Beyond Embarrassingly
Parallel Big Data

William Gropp
www.cs.illinois.edu/~wgropp

Messages

e Big is big
¢ Data driven is an important area, but not all data
driven problems are big data (despite current hype).
The distinction is important
¢ There are different measures of big, but a TB of data
that can be processed by a linear algorithm is not big

o Key feature of an extreme computing system
is a fast interconnect

¢ Low latency, high link bandwidth, high bisection
bandwidth

¢ Provides fast access to data everywhere in system,
particularly with one-sided access models

e Think map(rl,r2, ...) — function that requires more
than one record, where the specific input records are
][unpredictable (e.g., data dependent on previous result)

LLINOIs

1867

) PARALLEL@

Messages (2)

e [/O operations must reflect data objects,
access patterns, latency tolerance, consistency

¢ Uncoordinated I/O is easy to program but costly in
performance and correctness

¢ "Bulk Synchronous” style easy to program but costly
in performance
e This is a talk about highly scalable parallel 1/0O
and how extreme system capabilities may
differ from other systems

¢ See other talks for great things to accomplish with
big data and extreme computing

; PARALLEL@ILLINOIS

My Research Areas

e Scalable algorithms
¢ Communication optimizations
¢ Latency tolerance
¢ Performance analysis and modeling

e Programming models and systems for parallel
computing at scale

¢ MPI standard design (e.g., MPI-3 RMA)
¢ MPICH: Algorithms and system design for implementation
¢ Hybrid programming, esp. coordination of resources
¢ Decoupled execution models and programming systems
e Exploit hierarchical, collective, and dynamic features

¢ PETSc: Domain decomposition in scalable numerical
algorithms

¢ pnetCDF: Collective I/0O in interoperable data models

¢ MPI Slack: light-weight, locality-sensitive, communication-
informed load balancing

1867

4 PARALLEL@ILLINOIS

Blue Waters Computing System

.. -l-"'—_—-————

.. T ORSTQCF T O S

' vrrrF7' 5@
1 ﬁgjgiﬁﬁa

120+ Gb/se

>1 TB/sec

DDODDOO

o
v
=Y
=4
=Y
A4
"
4
o
v
o
-
=Y
A4

Spectra Logic: >300 PBs Sonexion: 26 PBs

; PARALLEL@ILLINOIS

Independent and Collective I/0

Independent I/O Abstraction

chenas

Independent I/O Reality

Independent I/0

¢ Processes/threads/tasks
write to I/O system

without coordinating with
others in same parallel job

Collective I/0

¢ Processes/etc coordinate
to make access efficient

Sophisticated caching and
forwarding strategies can
improve performance, but
adds complexity, cost,
energy

PARALLEL@ILLINOIS

Gemini Interconnect Network

Blue Waters
3D Torus

Size C

ULogin

@ @ ﬁil Servers
J ﬁzﬁ J Network(s)

GigE SMW
—

Fibre Channel |

8 Boof{ Raid

Infiniband

el

288
.-- Lustre¢
888

|
Interconnect
Network

EEEEEEEEEEEEEEEEEEEEEEE

Service Nodes spread
throughout the torus

I

1867

Compute Nodes
@ Cray XE6 Compute

@ Cray XK7 Acceleratd

Operating System Login/Network

. Boot

() System Database ' Network

Service Nodes

@ Login Gateways

Lustre File System
() LNET Routers

PARALLEL@ILLINOIS

Cross-Cutting Themes

e Latency
¢ All levels of memory hierarchy

¢ Strategies (Algorithms and Implementations)
e Active (Prefetch)
e Passive (Latency tolerant/overlap)

e Representation of data
¢ Fields (data is discrete approximation to continuous field)
¢ Graphs and other discrete data

¢ Choice has a strong impact on performance and
productivity

e Access to data and consistency

¢ Independent access is convenient but with penalties in
performance and correctness

e Performance modeling and performance/flexibility
tradeoffs

¢ E.g., collective I/0O
¢ Quantify design and evaluation

1

; PARALLEL@]LLINOIS

Taxonomy: How to define “Big”

o All of memory or more (size)
e As fast as or faster than I/O Bandwidth (velocity)

e Too complex to process
¢ Computation of data is not linear in data size
¢ Variety of data formats, representation, and models requires experts
to grok
e |eaves out: embarrassingly parallel data (nearly independent
records)
¢ Many "mid size” data
¢ Many “"MapReduce” applications (important, but others leading here)

e Need some clear examples of the different kinds of workflows
(the NAS PB of Big Data) that illustrate different needs

¢ High velocity - real time filter/compression; lossy. Large scale
instruments (SKA, LSST); ubiquitous low-quality sensors

¢ Large numbers of nearly independent records — web, financial
transactions, twitter feeds. MapReduce and slightly better; cloud
platforms, Databases; large scale instrument data (images)

¢ Large single records; highly and unpredictably correlated data.
Simulation results, large-scale graphs

5 PARALLEL@ILLINOIS

Some Architecture Issues for
Big Data

e Parallelism in I/O

¢ Systems optimized for zillion independent files or records
can use cloud resources
¢ Deeper hierarchy in I/O system

e BW example: 26 PB disk, 380 PB tape with 1.2 PB cache for
the 26 PB cache; use of RAIT to improve performance,
reliability

e Important distinction for extreme scale systems: All data
accessible at nearly same performance from all nodes

¢ Metadata design has a major impact on performance,
reliability
e Other architectural features important

¢ One-sided access with remote operations
e At least multi-element compare-and-swap
e Even better, compute to data (active messages, parcels, ...)

