Report on Exascale Architecture Roadmap in Japan

Masaaki Kondo (UEC-Tokyo) (presented on behalf of SDHPC architecture WG)

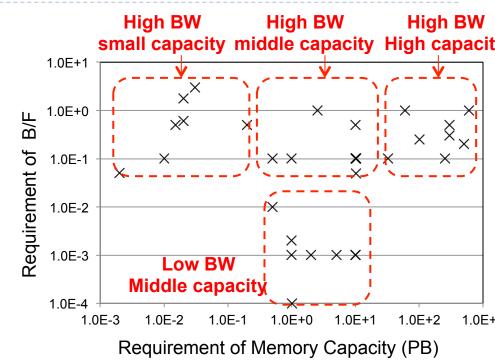
IESP Meeting@Kobe (April 12, 2012)

Our Mission

- Studying key technologies in achieving Exascale systems available in 2018-2020
- Investigating effective Exascale architectures for target sciences in collaboration with application WG
- Developing roadmap towards Exascale systems
 - Performance prediction based on technological trends
 - Listing technological challenges to Exascale systems
 - Breaking down R&D issues
 - Processor architecture
 - Memory subsystem
 - Managing huge-scale parallelism, Interconnection network
 - Power efficiency
 - Dependability
- Presenting an image of Exascale systems

Strategic Development of Exascale Systems

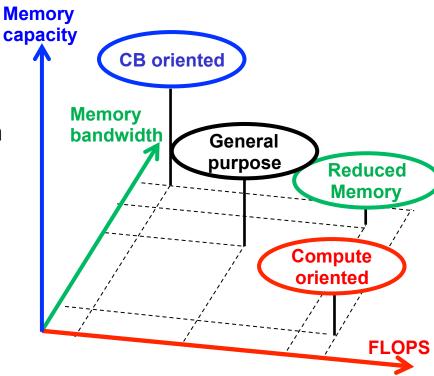
Exascale systems


- Cannot be built upon traditional technological advances.
- Needs special efforts in architecture / system software for developing effective (useful) Exascale systems

Strategy

- HW/SW/Application co-design
- Close cooperation with the application WG
- Architecture design suited for target application requirements
- Exploring best-matching between available technologies and application requirements

System Requirement for Target Sciences

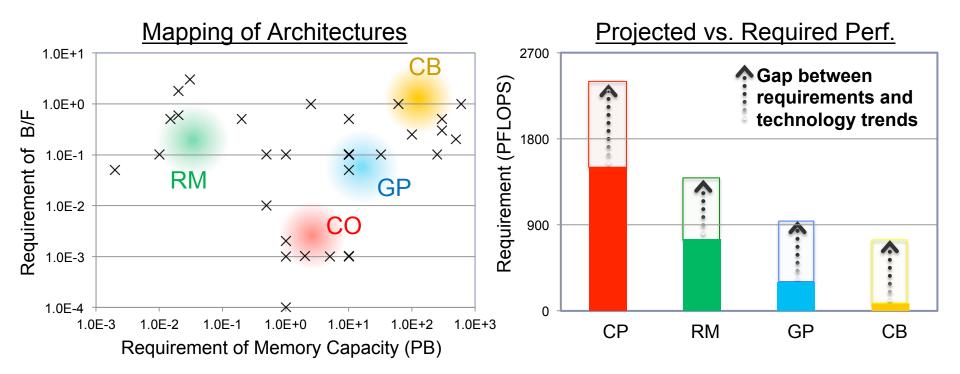

- System performance
 - FLOPS: 800 2500PFLOPS
 - Memory capacity: 10TB 500PB
 - Memory bandwidth: 0.001 1.0 B/F
 - Example applications
 - Small capacity requirement
 - □ MD, Climate, Space physics, ...
 - Small BW requirement
 - Quantum chemistry, …
 - High capacity/BW requirement
 - $\hfill\square$ Incompressibility fluid dynamics, \ldots
- Interconnection Network
 - Not enough analysis has been carried out
 - Some applications need >1us latency and large bisection BW
- Storage
 - There is not so big demand

Candidate of ExaScale Architecture

Four types of architectures are considered

- General Purpose (GP)
 - Ordinary CPU-based MPPs
 - e.g.) K-Computer, GPU, Blue Gene, x86-based PC-clusters
- Capacity-Bandwidth oriented (CB)
 - With expensive memory-I/F rather than computing capability
 - e.g.) Vector machines
- Reduced Memory (RM)
 - With embedded (main) memory
 - e.g.) SoC, MD-GRAPE4, Anton
- Compute Oriented (CO)
 - Many processing units
 - e.g.) ClearSpeed, GRAPE-DR

