Software Session Notes:

What are the main differences and commonalities between the HPC and BDA
requirements/technologies/working-assumptions in this area?

Overview of slides/findings from last meeting.

Data differences:

Not really not repeatable -- not a feature of Big Data by itself

Sensor data is often very noisy -- more noisy than simulation data

In BD applications often you can combine data that is not high quality in itself but when
you combine it you get a lot of signal whereas in simulation often you operate on data
of known quality -- if a big MPI job fails the whole job fails -- in BD there is an
assumption of noise and that the noise can be tolerated

BD is often volatile -- e.g., produced by sensors that come online and go offline,
whereas in EC size is typically well understood and predictable

In BD addition to input coming to instruments you also have stored data (e.g., a
baseline.

Surprised by the last bullet saying unstructured -- because even data produced by
sensors is going to be structured

Unstructured data == web data, scraped -- but working with scientific partners things
are typically quite structured

If you take “scientific” out of this column that opens it up a bit wider

Any data could be scientific -- if we talk about social networks, and sensors, etc. --
opens the definition of data quite a bit wider

In BD we have a wider definition of data than EC

Scientific data is data that is used for scientific purposes

Nobody wants to defend unstructured versus semi-structured division

Differences between scientific and non-scientific data is in how it is used
produced/consumed, if you process it for scientific purposes -- the fact that it is not
only open (and inspectable) but also evolving process

E.g., search versus patient diagnostics -- a lot of similarities here

In google you can’t inspect the process -- consumers are not scientists don’t have
flexibility

EC versus BD is just a question of ratios: a lot of flops versus big input big output.
Argument is that EC is a very narrow range of applications

Division implied in the current column design is driven by the need to account for the
emergent data patterns (otherwise we’ve been doing BD for a long time)

BD is not a well defined concept

One division to think about the storage requirements as being a 1st class citizen
instead of addition to large flop count == decouple data from HPC system
Reinforcement of “shared and curated’ versus “often private”



The intent is to separate what our current software stack does not handle well -- and in
other words the driving force for change

Start from HPC -- now more data coming in because of emergent applications and
pattern --

The output can be less reliable and this can be tolerated

Dynamicity, volatility, and availability requirements -- HPC systems are too static
Archivable -- needs to be preserved in a more structured way

Machine learning, unstructured data mining becomes a more interesting technique --
there

Exploration more focused on domain independent data patterns than domain
dependent methods -- BD should not be based on size but the new things

Folks who are doing HPC applications are moving to “BD” piece by piece
Convergence -- software stack in BD is slow, not scaling -- they presumably need to
borrow some techniques from HPC

BD people don’t understand how to process data

Productivity versus performance

Satoshi: in HPC we have a choice -- in BD there isn’t

Can’t combine super optimized HPC stuff with super inefficient BD derivative stuff

In academic science capital expense is expensive, labor is cheap -- in industry it is the
opposite

Summary of last few points: there is value in sharing technology across communities
In HPC we need to have a little bit more focus on productivity

Growing performance is hard in general -- there is opportunity for convergence
Productivity versus performance

General feeling that we would have done it (== BD) better!

Adaptation -- no HPC system does well (independently of the cost of labor)
Emphasis on utilization in HPC (batch) versus control over response time or some
other SLA (on-demand)

A lot of the time we could started out from different assumptions -- then new
requirements came in -- but those assumptions are not hardwired in the design of EC
systems

Communication between nodes -- BD -- matters less of r are heterogenous

whereas BG -- built on the assumption of total uniformity

Early cloud solution was provided on BG/P

How should convergence be structured? What do we take from each community?
Incorporating or converging

Efficiency in EC is a big concern whereas in BD qualitative issues (like reliability and
such things) are more of a driver

Batch queue systems were built to optimize utilization

You can’t have BOTH response time and good utilization

The tradeoffs should not be hardwired into the infrastructure -- utilization versus
response time -- infrastructure should be able to accommodate both



