Co Design breakout session

S. Dosanjh (SNL), S. Requena (GENCI)
IESP Cologne
Need for Co-design

• Basic assertion: Both architectures and algorithms will change dramatically in this decade

• Need a new methodology to enable algorithms R&D for supercomputers that don’t yet exist, are much different from today and are not well-defined

• Reaching Exascale will require architectures R&D
 – Need to provide feedback on choices, prioritize investments
Co-design Breakout

- Co-design centers
- Can we really influence microprocessors, memory, architectures?
- Codesign methodology
- Co-design and the software stack
- International collaboration
Co-design Centers

• US
 – 3 initial ASCR co-design centers
 – ASC co-design centers being defined
• Europe
 – Intel labs, CERFACS, Juelich simulation labs, HP2C, Cresta
• Japan
 – 3? co-design subject areas being identified
• China
 – Significant focus for the future
• How and when to involve the vendors. Need >5yrs to impact processors, several years to impact system architectures and software.
• Will applications change in a fundamental way? General sense was yes.
Can we really influence microprocessors, memory, architectures? Generally HPC is important..

- When do key decisions need to be made? Next two years to influence research for 2018 processors.
- What information would help make these decisions? Kernels (early) to full applications (later). Frequent communications.
- Cost. Must understand and leverage roadmaps.
- IP. Ability to do deep dive and develop abstractions.

Develop a realistic view with systems/applications (e.g., is 128 PB realistic?)
Co-design Methodology

- Kernel, skeleton, compact and full applications
 - Should represent breadth of applications
 - Current applications and future needs
 - Still need communication between communities
 - Must evolve through co-design (i.e., iteration)
 - Validation
Co-design Methodology

• Performance and other Tools
 – Automatically extracting kernels
• Performance models (analytical and semi-automated)
• Simulation and Emulation
 – Needed to develop applications/algorithms for future computers and to provide feedback on architectural choices
 – HW/SW co-simulation
 – Open tools that can interface to proprietary tools
 – Multiscale
 – Validation
Co-design and the Software Stack

• Reduce the number of software stacks
• Open source
• Sharing and coordination across the co-design centers
Co-design Methodology

- Opportunities for international collaboration
 - Applications/software/architectures communities need a forum to openly exchange information, lessons learned
 - Recommendation: Continue co-design methodology discussions within IESP
 - Standing breakout
 - Deep dive at next meeting from Europe, Japan and U.S.
Applications Inventory - 21

- **Magnetically Confined Fusion**
 - Ethier, Princeton PPL
 - Guenter, Jenko & Heinzel, Max Planck Inst.
 - Koniges, LBNL
 - Nakashima, Kyoto University

- **Molecular Dynamics**
 - Zhong, Supercomputer Center, CAS
 - Swaminarayan, LANL
 - Streitz, LLNL

- **Climate**
 - Aloisio, Univ. of Salento & CMCC

- **Combustion**
 - Sankaran (Messer), ORNL

- **Radio Astronomy**
 - Cornwell and Humphreys, CSIRO

- **Aerodynamics**
 - Keyes, KAUST & Columbia

- **Fluid Dynamics and Heat Transfer**
 - Fischer, ANL

- **Neutron Transport**
 - Siegel, ANL

- **Nuclear Fuel Assemblies**
 - Berthou, EDF

- **Aerodynamics and Combustion**
 - Andre, CERFACS

- **HEDP and Rad Hydro**
 - Graziani, U Chicago
 - Messer, ORNL

- **Electronic Structure**
 - Scheffler, Blum, Heinzel, Fritz-Haber-Inst.
 - Eisenbach (Messer), ORNL
 - Harrison, ORNL