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Frame the challenging problems of exascale data analysis and
visualization

- Notion of a cost per insight in terms of power and storage used
- Challenges the premise of our traditional workflow.
Power constraints

- Target goals for peak performance to increase three orders of magnitude while
system power is only targeted to increase by a factor of two

- Most expensive operation is data movement
Storage constraints
- Gap between both capacity/bandwidth and FLOPS will widen
- Storage system of an exascale supercomputer will be proportionally smaller and slower
Traditional post-processing oriented visualization and analysis approach
- Temporal simulation snapshots are saved at regular intervals
- Saving checkpoints for later restart in case of errors
- Not with power and storage constraints
In situ visualization and analysis
- During the simulation run while the data is resident in memory



Sampling and Uncertainty Quantification
of Simulation Data are Needed

In situ data analysis

Access to the entire simulation
data

Including spatial, temporal,
multivariate and variable type
domains

Only available when in memory
Form of sampling

Analyst explicitly samples...

Example:

Stratified random sampling
approach

MC”3 cosmological particle
simulation

Analyze the entire particle
population
Record full population statistics
Quantify sample error





Deliberate Analysis Choices Are
Necessary

Traditional approach
- During a simulation run, full simulation snapshots are saved

- Belief: Snapshots can answer arbitrary analysis questions - “All the data has been saved”
+ Not necessarily true for the time domain

In situ approach
- Automatic selection of data at runtime
- Belief: Reduces the type of questions that can be asked about the data during post-processing analysis

- Make deliberate analysis choices before the simulation is run
- Constrained by a power and storage budget

Observational/experimental community -- streaming approaches
- Accelerator physics, fusion reactors and cyber-security
- Pre-planned data reducing streaming analysis is common practice

- Custom software and hardware accelerators
- Typically employed to reduce and analyze data in real-time

Key research questions to answer are:
- How general and with what quality can analysis questions be answered from:
Compact data products generated in situ, in a post-processing manner?
- What new mathematical or analysis techniques will support this process?



Data Reduction and Prioritization Is
Required

Simulation data stream
significantly reduced into a
compact analysis product

To fit within the budget

Collect most important data
Prioritization

For example:

Measured spatial and temporal
entropy in a running simulation

A memory buffer collected time

steps
higher entropy overwrite ones with '
lower entropy.

Summary of the phases of the
simulations in which the most
change occurs




Belmont Forum - J.-p vilotte, J.Y. Berthou, P. Monfray, M. Girerd

13 world's major and emerging national research agencies and international science councils.

Belmont Challenge

* Priority knowledge supporting action on societal environmental change challenges
- Coordinate and stream line international efforts (research, infrastructures)

“To deliver knowledge needed for action to avoid and adapt to detrimental
environmental change including extreme hazardous events."

E-Infrastructure and Data Management collaborative research actions (CRA).

« Address the Belmont Challenge priorities.

» Lever Belmont Forum members existing investments through international added value.

» Bring together leading earth & environment scientists, social scientists, computer and
research informatics scientists, and users.

Knowledge Hub (http://bfe-inf.org/) BELM'*fNT
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« Community building and strategy development
- Environmental data management and interoperability
- Data exploitation and valorisation: synergistic Data and HPC infrastructures

Build up on existing projects and consortia

(m . Research Data Sharing f u t u r?a rt h
without barriers
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http://bfe-inf.org/

Knowledge Hub: Work Packages

WP1: Standards (R. Cossu & M. Mokrane)

* Integration and interoperability of heterogeneous
multidisciplinary datasets

e Data platforms allowing exploration and mining of data
and derived-data

e Credit and Trust of derived research findings through
provenance management

WP2: Data & Compute Infrastructures

(J.-P. Vilotte, T. Koike)

e Exploitation and valorisation of data generated by
observational and extreme-scale simulations;

e Synergistic challenges between existing Data and
Compute e-infrastructures

e End-to-end workflows and data movement across Data
and HPC e-infrastructures

WP3: Harmonisation of Data

Infrastructures (C. Waldmann)

e Global Data Infrastructures interactions and
governance;

 Minimal common core services

e Thematic and Integration core services and tools
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WP4: Data Sharing (D. Peters, A. Treloar)

