IESP meetings summarized

Peter Michielse (NWO/NCF)
April 2011

• Based on EESI living deliverable D2.3
• With Patrick Aerts
Contents

- Overview meetings
- Attendee statistics
- Initial objectives
- Achievements so far
- Topics covered
- Evolution of these topics over the meetings
Overview Meetings

- Meetings so far:
 - Santa Fe, NM, US, April 2009
 - Paris, France, June 2009
 - Tsukuba, Japan, October 2009
 - Oxford, UK, April 2010
 - Maui, HI, US, October 2010

- SC08 (Austin), SC09 (Portland) and SC10 (New Orleans)

- Overall goal:
 - To develop a plan for producing a new software infrastructure capable of supporting exascale applications
Attendee Statistics

- Attendees from universities, research institutes, government, funding agencies, research councils, hardware and software vendors, industry

- Amount of attendees roughly between 65 and 85

- Rough distribution per meeting is rather constant:
 - 70% universities/research institutes
 - 15% vendors/industry
 - 15% government/funding agencies
Initial Objectives

- To develop a plan for producing a new software infrastructure capable of supporting exascale applications
 - Thorough assessment of needs, issues and strategies
 - Develop a coordinated software roadmap
 - Provide a framework for organizing the software research community
 - Engage and coordinate with the vendor community
 - Encourage and facilitate collaboration in education and training

NCF - Peter Michielse - IESP San Francisco - april 2011
IESP has created version 1.0 and 1.1 of a software roadmap:

- Science and technology trends
- Software stack components (with cross-cutting aspects)
 - Not only the usual suspects (MPI, compilers, OpenMP, ...)
 - But also new challenges, like resiliency, bit-wise reproducibility, ...
- Application involvement
 - Business cases – why do we need exascale-ready applications?
 - Co-design vehicles
- Vendor involvement
- Organisation and governance
IESP has created awareness:

- We all find it exciting
 - But does the science community have the right sense-of-urgency?
- We are getting to some kind of community building
 - Reports by IDC, HPCwire, ...
- It is on the radar of funding agencies and governments
 - DoE, NSF, Japan, EC programs, ...
 - But maintenance is needed
Evolution

- Many important topics have been discussed and brought forward during the IESP workshops
- We will go through these, show their evolution and current position:
 - Science drivers
 - Applications
 - Software stack
 - Open source
 - Vendor involvement
 - Hardware
 - Co-design
 - Exascale software centers
 - Initiatives
 - Funding and governance models
Science drivers

- Input through many activities, among others:
 - DoE workshops in US
 - Science and Technology Basic Plan in Japan
 - Science case for PRACE in Europe

- Many areas of scientific interest and societal impact:
 - Resolution increase
 - Addition of complexity
 - Multiscale simulation

- These aspects, combined with hardware futures, pose requirements to applications and underlying software stack
Applications - 1

- Current findings:
 - Bulk synchronous, MPI, models decomposed in some way
 - But also global shared memory, global arrays, ...
 - Hybrid MPI/OpenMP already in place
 - Load-balancing challenges
 - Weak scaling to Petaflop level ok

- Coming from petascale, what are we facing towards exascale?
 - Concurrency – 1000x increase for a single job
 - Energy usage (also in relation to data movement)
 - Resiliency – how to handle device errors
 - Heterogeneity – combine standard CPUs with GPUs and accelerators
 - I/O and memory – data rates
Applications - 2

- Higher-level questions:
 - Programming models
 - Coherence domain
 - Fault tolerance
 - Reproducibility of floating-point results
 - Big data

- Applications rely on software stack
Software stack (X-stack)

- The exascale roadmap addresses software components:
 - Each subdivided in capabilities
 - Each with a level of uniqueness for exascale, and a level of criticality

- Components:
 - Frameworks
 - Algorithms
 - I/O
 - Programming models
 - Operating Systems
 - Power
 - Resilience
 - Numerical libraries
 - Debugging
 - Scientific data management
 - Compilers
 - Performance
 - Programmability
 - Runtime systems

