Algorithms and Libraries

Breakout Summary
Bridging HPC-BD Computing Environment Gaps

• HPC and BD have separate computing environment heritages.
 – Data: R, Python, Hadoop, MAHOUT, MLLIB, SPARK
 – HPC: Fortran, C, C++, BLAS, LAPACK, HSL, PETSc, Trilinos.

• Determine capabilities, requirements (application, system, user), opportunities and gaps for:
 – Leveraging HPC library capabilities in BD (e.g., scalable solvers).
 – Providing algorithms in native BD environments.
 – Providing HPC apps, libraries as appliances (containers aaS).
Refactoring & leveraging of HPC Capabilities for BD

• Sparse computations:
 – HPC: low, consistent degree graphs.
 – BD: highly variable degree, “power law” graphs.
 – Requires different partitioning, parallel strategies.

• Dense LA for some machine learning.

• High performance communication libraries (MPI).
 – Global collectives for machine learning (dense).
 – Point-to-point for graphs.
New Math & Algorithms

- Math & Algorithms for Intrinsically Discrete Data (e.g., light sources)
 - Model extraction.
 - Surrogate development.
 - Inverse problems.
 - In general: Converting observations to models.
 - Mature in HPC (e.g., Oil & Gas), but new areas: e.g., sensors.

- Factorizations, spectral algorithms, other NA for tensors.

- Algorithms based on random sampling.
 - Stochastic Gradient Descent algorithms from sampling.
 - Already being done, but reconsider from HPC perspective.
 - Better methods than gradient descent?

- Streaming algorithms, “online” algorithms.

- Complexity reduction: Decrease from n^2 to $n \log n$ or n.
 - Similar to multi-pole expansion, FMM.

- Low-rank representations: e.g. H-matrix approaches.

- General: Revisit BD problems with mindset of “HPC is in your toolbox.”
New Libraries

• HPC-BD libraries are needed.
 – Scalable. Not trivial for many reasons.
 – Support virtual resources (e.g. virtual clusters).
 – Agreed upon abstractions.
 • Graph, KV, pixel ?
 • File formats (HDF5, FITS): Reconcile common data/file formats with big data.
 – Usability, accessibility: “Bring to the BD community”
 • Address multiple situations from long tail to big science.
• Conceptual software stack.
 • Low-level services to high-level knowledge.
Requirements for other breakouts

• A well defined infrastructure (virtual cluster concept):
 – Important for providing libraries.
 – It’s a good model in general.
 – Must be high performance.

• High performance virtual network APIs.
 – Infiniband is fast, need virtual, fast API.

• Programming model & communication layers:
 – Bring together the best of HPC and BD.
 – Examples: MPI+Hadoop/Spark, Load balancing + Giraph/ Pregel

• Support for workflow, data fusion.
 – E.g., Drawing from multiple data sources.