Performance Projection


- Performance projection for an HPC system in 2018
 - Achieved through continuous technology development
 - Constraints: 20 30MW electricity & 2000sqm space

<u>Node Performance</u>		Total CPU Performance (PetaFLOPS)	Total Memory Bandwidth (PetaByte/s)	Total Memory Capacity (PetaByte)	Byte / Flop
	General Purpose	200~400	20~40	20~40	0.1
	Capacity-BW Oriented	50~100	50~100	50~100	1.0
	Reduced Memory	500~1000	250~500	0.1~0.2	0.5
	Compute Oriented	1000~2000	5~10	5~10	0.005

<u>Network</u>						<u>Storage</u>		
				Min	Max	Total Capacity	Total Bandwidth	
	Injection	P-to-P	Bisection	Latency	Latency	1 EB	10TB/s	
High-radix (Dragonfly)	32 GB/s	32 GB/s	2.0 PB/s			100 times larger than main	For saving all data in memory to disks	
Low-radix (4D Torus)	128 GB/s	16 GB/s	0.13 PB/s			memory	within 1000-sec.	

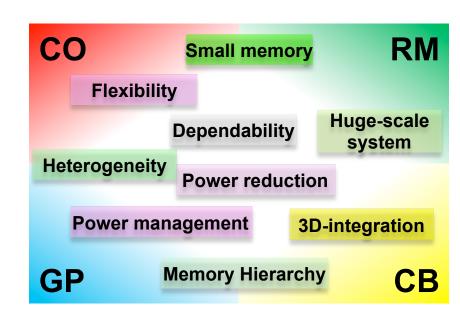
Gap Between Requirement and Technology Trends

- Mapping four architectures onto science requirement
- Projected performance vs. science requirement
 - Big gap between projected and required performance

Needs national research project for science-driven HPC systems

Issues Towards Exascale Systems

- There are several issues for developing science-driven Exascale Systems
- Common issues
 - Limitation of power consumption, system footprint, cost
- General Purpose (GP)
 - Needs to augment advantages compared to commodity machines
- Capacity-Bandwidth oriented (CB)
 - Currently, no clear benefit compared to GP in terms of power & cost
 - Needs to improve power-performance efficiency
- Reduced memory (RM) & Compute oriented (CO)
 - Application range is limited due to memory constraints
 - Co-design with application people is important


Challenges Toward Exascale System Development

Challenges in all architectures

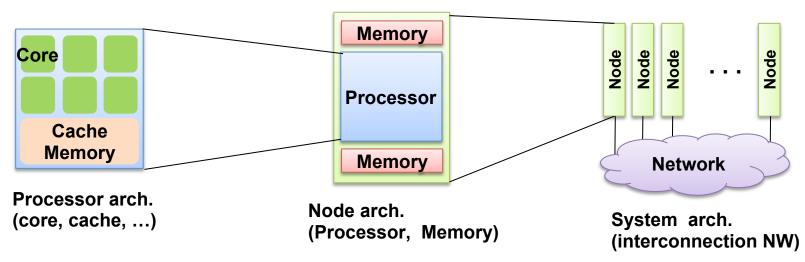
Power efficiency, Power management, Dependability

Challenges in each architecture

- General Purpose (GP)
 - Multi-level memory hierarchy
 - Management of heterogeneity
- Capacity-Bandwidth oriented (CB)
 - Memory system power reduction (3D-ICs, smart memory)
- Reduced Memory (RM)
 - On-chip network
 - Small memory algorithm
 - Huge-scale system management
- Compute Oriented (CO)
 - Flexibility to wide variety of sciences

Research Directions (in part)

Power reduction

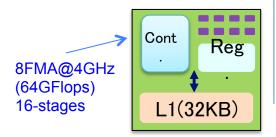

- About 60x performance-power improvement is required beyond traditional CMOS scaling
- Possible technology candidates
 - New devices: SOTB, 3D-IC, Near threshold Vdd
 - Low-power memory: NVRAM, Wide-I/O, Hybrid memory cube
 - Low-power Interconnect: power-efficient topology & switches
 - System-level power management: power-capping, power monitoring

Heterogeneous architecture

- Providing flexibility and high effective performance is important
- Data-sharing between latency and throughput cores or among throughput cores
 - Implicit data transfer or explicit sharing, cache coherence, etc.
- Communication network between latency and throughput cores

