Economic and management challenges and needs of computational resource providers and industry partners

Chair: Dan Reed (Microsoft Research)
Secretary: Jean-François Lavignon (Bull)

IESP Workshop 2, June 28-29, Paris, France
Working Group Participants

- Patrick Aerts
- David Barkai
- Sanzio Bassini
- Taisuke Boku
- Iris Christadler
- Hugo Falter
- Alan Gara
- Jean Gonnord
- Andrew Jones
- Kimmo Koski
- Bill Kramer
- Jean-Francois Lavignon
- Dan Reed
- Christian Saguez
- Makoto Taiji
- Peggy Williams
Working Group Outbrief (Reminder from Yesterday)

• Discussion focus
 – Metrics define outcomes (choose wisely)
 – Collaboration models and horizons
 • \(N \times X \neq X \times N \)
 – Regional differences identified
 • U.S., Europe (e.g., PRACE), Japan
 – Strong interest in international collaboration

• High level issues
 – Pre-competitive partnerships desired
 • Horizon should be 5+ years if involving provider competitors
 • Procurement winner(s) known early
 – Co-development implications
 • Shared risk, funding and outcomes
 – Vendor types/sizes have different constraints
 • Risk, time horizon, funding fungibility
White Paper Outline (Draft in Two Weeks)

1. Introduction/charge (Reed)
 - Summary of the working group agenda

2. Lessons from large-scale projects (Reed, Taiji, Gonnord, Bassini, Gara)
 - Computing at petascale (U.S., Japan, Europe)
 - Other large S&T projects (ITER, LHC, …)
 - Metrics define outcomes (systems and collaborations)

3. Market size/type and implications (Williams, Barkai, Jones, Bassini)
 - Limited experimental facilities or larger commercial market (assume expansion)
 - Software scaling semi-invariant across evolution of Top500 (Jones)
 - Interaction models on issues
 - Specifications, implementation, lifecycle support
 - Decision criteria (feasibility, cost, go/no-go decisions)

4. Collaboration approaches (Aerts, Christadler, Kramer, Koski, Boku)
 - Funding profile shapes collaboration options (time and hardware/software balance)
 - Collaboration and relationship (tight to loose) models (Kramer)
 - Links to software types and implications (Aerts)
 - Defining limits of collaboration/competition/creating an IP rights process
 - Vendor, center and region
 - Impact and implications of open source approaches
Collaboration Scenarios (4)

- Tightly coupled collaboration
 - International governance and funding structure
 - Multi-company development teams

- Collaboration with standardization
 - Definition of standards, test suites, and benchmarks

- Loosely coupled collaboration
 - Focused workshops on software activities
 - Comparison of technical milestones

- Little collaboration
 - Periodic workshops, status reports of regions
 - Voluntary and ad hoc usage of project products
Relationship Models

• Definition - Organizations - could be
 – Industry providers
 – National labs
 – Universities
 – Consortiums

• Relationship Models
 – Funded Investigation
 – Fully defined purchase
 – Design and Development – no solution
 – Co-design and co-development of a solution
 – Base plus value add

• Multiple models can be used in a program
Summary Relationship Attributes

<table>
<thead>
<tr>
<th>Model</th>
<th>Obligation</th>
<th>Expectation</th>
<th>Benefit/Reward</th>
<th>Risk</th>
<th>IP</th>
<th>Metric</th>
<th>Example</th>
<th>Scope, Schedule, Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funded Investigation</td>
<td>deliver insight, knowledge and opinion</td>
<td>Good work</td>
<td>Information that informs future direction</td>
<td>None</td>
<td>Flexible</td>
<td>Publication, Peer Review</td>
<td>SciDAC, UK eScience</td>
<td>Flexible, Fixed, Fixed</td>
</tr>
<tr>
<td>Fully Defined Purchase</td>
<td>A solution</td>
<td>Solution works completely</td>
<td>Profit to solution provider, simplicity to purchaser</td>
<td>All solution provider</td>
<td>All solution provider</td>
<td>PERCU</td>
<td>DODmod TI Hector</td>
<td>All Fixed</td>
</tr>
<tr>
<td>Design and Develop – no solution</td>
<td>prototypes, subsystems, demonstration s</td>
<td>Demonstrated progress toward a solution</td>
<td>Early technology to use</td>
<td>Shared but limited</td>
<td>Flexible – within all performing organizations</td>
<td>Demos, models, etc.</td>
<td>DARPA HPCS</td>
<td>Flexible Scope, Fixed Cost and Sched</td>
</tr>
<tr>
<td>Co-Design and Co-Development of solution</td>
<td>A solution</td>
<td>Solution working solutions</td>
<td>Early Solution, Future Tech use</td>
<td>Shared by all</td>
<td>Flexible</td>
<td>Working solution</td>
<td>Red Storm, HPSS, Earth Simulator (?)</td>
<td>All Flexible</td>
</tr>
<tr>
<td>Base plus value add</td>
<td>Min system + additions</td>
<td>Min solution works, at least some of the value add works</td>
<td>Some profit, at least min solution</td>
<td>Min for performing organization, shared</td>
<td>Base for solution provider, other flexible</td>
<td>Minimal working solution, number of value adds</td>
<td>Blue Waters</td>
<td>Fixed Min scope, flexible value added, fixed cost</td>
</tr>
</tbody>
</table>
• Traditional hierarchy
 – Applications, libraries, runtime systems, system software

