Algorithms and Libraries

Breakout Summary

Bridging HPC-BD Computing Environment Gaps

- HPC and BD have separate computing environment heritages.
 - Data: R, Python, Hadoop, MAHOUT, MLLIB, SPARK
 - HPC: Fortran, C, C++, BLAS, LAPACK, HSL, PETSc, Trilinos.
- Determine capabilities, requirements (application, system, user), opportunities and gaps for:
 - Leveraging HPC library capabilities in BD (e.g., scalable solvers).
 - Providing algorithms in native BD environments.
 - Providing HPC apps, libraries as appliances (containers aaS).

Refactoring & leveraging of HPC Capabilities for BD

- Sparse computations:
 - HPC: low, consistent degree graphs.
 - BD: highly variable degree, "power law" graphs.
 - Requires different partitioning, parallel strategies.
- Dense LA for some machine learning.
- High performance communication libraries (MPI).
 - Global collectives for machine learning (dense).
 - Point-to-point for graphs.

New Math & Algorithms

- Math & Algorithms for Intrinsically Discrete Data (le.g., light sources)
 - Model extraction.
 - Surrogate development.
 - Inverse problems.
 - In general: Converting observations to models.
 - Mature in HPC (e.g., Oil & Gas), but new areas: e.g., sensors.
- Factorizations, spectral algorithms, other NA for tensors.
- Algorithms based on random sampling.
 - Stochastic Gradient Descent algorithms from sampling.
 - Already being done, but reconsider from HPC perspective.
 - Better methods than gradient descent?
- Streaming algorithms, "online" algorithms.
- Complexity reduction: Decrease from n^2 to $n \log n$ or n.
 - Similar to multi-pole expansion, FMM.
- Low-rank representations: e.g. H-matrix approaches.
- General: Revisit BD problems with mindset of "HPC is in your toolbox."

New Libraries

- HPC-BD libraries are needed.
 - Scalable. Not trivial for many reasons.
 - Support virtual resources (e.g. virtual clusters).
 - Agreed upon abstractions.
 - Graph, KV, pixel?
 - File formats (HDF5, FITS): Reconcile common data/file formats with big data.
 - Usability, accessibility: "Bring to the BD community"
 - Address multiple situations from long tail to big science.
 - Conceptual software stack.
 - Low-level services to high-level knowledge.

Requirements for other breakouts

- A well defined infrastructure (virtual cluster concept):
 - Important for providing libraries.
 - It's a good model in general.
 - Must be high performance.
- High performance virtual network APIs.
 - Infiniband is fast, need virtual, fast API.
- Programming model & communication layers:
 - Bring together the best of HPC and BD.
 - Examples: MPI+Hadoop/Spark, Load balancing + Giraph/ Pregel
- Support for workflow, data fusion.
 - E.g., Drawing from multiple data sources.