» Values and incentives for data sharing and
management,

e Jrust, data quality and curation,

» [egal issues: data providers IP rights, liability of
infrastructure management

W5: Open Data Policy

(B. Gemeinholzer, A. Treloar)

e Values and incentives for Open Data and Open
Science for environmental change challenges;

* Enable citizen science and crowd sourcing

e Liability and uncertainty in decision making

WP6: Capacity Building (L. Allison, R. Gurney)

* Holistic education and training of new generation
data-intensive scientist and data curators in
environmental sciences;

e Security issues and legal frameworks

e Sustainable human resource

Research Data Sharing
without barriers
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WP2: Interfaces between Data and HPC Infrastructures

Coordinators: Jean-Pierre Vilotte & Toshio Toike
(Roberto Cesar, Andrew Treloar)

Topics:

e Enable exploitation and valorisation of large volumes of data generated by high-throughput
instruments, observational and monitoring systems, extreme-scale computing;

e Synergistic challenges between existing Data and Compute e-infrastructures

e End-to-end workflows and data movement across Data and HPC e-infrastructures

» Data movement across Data and HPC e-infrastructures

» Big Data analytics and data-intensive extreme computing;

» Orchestrated data-streaming and data-shipping workflows and execution models;

» Distributed parallel staging and compute data management that meets data life-cycles;
» Providers policy and AAI services

» Data provenance and Data identifiers

Objectives

* |dentify existing related groups and projects in Earth environment sciences and Natural Hazards
including e-infrastructure providers

* Bring together users and experts on Data and HPC infrastructures

* Survey of good practices and identify use cases or proxy mini-apps

* |ldentify synergistic gaps and barriers between Data and HPC infrastructures in support of
orchestrated data-intensive and extreme-computing workflows

* Innovative tools and methods for complex Big Data analytics

* Barriers in integrated services across data and compute e-infrastructures

» User-driven performance and quality indicators for Data and HPC infrastructures interface



WP2: Interfaces between Data and HPC Infrastructures

HPC Data staging infrastructure

e Complex data-intensive analysis
¢ |n-situ data production: (ensemble)

Data centres

¢ data and derived data archiving and
preservation

e Curation, annotation, PIDs, Provenance simulation, assimilation, inversion

e data,meta-data, distribution standards bigacitndaing (particle filtering)

e continuous or real time data stream e Staging storage management (safe

e complex and multi-disciplinary data  wssee emen - rEPlication, data life cycles)
gt e Distributed compute storage

management (fast and large number
sequential 10s, vertical reuse)

End-to-end Workflows resmnes s

HPC Infrastructures

100TBs - 1PBs 600TBs - 6PBs
Linear complexity Quadratic complexity
Data stream, active message CSP & thread-blocks

Pre-processing
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Data streaming and data shipping workflow engines, different execution models
Orchestrated workflows and data movement across infrastructures

Large semi-structured binary objects with fine-grained access dynamically reconfigurable
Data movement across infrastructures (AAl policy), data provenance and workflow metadata




Impact of huge bandwidth optical interconnection network and a new
memory paradigm with global address space for BDEC systems

Tomohiro Kudoh, Shu Namiki, Ryousei Takano, Kiyo Ishii, Yoshio Tanaka, Isao Kojima,
Tsutomu Ikegami, Satoshi ltoh, Satoshi Sekiguchi
National Institute of Advanced Industrial Science and Technology (AIST)

Conventional HPC systems: the inter—node I/0
bandwidth is about 1/10 of the intra—node
memory access bandwidth
* Pin—bottleneck will increase the gap
Breakthrough in interconnect bandwidth is
possible by Dense Wavelength Division
Multiplexing (DWDM)
o ¢f. 50Gbps x 100 lambda = 5Tbps/fiber
Problem: DWDM Light source
* Expensive compound semiconductor
* Produce heats: Precise temperature
control needed for DWDM
Solution: Wavelength Bank
Need a new architecture and software to utilize
huge interconnect bandwidth
* Interconnect bandwidth can be comparable
to or greater than memory bandwidth

