Exascale Software Center

Co-Design Code Team Survey (Application Inventory)

Version 1.2
02/15/10

Below is a survey developed to provide a snapshot in time of what science
application teams, working software infrastructure builders andhardware
vendorsin the co-design process, believe they will need to achieve their goals for
exascale science. To this end, the survey should be applied to each major application
code; if the application area in view has multiple codes, please repeat for each. Not
having an answer yet for some of the hard questions is completely fine, but we
certainly welcome “best guesses” when they are available.

Questions in each area generally focus on one of two things: what the application
teams/codes are using now, and what they expect to use or do for exascale. In the
“Application Overview,” “Parallel Programming,” and “I/O Patterns and Strategy”
sections, the questions related to each of these two perspectives are factored out
and grouped together in clearly marked “a” and “b” subsections. When it comes to
setting expectations for exascale, we recognize that application teams can only
provide a snapshot, given the available information.

We also recognize this is a lot of work. It may take more than an hour to walk
through the material. However, we believe, and the experience we have had so far
confirms, that it will be extremely valuable for planning when combined with a top-
down perspective of what the future architectures and software stacks may be able
to achieve.

If there are data or responses that should not be shared outside the ESC planning
team, please mark it appropriately.

| 1. Survey Metadata

e Project Name:
e Date:
e Name(s) of ESC person(s)facilitating the survey:

e Name(s) of Science Application team member(s) contributing to the
survey:

| 2a. Application overview: Current |

e Science Goals: What are the main goals of scientific research agenda that
inform this application?

e Sponsors: Who are the major sponsors?

e Application function: In brief, what does the application do?

e History: In brief, what is the history of this project?

e Platforms: What platforms/architectures does the code currently run on?

e Science applicationteam: What are the main characteristics, with respect
to overall workflow, of this application’sresearch team/community, e.g.

size, geographic distribution, data providers, result interpreters, etc.

e Size of code: What would be a rough estimate of current size of code base
and languages currently used (e.g. Fortran90, C, C++, Python, etc.)?

e (Computational method: What computational methods are used today?
(E.g. structured grid, n-body, graph, dense matrix, sparse matrix, Monte
Carlo, spectral, etc.)

e Future application goals: What are your general application goals for 3, 5,
and7 years from today?

e Application pain points: What are your top current pains?

e Mechanics for collaboration:
o Briefly, what is your software development, testing, and release
tools/methodology

o How can other software developers get a copy of the code? (e.g.
licensing, etc.)

o Does the project currently maintain a “compact” version with
standard input and outputs for testing and benchmarking? Is that
part of your exascale plan?

2b. Application overview: Expectations/conjectures for exascale

e Science Goals: What science breakthroughs do you expect when your
application is scaled to exascale systems?

e Platforms: What work are you doing, or planning to do for GPGPUs? (e.g.:
OpenCL, CUDA, Compiler technology)

e Science application team: What, if any, changes in the science application
team/community are expected on the way to exascale (e.g. new data
sources coming on-line, etc.)

e (Computational method: What are your expected changes in computational
methods for Exascale science?

e Application pain points: What do you expect your top pains to be for
exascale?

| 3a. Parallel Programming: Current

e Expression of parallelism: How is parallelism currently expressed? (MPI
everywhere, MPI + OpenMP, Pthreads, Global Arrays, Language (X10,
UPC, Chapel, etc.), etc.)

e Exposure of parallelism: Do most developers/users see the constructs for
parallelism, or are they largely hidden in a framework/library? If so,
please explain.

e Data communication mechanisms: How does the code pass data between
address spaces (nodes) (e.g.: MPI, UPC, shmem put/get, GlobalArrays,
custom)? Do you use MPI-2 RMA?

e Load balancing: How is your code load balanced? Do you rebalance work
dynamically during execution?

e Memory requirements: What are the current memory requirements of
your application, including size, bandwidth, scaling, duplication, write-
once, and usage patterns?

e Library requirements: What libraries do you currently link with (e.g.
PETSc, scalapack, FFTW, Trilinos, Hypre, Plasma, etc)? What are your
future plans?

e Coupled codes: Do you currently use coupled codes?
e Run-time software infrastructure: What run-time support and libraries

does your application need on compute nodes (e.g.: user-level threads,
pthreads, java, multiple processes, python, sockets, perl, etc.)?

e (Global data operations: Do you use global operations/collectives? If so,
which?

e Data layout: Briefly, what are the key data structures and memory layout
for your computation?

