
Numerical Libraries and Software Framework for Application Programs
in the Post Peta Era

Takeshi Iwashita
Information Initiative Center, Hokkaido University, Sapporo, Japan

Email: iwashita@iic.hokudai.ac.jp

I. INTRODUCTION

Recently, most of supercomputers are based on the cluster
type configuration, in which a number of computational
nodes are connected with an internal data transfer network.
In a next generation high-end system, the computational
node is expected to involve accelerators or many core
processors. Under this circumstance, how can we support
programmers?

First, to efficiently exploit the computational performance
of the node, we should develop high performance multi-
threaded kernel programs such as linear solvers, eigenvalue
solvers, and matrix factorizations. These programs can be
utilized as components of large-scale application programs
which run on multiple nodes. They are also used in various
(lab-level) applications to be conducted on PCs. Moreover,
they are expected to be included in commercial software.
High performance kernel programs for single computational
node are one of keys of high end application program,
and they have a significant impact on various numerical
simulations including Big Data analyses.

Second, we also have to support programmers to intend
to use multiple nodes, especially a huge number of nodes.
While there are many research targets, for example, parallel
languages, high performance communication libraries, in
this context, we here focus on numerical libraries and soft-
ware frameworks. For the distributed memory environment,
the software library usually fixes the distributed data struc-
ture. Consequently, programmers have to consider the data
structure of the software to be used at the initial stage of the
development of their application program. This is not easy
in practice. Considering this, we propose two options. One
is to provide the complete simulation software package like
Open FOAM for users. The other is to provide a framework
for application programs for the user. The framework is
developed for a specific application domain or a specific
simulation method. Usually, it cannot be a single routine,
and it includes various functions necessary for multi-process
parallel processing, for example, data distribution and com-
munication among the processes. By adding a couple of user
subroutines and/or modifying the framework program, users
develop their own simulation program.

In the followings, we introduce our research activities
based on the above perspective.

II. SOFTWARE FRAMEWORK FOR BOUNDARY ELEMENT

METHOD AND A DISTRIBUTED PARALLEL H-MATRICES

LIBRARY

We have been developing a software framework for large-
scale boundary element analyses in a CREST project (project
leader: Prof. Kengo Nakajima, Univ. of Tokyo) promoted by
JST (Japan Science and Technology Agency). The software
product is named ppOpen-APPL/BEM, and is currently open
to the public. The software product consists of BEM-BB
framework, templates, and HACApK library shown in Fig. 1.
All the components are parallelized for a distributed memory
parallel computer.

A. BEM-BB framework: software framework for distributed
parallel BEM analyses

The BEM-BB framework is a software framework to
support large-scale BEM analyses conducted on a distributed
memory parallel computer. A program code of BEM anal-
ysis generally consists of following parts: 1) Model data
input part, 2) Boundary element integral operation part,
3) Boundary condition setting part, 4) Coefficient matrix
and right-hand side vector generation part, 5) Linear solver,
and 6) Results output part. Our software framework mainly
supports the parts 1), 4), 5), and 6).

In the data input part, the framework program scatters the
model data to the processes. Next, to generate the coefficient
matrix and right-hand side vector, each thread independently
calls the user function which describes the integral opera-
tion between boundary elements. The boundary condition
settings should be done by users themselves for a general
BEM analysis. The linear solver included in the software
solves the arising linear system of equations. The linear
solver is parallelized in the hybrid parallel processing model
(MPI and OpenMP). In the final step, the simulation result
is outputted to a file.

Currently, we have two implementations for the frame-
work. One implementation is based on dense matrix com-
putations, which is oriented to a general purpose BEM
analyses. The other one uses H-matrix method to reduce
the simulation time drastically.

Moreover, for some specific analysis domains, the soft-
ware provides users with the template (BEM-BB template).
The template program includes the user function for the
integration and the boundary condition setting. By using the
template with the framework, a user can execute a parallel



ppOpen-APPL/BEM

A template is used with the framework to 
get a complete BEM program.

The framework uses HACApK.