- Inventory of what is in use at computer centres (done later today by Bernd Mohr)

- We all agree on joint development, but what will be the model?
Open Source

- Keep in mind that hw and sw vendors have been developing their own compilers, numerical libraries, runtime environments, MPI, ...
- We seem to agree we need co-development (joint ownership and responsibility with a formal agreement)
 - Academic + vendor
- Would that be: just Open Source, or Open Source + (e.g. with paid support contract)
- Probably a minimum requirement: open API’s published and supported
- Probably the toughest area for the vendors:
 - Developed by community, and supported by provider
Vendor involvement

- Vendors like to embark on the exascale train:
 - Systems contain huge amounts of devices
 - Share research and development effort
 - But still there is the business model: do the investments by vendors pay off in lower-than-exascale systems?
 - And also: can customers afford the running costs?
- Many aspects on software approach:
 - Support and maintenance by vendor in case of Open Source software components?
 - Responsible for components which are not under vendor’s control?
 - What about low-level proprietary software components?
 - IP questions
Hardware

- Basic core design in place
- Trade-offs at node level
 - Heavy vs. lightweight cores, how many, data movement, threads per coherence domain
- Hardware features for resilient algorithms?
- Memory hierarchy levels?
- Power management tools?
- Programming models?
- General observation:
 - Many questions in each area (hardware, software, apps) which require answers, in a collaborative effort
 - Have been addressed in IESP through break-out groups
Co-design

- All tough questions posed so far require answers from more than one point of view: co-design

- Co-design of computer system is a design process in which:
 - Scientific problem requirements
 - Architecture design
 - Technology developments
 - Software components and capabilities are considered together

- Requires integrated teams of scientific researchers, applied mathematicians, computer scientists and computer architects

- Co-design centers around each important scientific discipline
Exascale software centers

- US (DoE funded) planning effort for an Exascale Software Center (ESC), with the following initial scope:
 - Deliver high quality system software for exascale platforms ~2015, ~2018;
 - Identify software gaps, research & develop solutions, test and support deployment;
 - Increase the productivity and capability and reduce the risk of exascale deployments;

- Organisation:
 - Applied R&D: ~10-20 distributed teams of 3 to 7 people each;
 - Large, primarily centralized Quality Assurance, integration, and verification center;
 - Relation to co-design effort

- Schedule Overview (as of Oct. 2010):
 - 2010 – Q1 2011: Planning and technical reviews
 - April 2011: Launch
 - 2014, 2017: SW ready for integration for 2015, 2018 systems respectively
Initiatives

- **US**
 - Exascale Software Center planning effort
 - Co-design Centers proposal evaluation (21)
 - Bring the next Petaflop/s systems online

- **Japan**
 - Strategic program to promote HPC activities
 - Next-generation supercomputer project (Kei)

- **China:**
 - Ambitious schedule towards 100’s Petaflop/s and Exaflop/s
 - Own hardware?

- **Russia:**
 - Presidential agenda
 - Vendor presence (T-platforms)

- **Europe:**
 - FP7 calls for computing systems, exascale initiatives, under evaluation
 - EESI
 - National Petaflop/s systems in PRACE

- **G8 calls**
Governance and funding

- Some basic ideas for governance:
 - At least coordination is needed
 - International software roadmap group to overview for planning and definition of components/capabilities
 - Funding agencies to coordinate their support of IESP-related R&D so that they complement each other
 - International monitoring team
 - Testing facilities to be organised

- First timeline discussed:
In summary

- **Current status/approach in IESP:**
 - Maintain the science drivers side
 - Investigate software stack and prioritise
 - Co-design hardware, software, applications
 - Set up co-design centers per application area
 - Find a proper model to include vendor participation
 - OpenSource, Support, Responsibility, IP, proprietary components, APIs
 - Applications, hardware, software:
 - Answer each others’ questions!
 - Find a proper funding and organisational model
 - International software roadmap team
 - International role of Exascale Software Center(s)
 - Make sure all initiatives align