Software stack development/support/int. collab. Break out session

Franck Cappello, Pete Beckman

IEPS Cologne 2011
Software stack development/support/int. collab.

- Look at the Exascale software stack from a per country perspective

- Gather the software components by country
 - In 3 categories
 - Type of development and support

- Gather the intentions of international collaboration
 - for 3 classes of international relations

- Gap Analysis
Stack components: Definitions

3 Categories:

- Cat 1 (a group commits to provide in production quality)
- Cat 2 (experimental):
- Cat 3 (no major funded project at this time: rely on others- vendors, other countries):

- Color code for category 1: developer provided support, collaboration with vendor for vendor support, release as opensouce.
- Underscored: Non open-source
International relations: Definitions

- Classes of international relations:
 - C1: Cooperation (loose sharing without common outcomes: discussions, workshops)
 - C2: Collaboration (produces common outcomes and are funded for that: roadmap: IESP, EESI; standard, APIs, joint research software, working groups, G8,)
 - C3: Co-development (concrete deliverable: MUST, Score-P, Lustre)
 - C?: don’t know yet
Stack components: Japan

- **Cat 1** (commit to provide in production quality): **programming language**: C2: XMP, C2-C3: OS kernel (for many core architecture MIC, node level scheduling, including PGAS style), file system (C?:Luster, C2: GFARM), C2: communication libraries (below MPI)

- **Cat 2** (experimental): C2: Fault tolerant libraries (FTI, fault detectors), C2: Domain specific languages, C2: numerical libraries having autotuning functions, C?: MPI implementations (flow control), C1: Power management and scheduling framework (scheduling strategies limiting peak power), C2: I/O middleware

- **Cat 3** (no major funded project at this time: rely on others- vendors, other countries): Debugger, perf tools, **perf tools**, node level scheduling, Batch scheduler, scalable RAS system, deployment systems, Node level compilers

Color code for category 1: developer provided support, collaboration with vendor for vendor support, release as opensouce.
Stack components: Europe

- **Cat 1 (commit to provide in production quality):** C2: Programming models/languages: MPI/OMPSs *(C3: long run may move to OpenMP 4.0)*, C1: compiler for heterogeneous systems *(HMPP)*; C? node level Runtime, C3: Tools (performance (Scalasca, Score-P, Paraver) including I/O, **C1: performance** (Vampir, ThreadSpotter) including I/O, **C1: debuggers** (DDT), C3: correctness (MUST), **C1: correctness**); C3: commit to contribute to MPI implementations (Open MPI), C3: file systems (Lustre), C3: numerical libraries, **C?: numerical libraries** (NAG), **OS kernel**

- **Cat 2 (experimental):** C1: communication libraries (below MPI), C2: Fault tolerant libraries (FTI, MPI), C?: Domain specific languages (for autotuning), C?: Batch scheduler, C?: deployment systems, commit to contribute to MPI implementations, C?: Power measurement management, C?: I/O middleware

- **Cat 3 (no major funded project at this time: rely on others- vendors, other countries, have to buy for a specific Vendor):** Node level compilers (vendor compilers), PGAS languages, scalable RAS system,

Color code for category 1: developer provided support, collaboration with vendor for vendor support, release as open-source.
Stack components: USA

Cat 2: performance tool (C3:OpenSpeedShop, C3:mpiP, C?:HPCToolkit), fault tolerance backplane (C2:CIFTS), tool infrastructure (C?:MRNet), compiler framework (C?: Rose), debugging and validation (C?:Memcheck, C?: STAT, C3:MUST), C3:PowerMgmt Layer, low level threading lib. (C1?: Qthreads), Task scheduler (ExM), File system (PVFS, PLFS), fault tolerance environment (C3:SCR), data analytics libraries (C1: Xanalytics), Data model storage library (C2: Damsel), Composition frameworks (C2:COMPOSE-HPC), New programming models and approaches (C3?:Sketch, Domain specific languages?), benchmarks and mini-apps (C3:SHOC)

Cat 3 Debuggers, commercial compilers, etc.

Color code for category 1: developer provided support, collaboration with vendor for vendor support, release as opensouce.
Stack components: China

- **Cat 1** (commit to provide in production quality): C1: kylin os (derived from FreeBSD, compatible with Linux: same exec format), deployment tool (os+lustre-custom), NR-MPI, HPC virtual environment

- **Cat 3** (no major funded project at this time: rely on others - vendors, other countries, have to buy for a specific Vendor): compilers for commercial processors

Color code for category 1: developer provided support, collaboration with vendor for vendor support, release as is (without support).
Stack components: Russia

- Cat 1 (commit to provide in production quality):

- Cat 2 (experimental):

- Cat 3 (no major funded project at this time: rely on others- vendors, other countries, have to buy for a specific Vendor):

Color code for category 1: developer provided support, collaboration with vendor for vendor support, release as opensouce.
Early Results of the GAP analysis

- GAP analysis:
 - Do we cover all the software stack in CAT 1?
 - It is true for all hardware (cannot tell now)
 - What seems missing in CAT1:
 - but usually provided by vendors:
 - Low level compilers
 - RAS system, system management,
 - Batch scheduler?
 - Limited power management / fault tolerance (MPI)