Data and Next Generation Scalable Applications
Michael A. Heroux, Sandia National Laboratories

Large-scale parallel applications have traditionally stored and retrieved persistent
data using logically bulk-synchronous interfaces and models. An emerging
application architecture based on task-centric/dataflow concepts will require
different interfaces, execution patterns and state management for persistent data
and may suggest disruptive and complementary persistent data system architecture
changes.

Task-centric/dataflow Application Architectures

Task-centric/dataflow application architectures are based on the over-
decomposition of global application data structures relative to the number of
computing cores.

A patch is a logically cohesive collection of application data such that the
computational models of the application can be expressed locally on a patch.
Examples include creating many sub-domains for the spatial domain of a PDE
application, or a set of graph partitions for the connectivity graph of an inherently
discrete application such as circuits. In most cases, except for some compute-rich,
regular grid PDE applications, data should be allocated for each patch contiguously
in memory, independent of data for other patches, for improved cache and memory
access performance.

A task is a unit of computation defined on a patch. Tasks include the setup and
evaluation of the computational model on a patch, for example the evaluation of a
stencil computation on a subdomain. Application execution is then the aggregate of
task computations combined with parallel computational patterns that treat task
computations as generic operations.

Domain scientists write functionality for the application solely in terms of task code.
Task source code should expose vectorization to the compiler, if the computational
and data access patterns permit, and should support modest thread parallelism on
multicore processors with a shared low-level cache. The domain scientist must also
encode inter-task dependencies. These dependencies can be expressed in terms of
futures, input and output variable dependencies, or through explicit dependency
graph management.

Task-centric/dataflow architectures have many advantages:
1. SPMD compatibility: To the domain scientist, this model is very similar to
the classic SPMD approach.
2. Separation of domain science and parallel execution concerns: Permits
use of Fortran, C and OpenMP for writing task source code, while the task



management framework can, and will likely, be written using other
programming environments that provide more natural parallel
expressiveness.

3. Enables manytasking execution models: Tasks can be launched
asynchronously, providing natural latency hiding, higher network injection
rates and better dynamic load balancing.

4. Resilience: Each task has a parent such that, if a task fails or times out, the
parent can regenerate the child. Parent data and execution integrity can be
calibrated to match the robustness of the system.

5. Accelerators: Patch sizes can be calibrated for current and future target
computing systems. For accelerators, patch sizes should be very large,
permitting the accelerator runtime system (e.g., the thread block manager of
a GPU) to manage work partitioning and latency hiding.

6. Heterogeneous systems: Patches and tasks can be of various types and
scheduled by the task management layer to use heterogeneous processors if
available and appropriate on a given system.

7. Universal portability: This architecture is adaptable to current and future
computing systems.

Implications for data management

Task-centric/dataflow applications present new requirements for data management
systems. In particular:

1. Read and write functions must be task-compatible: Data read and write
operations will be performed by asynchronously executing tasks. There will
be many task instances writing data dynamically. Concerns include thread-
safety and thread-scalable execution and protocols for determining data
integrity.

2. Data versioning: Persistent storage facilities must support versioning of
data. When tasks execute asynchronously, several versions of a variable may
exist across tasks. For example, in a transient simulation a velocity value at
the grid point (i,j,k) may exist at different time steps during execution.
Therefore storage and retrieval of a value must support multiple version of
variable state.

3. Global operations: Task reads and writes are primarily local events.
Coordinating these events for global objects will be more complicated. In
particular, knowing when all stores to a global data object are complete
represents a kind of Byzantine generals problem, where determining
completion of the operation requires explicit coordination.

Some next generation extreme-scale applications will have very different execution
and data access patterns. Control flow will be more localized and execution will be
dynamic and asynchronous. These changes will lead to increased demands on
persistent data management systems and may lead us to consider new data
management architectures with similar behaviors and traits.