• Current horizontal software process (white paper)
 – Potentially not extensible to exascale

• Vertical integration/collaboration process
 – Software funding and collaboration implications
 – Open source community leverage
 – Provider staff continuity/training for collaboration

• Engage the broader software provider community

• Lowest software levels most difficult for collaboration
 – Hardware and vendor-specific issues
Funding Profiles Shape Collaborations (3)

\[
\int_{0}^{t} f(t) \, dt = F(t)
\]
• Look at characteristics of software requirements of Top 500:N~500 compared to when same performance was required for N~1

• In other words, is there a reasonable expectation, based on history, that the software requirements of product Exascale systems will be similar to hero Exascale systems?
 – … and thus can the investments made by HPC product developers/providers and funding bodies can expect an ROI beyond just the first few Exascale systems?

• Example 1 (spot case, need to look at more examples)
 – N=400-500 (09June): ~ 20 TF HPL from ~ 20-50 TF peak; ~ 2-5K cores
 • O(10^3) MPP with multiple cores/CPUs per node
 – N=1 (01June): 7 TF from 12 peak; 8K cores
 • O(10^3) MPP with multiple cores/CPUs per node
 – N=1 (02June): 36 TF from 41 peak; 5K cores
 • O(10^3) MPP with multiple cores/CPUs per node
Energy Efficient Infrastructure (2)

• Lessons from industrial experience
 – Balance of system versus software focus (IESP)
 – Holistic system design

• Decoupling exascale elements
 – Facilities, hardware, operations
 – Enabling software, applications
Roadmap/Milestone

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Software/Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language Issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborative workshops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinated research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priorities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staffing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Coordination mechanisms
- Research and development topics
Background
Background and Overview

• Experiences and challenges
 – Insights from vendor and center experience
• Technology implications
 – Evolution/revolution
• Industry-community coordination
 – Crosscutting and complementary efforts
• Collaboration scenarios
 – Precompetitive and competitive
 – Economic and political feasibility
Petascale Lessons for Exascale

- Programs
- Process
- Mechanisms
- Outcomes

- Good
- Bad
- Ugly

Would we do it the same way again?
We Applied The Fundamental Axiom of Computing …

• … All problems can be solved via another level of indirection

• Which is to say, we discussed how to collaborate and how to create roadmaps
Exemplar Technical Issues Affecting Software

- Parallelism scale
- Component heterogeneity
- Communication
 - bandwidth/latency
- Memory models
- Storage system structure
- Component reliability
- Energy management

- Design options
 - Evolutionary
 - Revolutionary

- Baseline identification
 - Strengths/weaknesses
 - Available resources

- DARPA architecture reference
 - Evolutionary strawmen
 - “Heavyweight” strawman”
 - Commodity-derived microprocessors
 - “Lightweight” strawman”
 - Custom microprocessors
 - Aggressive strawman
 - “Clean Sheet of Paper” silicon
Interaction Modalities and Motivations

• Commercial provider issues
 – Profit
 – Differentiation
 – Market share and sweet spots
 – Customer loyalty
 – Interoperability
 – Continuity/sustainability

