Breakout session Architecture and Operation

29 January 2015

Questions

- What are the main differences and commonalities between the HPC and BDA requirements/technologies/working-assumptions in this area?
- Are there common needs/problems/interfaces could serve as the basis (or as stepping stones) along a path to (some reasonable level of) infrastructure and application convergence?
- Are there interdomain testbeds that combine BDA and HPC workflows in ways that could help uncover pathways toward convergence?
- What is/are the technology or new research that may be a game changer?
- What action would be your number one priority to be taken rapidly to ensure success of the converge of Extreme computing and Big Data infrastructures?
- What action would be your number one priority to be taken rapidly to ensure the emergence of efficient Extreme computing and Big Data applications?
- How would you measure the success of the BDEC initiative?

What are the main differences and commonalities between the HPC and BDA requirements/technologies/working-assumptions in this area?

Data apps

 Database, realtime, virtual machine, cloud, not waiting for resources, interactive data analytics, languages (e.g. Java), aggregate I/O, importance of time to solution rather than raw performance, shared memory machines, cloud, inmemory, integer performance (?), dynamic data, unstructured data

Commonalities

 Visualization, memory system convergence(?), data reduction capabilities

HPC apps

 Multi-many cores, arithmetic, Hadoop useful?, static data, structured data

Are there common needs/problems/interfaces could serve as the basis (or as stepping stones) along a path to (some reasonable level of) infrastructure and application convergence?

- Energy cost
- Data movements dominating energy
- New kinds of memories, persistent storage
- HPC output is a big data issue
- Workflow is more complex in BD apps (heterogeneous machines)
- Heterogeneous "data view" (same data different hardware)
- Common APIs energy aware
- Pathways for data movements:
 - New file systems
 - IO system useful for HPC and data analytics
 - Common flexible resiliency and consistency model
 - Heterogeneity (multi-physics), flexible hardware (including virtualization / scheduling), ability to specify compute and memory apps needs
 - data reduction capabilities

Are there interdomain testbeds that combine BDA and HPC workflows in ways that could help uncover pathways toward convergence?

- Climate modeling type workflows
 - Requires different types of resources
- HPC creates BD, BD reduces data
- Intelligent cities generates BD problems
- Testbeds
 - System with mix types of nodes, scheduling capabilities to access the different types in a coordinated manner
 - Interactive use of resources from desktops, batch jobs
 - Potentially different network topologies
 - Data reduction capabilities
 - Enabling studying (dynamic) tradeoff between re-compute vs store
 - Monitoring tools (performance, energy, IO, ...)
 - Flexible repair modes (nodes and communication)
 - Hierarchical storage, flexible sub-systems composition, strongly and loosely coupled subsystems
 - Scheduling / QoS / resources (interactive) management
 - Software stack issues aware

What is/are the technology or new research that may be a game changer?

- Research beneficial for HPC and BD
 - High capacity, high bandwidth cheap memories
 - Processors making use of 3D memory (string matching)
 - High speed to storage (HDD is a bottleneck)
 - Interconnects speed order magnitude (inter-processors, inter-clusters)
 - Novel data representation (floating point)
 - High level abstraction for computation and data
 - Percipient storage
- Research to promote convergence
 - High performance file systems
 - Speed in/off chips
 - Avoiding data movements using active storage
 - Software defined provisioning and management of resources
 - Co-existing VM in traditional HPC systems / software and application stack control in HPC
 - Ease of application validation in different environment
 - Methods for co-location of computation and data
 - Benchmark application models, traces
 - Automated, easier way to express optimal/efficient use of deep memory hierarchies, on-the fly data processing
 - Efficient graph libraries

What action would be your number one priority to be taken **rapidly** to ensure **success** of the converge of Extreme computing and Big Data infrastructures?

- 1 billion euros!
- New APIs
- HP file-object/storage systems
- Dynamic integration of memory and storage resources API
- Benchmark/mini-apps (HPC & BD workload)
- More collaboration between HPC and BD researchers
- Automated data movement
- Realizing convergence is not needed
- Knowledge dissemination between the communities
- HP virtualized I/O
- Virtualized high speed interconnect for all part of the system
- Energy efficient resource management
- Elaborating a value proposition (ROI) for convergence
- Work with selective set of applications to make them work
- 1 billion euros
- Find a good example where such a convergence is useful/necessary
- HP virtualized memory & storage system with open API for transparent data movement and onthe-fly processing

What action would be your number one priority to be taken **rapidly** to ensure the emergence of **efficient** Extreme computing and Big Data applications?

How would you measure the success of the BDEC initiative?