Modulated lambdas

Optical fiber

Wavelength Division Multiplexing
(WDM)



Wavelength Bank and Silicon Photonics

Wavelength bank (WB) or optical comb source is a centralized generator of wavelengths for
DWDM. One WB in a BDEC system.
Light waves are distributed to computing nodes using optical amplifiers (loss compensation)
* No light sources are required for each computing node.
* Distributed light is de—multiplexed to each wavelength, modulated, multiplexed again,
and transmitted from each computing node.
Silicon photonics optical circuits can be used for the whole light wave processing at a node.
Low cost and low power consumption. Hybrid implementation with electronics.
DWDM signals can be switched in one bundle by fiber cross—connect switches, or can be
switched separately by wavelength selective switches.

Wavelengths
supply
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Direct memory copy over DWDM

* Assume processor—-memory
embedded package with WDM
interconnect

e To fully utilize the huge 1/0
bandwidth realized by DWDM

Allow direct access to memory

by I/0.

Main memory is divided into

memory blocks

e Each memory block can be

accessed either from the
processor or the I/0 at a
time.

* Multiple memory blocks can be
sent/received simultaneously using
multiple wavelengths.

For 4MB blocks, a block can be
transferred in about 1ms at the
rate of 50Gbps

Parallel transfer of up to the
number of wavelength channels
is possible.

From

Wavelength bank

ul

Processor

Cache

MMU

Processor
cores

S — | | EEECTY

Memory Bank

WDM
Interconnect

Single package compute node

|
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Programming model and OS

* Software architecture including operating
systems, programming models and memory ' N\
systems should be re—designed. ™

* Management of memory blocks

* Map memory blocks to a global virtual

D

address space. Processof
o Storage also mapped to the address space. (- ) eores
* Memory block transfer: RDMA operations = — \_ Memory )
* Impact on the structure of an operating system
and runtime systems. o g‘(;;‘;';',
« Kernel organization (e.g., hybrid of light— [ dh\\ foaress
weight and general purpose kernels)
e Data access abstraction on a global virtual \_ Memory/ & 4 )
address space
e Fault tolerant/resilience —  Address mappings

» Network resource management (e.g., optimal —> Blockcopy (true-RDMA) L
wavelength scheduling and optical path
switching/routing)

* We will conduct a feasible study of the design of \  Storage )
both architecture and system software of such
system..

http:/www.aist.go.jp e AIST Ssipsmsen:
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THESCIENCECLOUD

Strategic collaboration between HPC and Cloud
to address big data in global scientific challenges

BDEC Workshop, Fukuoka — 28 February 2014

Maryline Lengert (ESA), Bob Jones (CERN), David Foster (CERN), Steven Newhouse (EMBL-EBI)



A European cloud computing partnership: H
big science teams up with big business

THESCIENCECLOUD

Strategic Plan

multi-provider cloud
infrastructure

-

Identify and adopt
policies for trust,
security and privacy
i

!... Create governance

' structure

Define funding
schemes

BDEC, Fukuoka, 28/02/2014
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The e-commons infrastructure marketplace

* Wil provide access to worldwide and world class
resources through a dynamic and sustainable
marketplace.

* Be built on public and commercial assets, will cover
the entire scientific workflow

 Will offer the broadest range of services

* Will ensure use of open standard and
interoperability of service providers while adhering
to European policies, norm and requirements.

BDEC, Fukuoka, 28/02/2014 3 Maryline Lengert, ESA
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Computing:
- HPC
- GRID
- Cloud
- Volunteer

Information

BDEC, Fukuoka, 28/02/2014 Maryline Lengert, ESA



Towards Extreme-scale Graph Processing

with Deepening Memory Hierarchy
Hitoshi Sato, Tokyo Institute of Technology

* Large-scale Graphs and HPC

— Various Applications
* Traffic network, SNS, Smart Grlds
Biology, Cyber-security, etc.
— Modern supercomputers

e can accommodate peta-flops class -
performance w/ peta-byte class storage

— Important Kernels for Big Data HPC
e Graph500/Green Graph500

. CEB G

NVMs is a key device for I/O systems
cf. TSUBAME2, Catalyst, Gordon, etc.