BEM-BB framework (Dense)
- Parallel BEM framework (dense matrix operation version) 

BEM-BB templates
- Templates for specific BEM analyses

BEM-BB framework (H-matrix)
- Parallel BEM framework (fast matrix-vector operation version) 

HACApK 
- Distributed memory parallel H-matrices 
library

Figure 1. Overview of the ppOpen-APPL/BEM software

BEM analysis with a minimum or no programming cost.
Currently, the template for a static electric field analysis is
available.

B. HACApK: distributed memory parallel H-matrices li-
brary

The HACApK is a numerical library for computations on
a hierarchical matrix (H-matrix) which is an approximated
representation of a dense matrix arising from an integral
equation method such as BEM [1]. In the H-matrix tech-
nique, the matrix is divided into a set of submatrices. In
typical BEM analyses, a significant part of these subma-
trices can be approximated by low-rank matrices without
losing numerical accuracy of the computations with the
matrix. While there are several approximation method for
the submatrices, the HACApK uses the most basic method:
the adaptive cross approximation (ACA). In an ideal case,
introducing H-matrix with ACA reduces the complexity
from O(n2) of a dense matrix to O(n log n), where n
denotes the dimension of the matrix.

The HACApK library includes routines for the H-matrix
construction and the H-matrix vector multiplication. Both
routines are parallelized in the hybrid parallel programming
model. Consequently, the HACApk library can be also used
as a multi-threaded library for various application programs.
The operation of the library have been confirmed in static
electric filed analyses and earthquake cycle simulations run
on x86 clusters and Fujitsu FX10. In these test operations,
the developed library exhibited a better sequential perfor-
mance than the Hlib which is the most popular H-matrix
library, and also showed the effectiveness of the hybrid
parallel programming model (Fig. 2).

III. HIGH PERFORMANCE MULTI-THREADED SPARSE

TRIANGULAR SOLVER

We have studied about multi-tread parallelization of sparse
triangular solver for more than 10 years. The sparse trian-
gular solver is an important computational kernel involved
in various linear solvers, such as Gauss-Seidel method

0 50 100 150 200 2500

2

4

6

8

10

Flat-MPI
MPI+OMP2threads
MPI+OMP4threads
MPI+OMP8threads
MPI+OMP16threads

Number of cores

R
el

at
iv

e 
sp

ee
d-

up
 v

s.
 1

6 
co

re
 fl

at
-M

PI

Figure 2. The relative speedup of H-matrix vector multiplication in
HACApK library

(smoother), SOR method, ICCG method. In the study, we
have mainly investigated parallel ordering techniques in
the context of parallelization of the ICCG method. Conse-
quently, we proposed (algebraic) block multi-color ordering
to achieve fast convergence, a high cache hit ratio, and
good parallel scalability. It is shown that the proposed
technique is more effective than the conventional multi-
color ordering [2]. Moreover, when compared with the
additive Schwarz type parallelization method, the proposed
technique is advantageous on a many-core processor, in
which a number of threads are used. Park et al. address
that our technique is critical for efficient implementation
of symmetric Gauss-Seidel smoother on Xeon Phi in their
SC14 paper about HPCG benchmark [3]. Currently, we are
preparing multi-threaded implementation of ICCG solver
based on block multi-color ordering which is open to the
public.

REFERENCES

[1] A. Ida, T. Iwashita, T. Mifune, and Y. Takahashi, “Parallel
Hierarchical Matrices with Adaptive Cross Approximation on
Symmetric Multiprocessing Clusters,” Journal of Information
Processing, Vol. 22, (2014), pp. 642-650.

[2] T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic Block
Multi-Color Ordering Method for Parallel Multi-Threaded
Sparse Triangular Solver in ICCG Method,” Proc. IPDPS2012,
(2012).

[3] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D.
Kalamkar, X. Liu, Md. M. A. Patwary, Y. Lu, P. Dubey, “Ef-
ficient Shared-Memory Implementation of High-Performance
Conjugate Gradient Benchmark and Its Application to Unstruc-
tured Matrices,” Proc. SC14, (2014).