Overview of an Exascale System

- An example system image of GP architecture
 - GP is a basis of all types of architectures
- Explored each of the following system layers
 - Processor arch. (core and cache configuration)
 - Latency / throughput core, on-chip main memory
 - Node arch. (connection between processor and memory)
 - CPU-memory 3D integration, #CPUs per node
 - System arch. (interconnection network)
 - High-radix / Low-radix network



Processor Architecture

Latency Core (LC)

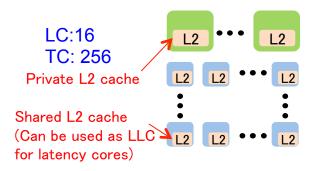
- High clock-speed
- Deep pipeline
- Out-of-order, Branch-prediction
- Cache, Prefeching, ...

single-thread performance

Throughput Core (TC)

- Low clock-speed
- Shallow pipeline
- Simple in-order

16FMA@1GHz


(32GFlops)

8-threades

 Multi-thread support good power efficiency

- Combined LCs and TCs (On-chip or Off-chip)
- Complicates programming both single/multi-thread perf.

	# cores	FLOPS	Clock speed	LLC
Latency Cores only	32	2TFLOPS	4GHz	128MB
Throughput Cores only	512	16TFLOPS	1GHz	128MB
Heterogeneous (area of LC:TC = 1:1)	16L+256T	9TFLOPS	4GHz/1GHz	128MB
(c.f. K-computer (58W/CPU)	8	128GFLOPS	2GHz	6MB

Reg

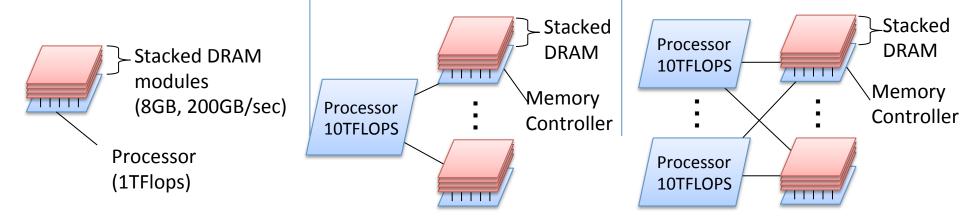
L1(32KB)

Reg

Assumption: each core consumes 50-200W power

Node Architecture

Thin node


- 3D CPU-memory integration with Wide I/O technology
- Power: 2-20W / node
- # of nodes: 1M nodes

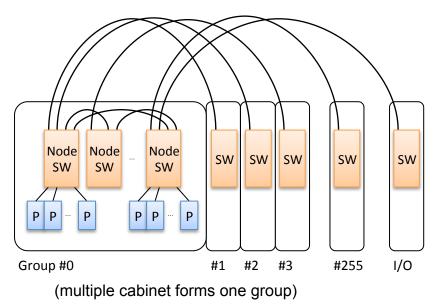
Middle node

- Stacked DRAM with high-speed memory I/O (HMC)
- 1 CPU + Multi memory module
- Power:20-200W / node
- # of nodes: 100K nodes

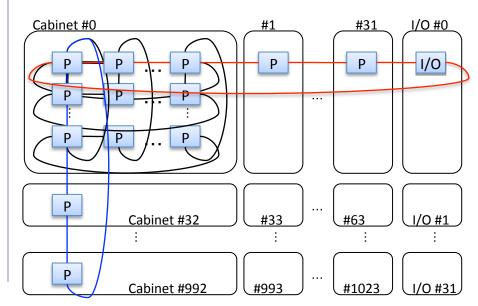
Large Node

- Stacked DRAM with high-speed memory I/O (HMC)
- Multi CPU + Multi memory module
- Power: ~2000W / node
- # of nodes: 10K nodes

	Performance	Memory Capacity	Memory BW	B/F
Thin Node	1TFLOPS	8GB	200GB/s	0.2
Middle Node	10TFLOPS	128GB	1000GB/s	0.1
Large Node	80TFLOPS	1024GB	8000GB/s	0.1
(c.f.) K-Computer	128GFLOPS	16GB	64GB/s	0.5