No agreement with fine-grained versus large bulk division -- large bulk could be on Big
data side -- change to storage access -- it is storage access should be fine grained not
data access -- and EC does not do fine-grain storage well

In EC we view data as living on a SAN versus in BD the computation lives on a WAN
Line 4, we broadly disagree: some of the BD models are standardized, e.g.,
MapReduce -- not sure what the customized ones are (maybe the intent was to
convey control over environment)

In BD we need rich meta-data (down to who can process this bit of data) that is not so
often met with on the EC side

IN BD the vision of concurrency is very simplistic -- concurrency models are very
simplistic -- data model is disconnected from the concurrency model -- another
trade-off -- in EC models are potentially too concurrency driven

MapReduce is very old and batch oriented and no longer a new model -- Berkeley's
spark, some of the newer model now support transactions, support consistency
trade-offs,

On EC side we don’t have streaming technology

BG doesn’t support dynamic process creation (the software doesn’t) -- hardware and
software are alike impacted by focus on EC

MPI is not necessarily the right model, we need data flow in HPC as well

Today people don’t consider task-based to be HPC -- but it could/should be

Line 4: customized is not the right word but data algebra versus compute algebra --
but also qualitative, sophisticated e.g., based on consistency trade-offs --- but
unsophisticated data model BSP

Bottom line in EC -- not true that they almost never but that they are never allowed to
What does it mean that they are resilient to fault?

BD resilience == stateless + on-demand

Replication is the cornerstone of resilience in BD so it is resilience at a price

Wrong: that HPC systems have totally different hardware to BD -- the differences are
mainly in software -- Kate doesn’t think she agrees with that

Identify Scenarios that one does well and the other not:

BD is coming towards EC, discovering IB and RDMA -- a lot of opportunities -- BD has
features and needs to optimize them
But on the other hand they ask for functionality that we do not have
Missing in EC
- we need something more



Are there common needs/problems/interfaces could serve as the basis (or as
stepping stones) along a path to (some reasonable level of) infrastructure and
application convergence?

- performance

- Are there interdomain testbeds that combine BDA and HPC workflows in ways that
could help uncover pathways toward convergence?

- What is/are the technology or new research that may be a game changer?

- What action would be your number one priority to be taken rapidly to ensure success
of the converge of Extreme computing and Big Data infrastructures?

- What action would be your number one priority to be taken rapidly to ensure the
emergence of efficient Extreme computing and Big Data applications?

- How would you measure the success of the BDEC initiative?

Software Session Notes
Leads: Frank, Satoshi
Scribe: Kate

Q1 Cleaned up (a little bit)

What are the main differences and commonalities between the HPC and BDA
requirements/technologies/working-assumptions in this area?

Discussion based on the overview of Pete’s slides/findings from last meeting.

- BD not repeatable: Not really not repeatable -- not a feature of Big Data by itself -- you
could repeat it if you record it

- Noisy: Sensor data is often very noisy -- more noisy than simulation data

- In BD applications often you can combine data that is not high quality in itself but when
you combine it you can raise its quality whereas in simulation often you operate on
data of known quality

- Resilience: if a big MPI job fails the whole job fails -- in BD there is an assumption of
failure and all types of noisiness can be tolerated



Volatility in BD: BD is often volatile -- e.g., produced by sensors that come online and
go offline, requests to BD services come and go whereas in EC data volume is
typically well understood and predictable and thus the resource needs are more
controlled -- BD responds to a pattern that *relies* on a flexible platform -- on-demand
is not choice but a requirement

Unstructured -- surprised by the last bullet saying unstructured -- because even data
produced by sensors is going to be structured

Unstructured data == web data, scraped -- but working with scientific partners things
are typically quite structured

Nobody wants to defend unstructured versus semi-structured division

Maybe unstructured == noisy in the sense that even data that are not well annotated
when taken together can add up to interesting things

What is scientific data?

