
Big	Data	Analytics	and	High	Performance	Computing	Convergence	Through	
Workflows	and	Virtualization	

	
Ewa	Deelman	

University	of	Southern	California,	Information	Sciences	Institute	
Contact:	deelman@isi.edu	

	
 
There is a clear desire on the part of a number of domain and computer scientists to see a convergence 
between the two high-level types of computing systems, software, and applications: Big Data Analytics 
(BDA) and High Performance Computing (HPC).  In some sense scientists do not care how they obtain 
their computational results, as long as they are generated in a timely and robust manner.  Some 
applications naturally cross the boundaries between HPC and BDA, for example executing a large-scale 
simulation on an HPC system and then performing analytics on the results (either ex-situ—on another 
computational platform, or in-situ—within the HPC system. 
 
Up to now, workflow management solutions have been developed to help cross the computational system 
boundaries.  Workflows can be composed of a variety of computational tasks: tightly coupled codes, 
machine learning loosely coupled applications, and independent high-throughput tasks. Given a workflow 
description, the workflow management system can then select the appropriate resources, schedule the 
needed data movement, and send tasks for execution on the target resources.  However, this solution 
keeps the different infrastructures separate and makes it hard to co-locate extreme computation and 
analytics. 
 
Part of the problem in the convergence of BDA and HPC is the issue of BDA software deployment in 
HPC systems and the issue of performance in BDA architectures such as clouds (at least in terms of low 
latency communications).  HPC systems are administered by entities such as campus IT infrastructures or 
National Lab IT personnel, so any changes to the software environment needs to be approved. 
Additionally, policies in place on HPC systems prefer tightly coupled applications over loosely coupled 
or embarrassingly parallel codes.  On the other hand, clouds, which are the most common BDA platform 
often do not provide the high-performance networks at a scale needed by tightly coupled applications.  
 
One possible solution is to support virtualization on the HPC systems, where the user (or workflow 
system or resource provisioner) could request a set of resources from the HPC scheduler and then manage 
these resources during application execution.  The management would include the set up of the software 
environment on the resources, the scheduling of tasks onto these resources, monitoring, failure 
management, etc. 
 
Unfortunately there are a number of drawbacks of this solution: 1) concerns over security of the HPC 
system, or concerns of using the system for malicious attacks, 2) complexity of setting up the correct 
software environment, 3) the complexity of the HPC system, in particular the deep memory hierarchy and 
its impact on the overall system energy consumption, and 4) potential performance degradation and 
suboptimal use of resources. 
 
Some solutions to these problems could be: 

1. Work closely with resource providers to understand concerns, develop “trusted” resource 
management systems, develop specialized monitoring tools, and auditing mechanisms. 

2. Develop tools that automate the software environment set up, this would also need to include 
testing of the environment. 



3. Develop data management capabilities that can seamlessly manage different types and amounts of 
data on behalf of the applications and workflow/resource management systems, make sure the 
data management capabilities provide an adequate level of abstraction and are easy to incorporate 
in legacy applications. 

4. Realize that there may need to be some performance degradation in order to support scientific 
productivity and system manageability, develop tools that monitor resource usage and “penalize” 
applications and systems that waste unreasonable resources. 

 
Finally, an important consideration regardless of the infrastructure and applications that users are 
executing, the systems need to be made reproducibility aware. They need to provide some level of insight 
into how reproducible the computation is, how the computation was performed (transparency) so that the 
results can be inspected, and how the environment and the applications were set up so that someone else 
can reproduce the results or reuse the methods or data. 
 
 
	