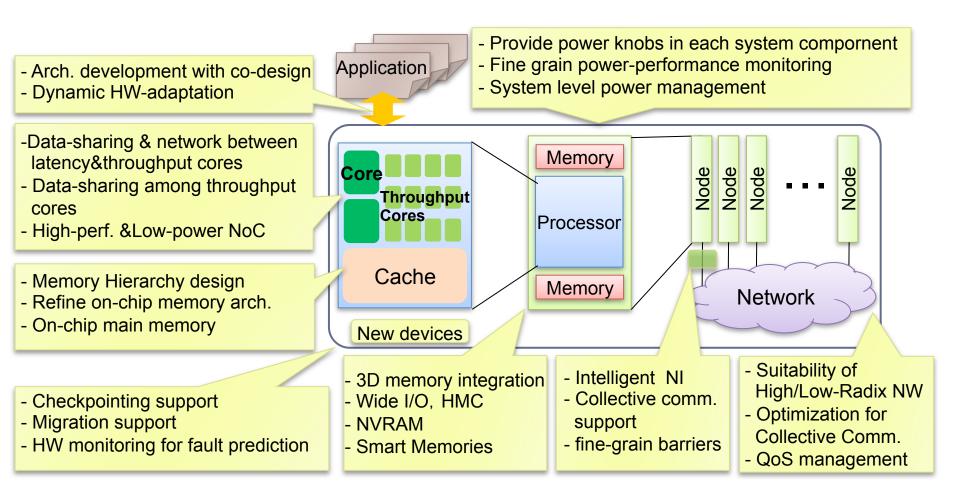

(We assume half of the power is consumed by processor)

System Architecture

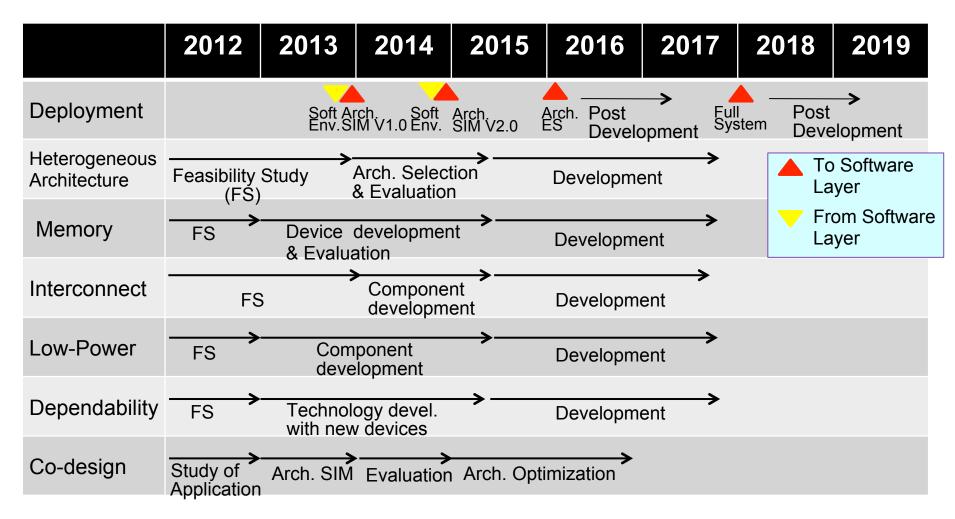

High-radix NW (e.g. Dragonfly)

- Latency ③ latency to farthest node
 ③ latency to adjacent node
- Throughput © bisection BW

☺ injection BW


- Low-radix NW (e.g. 4D-Torus)
- Latency ③ latency to adjacent node
 ③ latency to farthest node
- Throughput ③ injection BW
 ③ bisection BW

	P2P	Injection	Bisection	Min-Latency	Max-Latency
High-Radix(Dragonfly)	32GB/s	32GB/s	2.0PB/s	200ns	1000ns
Low-Radix (4D Torus)	16GB/s	128GB/s	0.13PB/s	100ns	5000ns


Research Issues

Key R&D issues in each system component

Roadmap of Exascale System Development

Timeline towards deployment of Exascale Systems

Summary

- Exascale architectures required for future sciences
- Roadmap towards Exascale systems
 - Performance projection based on technological trends
 - Technological challenges
 - Breaking down of research issues
- A system image of Exascale systems
- For science-driven Exascale systems, it is necessary to explore system architecture via HW/SW/Application co-design

Acknowledgement

- This material and the document of Exascale architecture roadmap is written in cooperation with the following colleagues
 - Yuichiro Ajima (Fujitsu)
 - Yasuo Ishii (NEC)
 - Koji Inoue (Kyushu Univ.)
 - Toshihiro Hanawa (Univ. of Tsukuba)
 - Michihiro Koibuchi (NII)
 - Yukinori Sato (JAIST)
 - Kentaro Sano (Tohoku Univ.)

<u>Advisory</u>

- * Satoshi Matsuoka (Titech)
- * Hiroshi Nakamura (Univ. Tokyo)
- * Kei Hiraki (Univ. Tokyo)