How to utilize deepening memory/ storage
hierarchy




Large-Scale BFS Using NVMs for Graph500 [sc13 Poster]

Motivation
e Large scale graph processing in
various domains

DRAM resources has mcreased

e Spread of Flash Devices .,
Prof : Price per bit, Energy consumption s/

\ Cons: Latency, Throughput )
Using NVMs for large scale graph processing has possibilities of
minimum performance degradation
NUMA-optimized Hybrid-BFS (Breadth-first Search) —, Proporsal M
Switching two approaches [Beamer2012] [Yasui2013] @ Offloading infrequently
Top-down Bottom-up P> accesseddata
n _ Mau Nay > < ’ \b/
frontier =" g Mfrontier =~ (2) BFS with reading data
# of frontiers:ng,,.... #of all vertices:n,,  parameter:a, 8 | | from NVM )
\_ ’ ’ J

Evaluation (offload Top-down Graph : We could reduce half the size of DRAM [128GB -> 64 GB ] on Scale 27)

6.00

4.1GTEPS(79.4%)

“ DRAM Only

DRAM+ioDrive2

E 4.00 i i DRAM+Intel SSD
O 2.00 [ - [ 2.8GTEPS -
000 | M H u B u B B HE B s =
B=10a B=0.1a B=10a B=0.1a B=10a B=0.1a B=10a B=0.1a
o=1.E+04 o=1.E+05 o=1.E+06 o=1.E+07

Swiching Parameters




The 2nd Green Graph500 list on Nov. 2013

Measures power-efficient using TEPS/W ratio

Results on various system such as Huawei’s RH5885v2 w/ Tecal ES3000

PCle SSD 800GB * 2 and 1.2TB * 2
http://green.graph500.org
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G500

Rank MTEPS /W Site Machine rank Scale GTEPSNodes
1 6.72 | Tokyo Institute of Technology | TSUBAME KFC 47 32 (4401 32
2 5.41 |Forschungszentrum Julich (FZJ) JUQUEEN 3 38 | 5848 16384
3 442 |Argonne National Laboratory [DOE/SC/ANL Mira| 2 40 (1432832768

NN

4.35 | Tokyo Institute of Technolog EBD-RH5885v2 96 | 30 [3.67 [( 1)

5 3.55 Lawrence Livermore National DOE/NNSA.\/LLNL | 40 15343l 45534
Laboratory Sequoia
Research Center for
6 1.89 Advanced Computing altix 50 | 30 (37.66| 1
Infrastructure
7 0.73 Mayo Clinic grace 68 | 31 (10.32| 64




Lessons from our Graph500 activities

 We can efficiently process large-scale data
that exceeds the DRAM capacity of a compute node
by utilizing commodity-based NVM devices

* Convergence of practical algorithms and software
implementation techniques is very important

e Basically, BigData consists of a set of sparse data.
Converting sparse datasets to dense is also a key for
performing BigData processing



WWW.bsc.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

BSC vision on Big Data and Extreme
Scale Computing

Jesus Labarta, Eduard Ayguade, Rosa M. Badia, Yolanda Becerra, David
Carrera, Toni Cortés, Adrian Cristal, Fabrizio Gagliardi, Alex Ramirez, Enric
Tejedor, Jordi Torres, Osman Unsal and Mateo Valero

BDEC, February 28" 2014




Big Data related projects @ BSC

(€ Applications
— Molecular dynamics, docking, genomics
— Air quality, oil exploration
— Physiological simulation (heart, brain, ), neurology
— Social graph, smart cities
— HPC performance analysis

(€ Observation
— Broad experience and background  fragmented

({ Severo Ochoa project: co-design, unification effort

 Life science, Earth Science, Engineering, Computer
science depts

« Unified, productive, easy to use and efficient
environment for our broad range of applications

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion
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Strategic Considerations

(€ Architectural support [ Ll J
— From crystals to plastics
— Capacity, bandwidth dimensioning = f(technologies, runtime) [ Data /storage }
resources
(€ Algorithms: computational and communication complexity I
— Computational and data movement complexity awareness [esources