¢ And others (better stream processing, custom control

logic...) o PARALLEL@ILLINOIS

Workflows

e Simulation reads input data, performs simulations
(perhaps ensembles, which may be computed
cooperatively), writes results

¢ Bulk synchronous vs. data flow

e Challenge: exploring data. E.g., many data sets now
map to multiple value per pixel, even for 2-d slice of 3-d
data

¢ Many data sets represent unstructured data (e.qg.,
unstructured mesh); access not easy to precompute, data
dependent
e Read data about mesh (transfer data trom file to processors)
e Compute data region to access, issue I/O requests
e Read data with values
e Operation is doubly bad: requires two separate I/O operations
] and has strong data dependency

¢ Data representation can make a huge difference in

performance . PARALLEL@]LLINOIS

Common Simulation I/0
Pattern

e Program writes data,
waits for data to be
“written”

Program ¢ Data may be in I/O

Data buffers
e Minimizes extra
memory needed by
application
¢ Relevant for memory
constrained
applications and
extreme scale

Program systems

Continues Variations include

parallel collective I/0

¢ MPI_File_write_all

2 PARALLEL@ILLINOIS

Double Buffer

e Memory copy to permit
application to continue

¢ Memory may be same node
(memory-to-memory copy)

Program ¢ Memory may be another
Data node (send/put over fast
interconnect)
e Significantly greater
memory required

e Variations include parallel
independent and collective
I/0

e Still constrains progress -
data write must be
complete before next I/0O

Program
Continues

step
Data copy ¢ Of course, can fix in short
may be off ’Ic_erm with even n’!oreCI T%mory
compute * bandwidin to e System
node (e.qg., must be at least rate at which
burst buffer) data is generated

13 PARALLEL@ILLINOIS

DataFlow

e Break the “"BSP”
style of compute/IO
phases

¢ Deliver data to I/0O
system when ready,
in sensible-sized block

¢ Can avoid copy if data

Program access well-marked

Continues (don’t overwrite until
I/O completes or data
copied)

¢ Few (no?) good
programming models
][or systems for this

o PARALLEL@ILLINOIS

All Programs Are Parallel

e But (natural) data representation is
not parallel

¢ Single file/database/object/timestamp/
checkpoint is the natural unit

¢ At extreme scale, the number of parallel
I:Jrocessing elements (nodes/cores/etc.)
ikely to vary from run to run

e Reliability, resource availability, cost

e In preceding, assumption is that
“program” was a parallel program,
writing data to a file/store that hides/
i%nores the fact that n processes/

threads/teams wrote the file

i5 PARALLEL@ILLINOIS

HPC Software A Good Base

e MPI-IO, HDF5, pnetCDF, HPSS, other
ad hoc solutions provide good
building blocks

e Needed: Better abstract models, for
both high and low level abstractions

¢ "DSL" for data manipulation at scale

¢ Such systems are data structure +
methods (operators)

e Implementations that fully exploit
J§ 9good and clean semantics of access

6 PARALLEL@ILLINOIS

Avoid Bad Science

e What is wrong with this statement:
¢ “Our results show that XX is faster than MPI-IO"

e Testing the performance of an implementation on a
platform provides little data about a language or
specification

¢ Confusing a test of an implementation with fundamental
properties of a specification is bad science.

e There are many ghastly mismatches between what an
MPI IO implementation should accomplish and what it
does in current implementations

¢ Leads to the development of ad hoc solutions that work
around limitations of the implementations, not the

definitions.
¢ We can repeat this error if we aren’t very careful

I

; PARALLEL@ILLINOIS

Define Consistency Models
for Access and Update

Need consistency models that match use in applications

¢ Or trade accuracy for speed

¢ Already happened in search, e-commerce, even when
solution is to trade accuracy for speed

e Witness Amazon’s pseudo cart implementation — items aren't
really under your control (“in your cart”) until you complete the
purchase. But greatly simplifies data model.

e Even though it angers customers on popular deals
POSIX consistency model is stronger than sequential
consistency and almost never what applications require

¢ Even when strong consistency is needed, it is almost always
on the granularity of a data object, not bytes in a file

¢ Long history of file systems falsely claiming to be POSIX
A bad alternative is the “do what is fast” consistency
model - usually but not always works

¢ Some systems have taken this route — both I/O and RDMA
18 PARALLEL@ILLINOIS

Interoperability

e HDF5 provides strong support for many aspects of data
provenance. Mechanisms exist in pnetCDF.

¢ Should a base set be “automatic”, much as file creation/
modify time is today?

¢ Can we evolve to better interoperability, or are radically
new models needed?

e Mathematical representation for continuous data

¢ How should the information about the mapping of discrete
=» continuous be stored in the file?

¢ How should this be generalized to other representations?
e Accuracy of data values

¢ How should accuracy be efficiently stored with file?
e Data formats impact performance and scalability

¢ Optimizing for interoperability or performance alone may
impede application

¢ You cannot pick the format and then (successfully) say
“make it fast”

1867

9 PARALLEL@ILLINOIS

Conclusions

e Extreme scale systems offer opportunities for unmatched
data-centric computing
¢ Memory as large as many databases
¢ Order 10usec access to all data
¢ I/0 system optimized for large, complex objects

e HPC software recognizes essential role of locality, latency,
consistency
¢ But inadequate implementations have diverted attention
from core issues - lets not make that mistake again
¢ Data structures + algorithms = problems is true here
e choice of data representation has strong effect on performance

e Big Data and Extreme-Scale Systems should focus on
problems that can’t be done on lesser systems

¢ Focus on

] e Data dependent, fine-grain compute
e Truly large single problems

26 PARALLEL@ILLINOIS