3b. Parallel Programming: Expectations/conjecture for exascale

e Expression of parallelism: How will parallelism likely be expressed for
your exascale code?

e Exposure to parallelism: How do you expect the exposure of
developers/users to the constructs for parallelism to change as the
application moves toward exascale? For example, will more have to be
hidden within libraries?

e Data communication mechanisms: What plans do you have, if any, for
passing data between address spaces (nodes) on exascale systems?

e Load balancing: What changes in your approach to load balancing do you
expect to have to make for exascale?

e Memory requirements: Given what we understand about the platform
architecture “swim lanes” so far, what do you think your job size and per-
node memory footprint would be for routine and heroic runs on the 2015
and 2018 systems? If this categorization isn't appropriate, please feel free
to reformulate.

e Library requirements: Which libraries, if any, do your current plans
assume will be available on future exascale platforms?

e (Coupled codes: Are coupled codes in your roadmap? If so, please explain.
e Exascale architecture opportunities: What are your plans for exploring

advanced architectural features (e.g. transactional memory, user-defined
memory prefetch lists, SIMD, gather/scatter, etc.)?

| 4a.1/0 Patterns and Strategy: Current |

e Specifics of data usage:
o How much data is typically needed as input to a run?

o How is this data organized and selected?

o What other data needs occur at job startup? For example, do you
count on dynamic loading of libraries? If so, how are these linked
in (e.g., Python libraries)?

e Strategy for fault tolerance:
o Do you near term have plans for fault tolerance in your application
that would eliminate the need for checkpointing?

o If not, what fraction of the allocated memory do you expect to be
needed for restart in the event of failure?

o How do you see this fraction changing as systems scale?

e Data I/0 strategy:
o What model best represents how your code treats data in
memory: regular structured mesh, regular unstructured mesh,
adaptive structured or unstructured, objects, something else?

o Do you use libraries for storing application data, or do you write
directly to the file system? If you do use libraries, which ones?

o Isthere a plan to change I/0 strategy in the near future? If so, will
it involve using existing libraries or developing your own?

e Data access pattern: How many files per rank does your application
access?ls it dependent on phase (e.g., an initial file, then checkpoints with
intermediate results once every N checkpoints)?

e Temporary file requirements: Some applications are “pipelines”, i.e. are
composed out of several job launches that work sequentially to
accomplish a task. If your application is a pipeline, does it produce
intermediate temporary files that are written between the various stages
of the pipeline? If there are temporary files, can you briefly describe these
temporaries for us (size, lifetime, 10 pattern)?

e “Out-of core” requirements: If your application doeswork "out-of-core"
(i.e., reads back what it has previously written in the same run), are you
contemplating continuing this approach in the future? How would your
plans for this strategy change if the ratio of memory capacity to CPU
changes radically?

e 1/0 benchmarks requirements: Do any benchmarks currently exist that are
representative of your I/0 patterns? Which one(s)? What parameters are
relevant for the benchmarks?

e Analysis of data output:
o How is data analyzed?

o Is any analysis performed during runtime? If so, is analysis built
into your application in some way?

o To what degree is your analysis performed using parallel tools?

4b. 1/0 Patterns and Strategy: Expectations/conjecture for exascale

e Strategy for fault tolerance: One general concern about Exascale systems
is the overhead inherent in global synchronization, such as synchronized
checkpointing. To what degree do you see your application moving away
from this kind of synchronization in the 2015, 2018 time frame?

e Analysis of data output: Given the amount of data you expect your
application be generating in the 2015 and 2018 time frames, please
answer the following:

o What fraction of the allocated memory will be needed to perform
analysis?

o How often would you need to capture data?

o How much total data would be generated in a routine or heroic
run?

o If the amount of data needed is different between testing and
science runs, why are the two cases different?

5. Data Analysis and Visualization: Current and Expectations/conjectures for
exascale

e Data exploration/analysis tools: How do users currently explore/analyze
the data generated? What tools are used? Who provides them?

e Visualization workflow: How would you describe your visualization
workflow, if any?

e Data exploration/analysis at exascale: What do you expect the main data
visualization and analysis problems to be at exascale? How do you plan to
address them?

| 6. Performance: Current and Expectations/conjectures for exascale |

e Performance tools:

o What tools do you use now to understand performance (e.g. TAU,
HPC Toolkit, PAPI, VAMPIR, etc.)? Are sample trace or log files
available?

o What features would you like to see in performance tools (e.g. ease
of instrumentation, different measurements, embedded collection
of I/0, etc.)

e Performance models: Do you have an analytic performance model (at any
level of detail)? If so, how accurate or predictive is this model?

e Special instructions: Does the application make effective use of vector
(e.g., SSE or VSX)?

e Presumed performance bottleneck: What do you believe is a key
bottleneck to better performance?

e Presumed scaling bottleneck: How large does your application currently
scale (cores)? What do you believe is a key bottleneck to better scaling?

e Application autotuning: How, if at all, you used an autotuner or other tools
that compile, run, and test the performance of blocks of code to optimal
parameters? Would you consider using an autotuner? If not, why not?

e Exascale performance optimization: What are your future plans for
exascale performance optimization?

| Tools: Currentand Expectations/conjectures for exascale

e Application debugging:
o How do you currently debug your code for small runs?

o How do you currently debug your code for large, at-scale runs?
e Special tool needs:
o What other tools do you use? (e.g. correctness tools, modeling
tools, workflow job managers, etc.)
o Do you have or any special needs for job submission, control, and
management? (E.g. many-task, interactive connections for

visualization, graph-execution, etc.).

o Will these special needs change for exascale?