— Flexible computational workflows

(€ Programming models
— Need more integration between concurrency and data processing
— Need to close gap between persistent and program data models
— Simple/minimal extension of existing languages
— Allow for holistic optimization
— Clean interface to convey useful information to the runtime

({ Usage models and resource management
— Dynamic, interactive
— Malleability and dynamic resource management

(€ Intelligent runtimes

— Should be given high responsibility to jointly manage data (placement,
replications, transfer, query optimization, .) and scheduling

Barcelona

Supercomputing

Center 3
Centro Nacional de Supercomputacion




BSC technologies

( StarSs concept (Tasks + directionality annotations)
— Computational workflow: COMPSs ( Java, PyCOMPSs)
« Parallelization of sequential Python code
— Parallel computing and accelerators: OmpSs
« C, C++ FORTRAN, CUDA, OpenCL

({ Persistent share object model
— Integrate experience in Cassandra, BGAS, in PyCOMPSs
— Enrichment

(€ Intelligent runtime & resource management
— COMPSs, NANQOS, interposed libs,
— Concurrency
* Within node, across nodes and cloud
— Locality
» Data placement transfer and query optimization
— Dynamic load balance (DLB)

COMPSs/OmpSs Apps

API (data access and control flow)

(( Algorlth mS Active Store
— Genomics .
. self-contained objects
— Performance analytics
- G ra p h a n a I yti CS data 0rganizRaetis;|ljr::e"r;a:ﬁ:'\esr,n:::nizlli::!:ri scheduling

PIMD BGAS CASSANDRA Others

hierarchical storage + computing resources

Barcelona

Supercomputing

Center 4
Centro Nacional de Supercomputacion
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the K Computer

A. Hori (RIKEN AICS)

A. Tokuhisa (RIKEN AICS) K. Yoshinaga (RIKEN AICS)

T. Kameyama (RIKEN AICS) J. ARAI (Univ. Tokyo -> NTT)
K. Okada (JASRI/RIKEN RSC) T. Sugimoto (JASRI)

M. Yamaga (JASRI/RIKEN RSC) R. Tanaka (JASRI/RIKEN RSC)
Y. Joti (JASRI/RIKEN RSC) T. Hatsui (RIKEN RSC)

M. Yabashi (RIKEN RSC) Y. Sugita (RIKEN AICS)

Y. Ishikawa (Univ. Tokyo / RIKEN AICS) N. Go (JAEA)

BDEC’ 14@Fukuoka




SACLA and the K

* Data Acquisition: SACLA (XFEL Facility)

XFEL: X-ray Free Electron Laser
« Data Processing: the K computer

X-ray Crystal*‘
Structural *%
Analysis

6852 Optical
@gg@ Microscope
Analysis

1010 m 10°m 108 m 107 m 10 m 10°m

BDEC’ 14@Fukuoka




XFEL Project and ...

 Few years ago,
« SACLA can produce lots of data
 The K computer is used to process and analyze
the data
 We have succeeded to optimize the program
* Minimizing |/O, Balancing Load
 Few months ago,
* RIKEN Center for Life Science and Technologies
contacted me
 New Electron Microscope yields lots of data

* Their computing environment is too weak ...

« Scientists are flooded by BIG DATA !
BDEC’14@Fukuoka




Rescue Mission

* Generalization to handle any all-to-all data processing

Decoupling kernel code and parallelizing (MPI) code
* User develops sequential programs
* file read and sequential kernel code

« Easy-to-develop, easy-to-debug,
easy-to-port, and programing language free

$ ./nonameyet ./read-prg params ./kernel-prg params

sequential | parallel
A N < :
read kernel read

BDEC’ 14@Fukuoka




In-Situ Big Data Analysis at Scale

for Extreme Scale Systems
Alok Choudhary - Northwestern University
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Drinking from a Fire-hose..

Rethinking Requi;éd




Strategy - Integrating Data Driven Science

Instruments, sensors

Transactional:
Data Data
Generation Management
Data
Reduction,
: Query
Discovery, Historical:
Insights, transformation,
Hecdback approximation
Visualization

Data Mining,
analytics,
learning

Historical Learning Trigger/
data Models questions ®3



In-Situ Analysis

Contributes to
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In-Situ
Learning
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