A Case For Investing in Software Architectures and Framework
Research

A. Dubey

January 12, 2015

In the last workshop I made the case that the workflow of large scale scientific data analysis
resembles that for the computations of multi-physics phenomena in that there are multiple
stages and components, that don’t necessarily interoperate with one another very well. And
therefore using the insights and lessons learned from multi-component multi-physics codes
could prove to be valuable for the scientific data analysis, whether that data comes from
simulations, observations, or experiments. While that continues to be true in general, the
multi-physics, multi-component codes are facing a crisis of their own which should be urgently
addressed. Therefore, this time I would like to focus on the growing chasm between where
the extreme scale simulation or data analysis codes need to be and where they are today. In
particular, I would like to draw attention to the lack of understanding about what should the
software architecture (or framework) of a multi-component code look like in order to leverage
the investment being made in the systems software and programming abstractions for future
machines.

The software architects of today are faced with a bewildering array of design choices with
very little to inform them about the possible implications of these choices. The successful
large scale scientific codes of today did not grow out of vacuum. In the late 90’s investment
was made in the design of frameworks. Though some people mistakenly consider that effort
to have largely failed, almost all the successful multi-physics codes of today with any de-
gree of composability owe their infrastructural design to the ideas from successful and failed
frameworks from that effort. The frameworks were designed and documented, and as a result
software architects targeting the fat-node distributed memory paradigm had rich literature
to draw upon, and had many examples to follow.

For the forthcoming exascale era the design space is bigger than ever, with more pro-
gramming abstractions to be incorporated into the software architecture. There has been
investment in research on programming models and abstractions that might make it easier
to code for the increasingly heterogeneous platforms of the future. There has also been some
investment in algorithms that might better deal with the new challenges such as decreasing
memory per processing unit and need to minimize data movement. There is even some focus
on increasing the software productivity in the scientific process. However, it is my belief
that without some concrete experimentation with the interplay among various programming
abstractions, we will not have the know-how to either develop new codes or refactor the cur-
rent codes into nimble, robust, reliable and portable codes that will be needed for achieving



the scientific goals using the exascale resources. Also, such experimentation can inform the
community about the tool-chain that can help various codes transition from their current
infrastructure, which is designed primarily for distributed memory bulk synchronous paral-
lelism to the infrastructure for more complex parallelism and memory models expected in
future machines.

It is urgent that a few of the multi-physics capable frameworks be funded to be early
adopters of the multiple emerging programming abstractions within their frameworks. These
projects should also be encouraged to investigate the techniques for automating the transi-
tion process and translate those techniques into tool-sets for use by others in the community.
Additionally, these projects should carefully document the methodologies and software pro-
cess developed during the course of the adoption of abstractions and transition of the code
base to the new framework. The advantages of such projects that combine research with
production grade development will be two-fold. One is that the current CS research will be
confronted with real world application problems, and if there are any gaps in their adoptabil-
ity by the scientific codes they will be systematically identified. This will give an opportunity
to shorten the time-to-adoption for the key technologies being developed under the various
CS research programs targeting exascale computing. The second is that instead of hero-
programmers rewriting and optimizing one code at a time with very little reusability, the
proposed approach would create tangible artifacts that can be exploited by others facing
similar transitions.



