Writing Efficient Computational
Workflows in Python

Eduard Ayguadé, Rosa M. Badia, Yolanda Becerra, David Carrera, Toni Cortés, Jesus Labarta,
Anna Queralt, Enric Tejedor, Jordi Torres, and Mateo Valero

Barcelona Supercomputing Center (BSC-CNS)

BSC presented its point of view on big data and exascale computing in the last BDEC meeting
[1]. In this document, five different strategic considerations were outlined:

The importance of algorithmic optimization and tuning

2. The increasingly dynamic usage patterns of the infrastructures

3. The importance of providing clean programming interfaces integrating the
concurrency and data management models

4. The responsibility of the runtime in optimizing the mapping of computation and data
to available resources

5. The need to develop architectural support for the runtime and application
functionalities

This white paper can be seen as a continuation of [1] extending the strategic consideration 3
that identified the importance of proposing programming models that better integrate the
concurrency and data processing aspects trying to rely on the same type of abstractions at the
different granularity levels. Particularly relevant is the integration of flexible parallel control
flow structures and query mechanisms to refer to huge data sets. Support for flexible
parallelization strategies (asynchrony, nesting) is needed to free applications from latency
limitations, converting them into throughput-based applications where amount of resources
(bandwidth, cores, $) is the limiting factor. By using a new generation of object-based storage
layers we have the potential of closely mapping the data models in the programming models
to those used to provide data durability and also to provide a flexible shared communication
space between partially coupled or independent applications. Such integration would simplify
programs, eliminating the programmer need to consider the different models and a lot of the
code that today is devoted to explicit I/O operations.

A strategic initiative at BSC is the Severo Ochoa project, which fosters the integration and
cooperation of the different departments at BSC to develop strategic applications and
technologies. The project involves applications from the Life Science, Earth Science and
Computer Applications department and technologies and tools from the Computer Science
department: programming models, storage systems and resource management. In this
context, a close loop is followed were applications define the requirements of the software
stack, developments in the software stack components are performed following these
requirements and next verified in the applications, which can define new requirements in the
next cycle.



Our global objective is to devise a novel object storage layer interface that can be mapped on
top of different underlying data management infrastructures and cleanly integrated with the
programming model developments described in the following paragraphs.

Python Apps
PyCOMPSs

Storage API

Storage Backends

Hecuba DataClay Others

Hierarchical storage + computing resources

The use of the Python programming language for scientific computing has been gaining
momentum in the last years. The fact that it is compact and readable and its complete set of
scientific libraries are two important characteristics that favor its adoption. Indeed, it is not
only its large adoption by different scientific communities, but also its adoption by HPC-related
scientific communities. For example, it is relevant that in the last SC14 event, one of its
tutorials and one of its BoF was directly related to the use of Python in HPC.

At the programming model level, the StarSs concept is that the programmer specifies tasks
and the directionality of the data accesses they perform. COMPSs [2] is the instance of the
StarSs programming model focusing medium/coarse grain level. The model allows for very
dynamic mapping of computations and data accesses to the available resources by an
intelligent runtime and data management layers that are provided.

COMPSs [3] aim is to support flexible computational workflows. Several language bindings are
available: C, C++ and Java for the original implementation and PyCOMPSs, introduces efficient
parallel support in Python. The annotations of argument directionalities are provided through
decorators in Python. In the current version, the arguments to the tasks can be files and
objects declared in the language type model and dependences are also computed based on
accesses to such local files and objects. The execution engine actually offloads the data objects
and computations to different cores or nodes, supporting the efficient parallel execution of
medium granularity programs. Tasks from the same computational workflow can actually be
offloaded to different nodes within the local cluster or to external cloud resources in a
transparent way.

Support in PyCOMPSs to Big Data has been incorporated through a Storage API, which has
been defined to integrate the programming model with a persistent storage object model,
abstracting it from the backend storage solution. The storage API enables Python scripts to
create, delete, insert, retrieve and iterate over persistent data. At its turn, PyCOMPSs also
invokes the Storage API, mainly to obtain locality information about persistent data.



The benefits of this integration goes beyond the enablement to access persistent data, which
enables several applications to share data in a concurrent way, but to the enablement to
access a larger amount of data than the one addressable in a single node memory: with
PyCOMPSs a sequential Python script is run in parallel in a set of nodes of a cluster and it is
able to transparently address data stored in large databases.

Currently two storage backends developed at BSC are available: Hecuba and dataClay. Hecuba
is a module that aims to facilitate programmers an efficient and easy interaction with non-
relational databases. For example, Hecuba redefines Python iterators, enabling regular Python
code to access the persistent storage system. dataClay is a platform that enables application
developers to manage persistent data following the Object Oriented (OO) paradigm. With
dataClay, users can define sharing policies to their data models. Also, enrichment of existing
classes is enabled in dataClay: users can add new properties, methods or implementations to
existing methods.

PyCOMPSs offers an elegant solution to automatically parallelize/distribute applications in the
widely used Python language. By cleanly integrating the persistent object model in it we
expect to offer to application programmers the possibility to incrementally enable Big Data
requirements in existing applications. The environment will also ease and encourage the
productive programming of more dynamic workflows.

[1] Jesus Labarta, Eduard Ayguade, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres,
Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra, Enric Tejedor , Mateo Valero,
"BSC vision on Big Data and extreme scale computing", BDEC Kukuoka white paper, 2014.

[2] Lordan F, Tejedor E, Ejarque J, Rafanell R, Alvarez J, Marozzo F, Lezzi D, Sirvent R, Talia D,
Badia RM. ServiceSs: an interoperable programming framework for the Cloud. Journal of Grid
Computing, 2014 ;12:67-91. Available from: http://hpc.ac.upc.edu/PDFs/dir21/file004255.pdf

[3] www.bsc.es/compss