• Type-specific issues
 – ISVs, software, hardware, integrators

• Commercial and open source software
Hypothesis: Timelines and Processes Really Matter

• Procurement-driven research and development
 – Rewards incrementalism and product evolution
 – Punishes revolutionary innovation
 – But, it is our historical model

• Short timelines reduce collaboration
 – Create vendor competitive pressures
 – Lessen information sharing

• Competitive advantage and compatibility
 – Differentiation and interoperability

• Implications
 – Define strategic, not tactical roadmaps
 – Enable pre-competitive industry collaborations
Vendor Exascale Software Roadmap

• The roadmap should
 – Specify ways to re-invigorate the international computational science software community
 – Include computational science software activities across industry, government & academia
 – Be created and maintained via an open process that involves broad input
 – Identify quantitative and measurable milestones and timelines
 – Be evaluated and revised as needed at prescribed intervals
 – Specify opportunities for cross-fertilization of activities, successes and challenges

• Agency strategies for computational science
 – Shaped in response to the roadmap

• Strategic plans
 – Recognize and address roadmap priorities and funding requirements.
Issues

• Funding level needs/haves
 – Hardware, system software, user software

• Vendor and resource provider needs
 – Testing/development on current systems

• Societal benefits
Relationship Models

1) Funded Investigation (research)
 - Funding to organizations to explore problems to understand issues, explore solution spaces and better define the problems
 - Performing organizations have obligation to deliver insight, knowledge and opinion
 - Expectation
 - People do good work
 - Metrics
 - Peer Review, Publication,
 - Rewards
 - Information that informs future direction
 - IP/royalties
 - IP Ownership
 - Flexible – depends on approach
 - Flexibility in scope – schedule and cost fixed
 - No risk
 - Examples
 - SciDAC
 - Phase 1 of HPCS
Relationship Models

• 2) Fully defined purchase
 – Funding to industry deliver a solution, possibly a product
 – Performing vendor delivers a solution that works according to a specific set of requirements for a certain cost
 – Expectations
 • A completely working system
 – Metrics
 • Specified performance, RAS, …
 – Rewards
 • Profit to vendors, low risk to funding organizations
 – IP Ownership
 • All industrial partner
 – Fixed scope, schedule and cost
 – Most Risk on industry partner
 – Examples
 • DODmod TI sequence
 • Hector??
3) Design and Development – no solution
 - Funding to organizations to develop certain technologies and methods that are necessary for the program
 - Performing organizations have obligation to deliver prototypes, subsystems, demonstrations
 - Expectations
 - Demonstratable progress toward a solution
 - Metrics
 - Demonstrations, analytical models, …
 - Rewards
 - Early technology to move to product/use
 - IP Ownership
 - Flexible – Within some performing organizations
 - Fixed schedule, cost – flexibility in scope
 - Risk shared – but limited
 - Examples
 - Darpa HPCS
Relationship Models

4) Co-Design and Co-Development of a Solution
 - Funding to organizations to develop a solution for a set of requirements
 • Roles and Responsibilities flexible in a long term project
 - Performing organizations have obligation to deliver a working solution
 - Expectation
 • A solution that is probably usable
 - Metrics
 • Working solution
 - Rewards
 • Early solution
 • Shared IP
 - IP Ownership
 • Shared by performing organizations
 - Flexibility in scope, schedule, cost
 - Risk completely shared
 - Examples
 • Red Storm
 • HPSS
Relationship Models

• 5) Base plus Value Added
 – Funding to organizations to develop a certain base solution that meets a limited set of requirements.
 – Performing organizations have obligation to deliver base system, and to collaborate on value added attributes that will expand the impact of the solution
 – Expectations
 • Solution that meets basic need – and exceed basic need in some areas
 – Metrics
 • Base requirements met, value added in some areas succeed
 – Rewards
 • Science community gets a minimally working solution
 • Industry partners get a certain profit
 • Science community may get a much better system
 – IP Ownership
 • Industrial partner with maybe some sharing
 – Fixed minimum scope, Larger potential scope, fixed schedule, cost may be fixed or flexible
 – Risk shared but not entirely
 – Examples
 • Blue Waters
Another Topic – The Vertical Approach

- Resilience (reliability & fault tolerance)
- Performance
- Programmability
- Computational model
- I/O
- Consistency and verification
- Resource Management
- Power Management/Total Cost of Ownership