With data from social networks, sensors, etc. definition between scientific and
non-scientific data is becoming blurred

Scientific data is data that is used for scientific purposes

Difference in the context: differences between scientific and non-scientific data is in
how it is used produced/consumed, if you process it for scientific purposes -- the fact
that it is not only open (and inspectable) but also subject to an evolving process
E.g., search versus patient diagnostics -- a lot of similarities here

In google you can’t inspect the process -- consumers are not scientists don’t have
flexibility

What is Big Data?

EC versus BD is just a question of ratios: a lot of flops versus big input/big output
Argument is that EC is a very narrow range of applications

Division implied in the current column design is driven by the need to account for the
emergent data patterns (otherwise we’ve been doing BD for a long time)

Maybe New Data instead of Big Data?

One division to think about the storage requirements as being a 1st class citizen
instead of addition to large flop count == decouple data from HPC system

Reinforcement of “shared and curated’ versus “often private”
Archivable -- needs to be preserved in a more structured way

Dynamicity, volatility, and availability requirements: HPC systems are too static
Processing

More focused on general data processing techniques -- machine learning,
unstructured data mining becomes a more interesting techniques -



Exploration more focused on domain independent data patterns than domain
dependent methods

BD people don’'t understand how to process data

Software stack in BD is slow, not scaling -- they presumably need to borrow some
techniques from HPC

Can’'t combine super optimized HPC stuff with super inefficient BD derivative stuff
General feeling that we would have done it (== BD) better!

Focus on productivity versus performance

In academic science capital expense is expensive, labor is cheap -- in industry it is the
opposite

In HPC we need to have a little bit more focus on productivity

Summary of last few points: there is value in sharing technology across communities
Growing performance is hard in general -- there is opportunity for convergence

Adaptation -- no HPC system does well (independently of the cost of labor)
Emphasis on utilization in HPC (batch, when computers were expensive) versus
control over response time or some other SLA (on-demand)

Batch queue systems were built to optimize utilization

You can’t have BOTH response time and good utilization

Communication between nodes -- BD -- matters less of r are heterogenous
whereas BG -- built on the assumption of total uniformity
Early cloud solution was provided on BG/P

Efficiency in EC is a big concern whereas in BD qualitative issues (like reliability and
such things) are more of a driver

We started out from different assumptions -- then new requirements came in -- but
those assumptions are now hardwired in the design of EC systems

The tradeoffs should not be hardwired into the infrastructure -- utilization versus
response time -- infrastructure should be able to accommodate both

No agreement with fine-grained versus large bulk division -- large bulk could be on Big
data side -- change to storage access -- it is storage access should be fine grained not
data access -- and EC does not do fine-grain storage well

In EC we view data as living on a SAN versus in BD the computation lives on a WAN

EC standardized models versus BD customized: we broadly disagree: some of the BD
models are standardized, e.g., MapReduce -- not sure what the customized ones are
(maybe the intent was to convey control over environment)



MapReduce is very old and batch oriented and no longer a new model -- Berkeley's
spark, some of the newer model now support transactions, support consistency
trade-offs,

In BD we need rich meta-data (down to who can process this bit of data) that is not so
often met with on the EC side

IN BD the vision of concurrency is very simplistic -- concurrency models are very
simplistic -- data model is disconnected from the concurrency model -- another
trade-off -- in EC models are potentially too concurrency driven

On EC side we don’t have streaming technology

Customized is not the right word but data algebra versus compute algebra -- but also
qualitative, sophisticated e.g., based on consistency trade-offs --- but unsophisticated
data model BSP

Cultural difference: BD community seeks performance via qualitative trade-offs
whereas EC community tends to fix the model and focus on raw performance
optimization

What does it mean that they are resilient to fault?

BD resilience == stateless + on-demand

Replication is the cornerstone of resilience in BD so it is resilience at a price
Wrong: that HPC systems do not have totally different hardware to BD -- the
differences are mainly in software -- Kate doesn’t think she agrees with that



