Topic

• Who are the customers for such disruptive software technologies?
• What are the possible general strategies?