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Messages 

•  Big is big 
♦  Data driven is an important area, but not all data 

driven problems are big data (despite current hype).  
The distinction is important 

♦  There are different measures of big, but a TB of data 
that can be processed by a linear algorithm is not big 

•  Key feature of an extreme computing system 
is a fast interconnect 
♦  Low latency, high link bandwidth, high bisection 

bandwidth 
♦  Provides fast access to data everywhere in system, 

particularly with one-sided access models 
•  Think map(r1,r2, … ) – function that requires more 

than one record, where the specific input records are 
unpredictable (e.g., data dependent on previous result) 
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Messages (2) 

•  I/O operations must reflect data objects, 
access patterns, latency tolerance, consistency  
♦  Uncoordinated I/O is easy to program but costly in 

performance and correctness 
♦  “Bulk Synchronous” style easy to program but costly 

in performance 
•  This is a talk about highly scalable parallel I/O 

and how extreme system capabilities may 
differ from other systems 
♦  See other talks for great things to accomplish with 

big data and extreme computing 
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My Research Areas 

•  Scalable algorithms 
♦  Communication optimizations 
♦  Latency tolerance 
♦  Performance analysis and modeling 

•  Programming models and systems for parallel 
computing at scale 
♦  MPI standard design (e.g., MPI-3 RMA) 
♦  MPICH: Algorithms and system design for implementation 
♦  Hybrid programming, esp. coordination of resources 
♦  Decoupled execution models and programming systems 

•  Exploit hierarchical, collective, and dynamic features 
♦  PETSc: Domain decomposition in scalable numerical 

algorithms 
♦  pnetCDF: Collective I/O in interoperable data models 
♦  MPI Slack: light-weight, locality-sensitive, communication-

informed load balancing 
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Blue Waters Computing System 

Sonexion: 26 PBs 

>1 TB/sec 

100 GB/sec 

10/40/100 Gb 
Ethernet Switch 

Spectra Logic: >300 PBs 

120+ Gb/sec 

WAN 

IB Switch 
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Independent and Collective I/O 

•  Independent I/O 
♦  Processes/threads/tasks 

write to I/O system 
without coordinating with 
others in same parallel job 

•  Collective I/O 
♦  Processes/etc coordinate 

to make access efficient 
•  Sophisticated caching and 

forwarding strategies can 
improve performance, but 
adds complexity, cost, 
energy 

CPU CPU CPU CPU CPU CPU CPU 

Independent I/O Abstraction 

CPU CPU CPU CPU CPU CPU CPU 

IO Node IO Node 

Independent I/O Reality 
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Gemini Interconnect Network 

Blue Waters 
3D Torus 

Size 
23 x 24 x 24 

InfiniBand 

SMW GigE 

Login 
Servers 
Network(s) 

Boot Raid 
Fibre Channel 

Infiniband 

Compute Nodes 
Cray XE6 Compute 
Cray XK7 Accelerator 

Service Nodes 
Operating System 

Boot 
System Database 

Login Gateways 
Network 

Login/Network 

Lustre File System 
LNET Routers 

Y 

X 

Z 

Interconnect 
Network Lustre  

Service Nodes spread  
throughout the torus 
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Cross-Cutting Themes 

•  Latency 
♦  All levels of memory hierarchy 
♦  Strategies (Algorithms and Implementations) 

•  Active (Prefetch) 
•  Passive (Latency tolerant/overlap)  

•  Representation of data 
♦  Fields (data is discrete approximation to continuous field) 
♦  Graphs and other discrete data 
♦  Choice has a strong impact on performance and 

productivity 
•  Access to data and consistency  

♦  Independent access is convenient but with penalties in 
performance and correctness 

•  Performance modeling and performance/flexibility 
tradeoffs 
♦  E.g., collective I/O 
♦  Quantify design and evaluation 
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Taxonomy: How to define “Big” 

•  All of memory or more (size) 
•  As fast as or faster than I/O Bandwidth (velocity) 
•  Too complex to process 

♦  Computation of data is not linear in data size 
♦  Variety of data formats, representation, and models requires experts 

to grok 
•  Leaves out: embarrassingly parallel data (nearly independent 

records) 
♦  Many “mid size” data 
♦  Many “MapReduce” applications (important, but others leading here) 

•  Need some clear examples of the different kinds of workflows 
(the NAS PB of Big Data) that illustrate different needs 
♦  High velocity – real time filter/compression; lossy.  Large scale 

instruments (SKA, LSST); ubiquitous low-quality sensors 
♦  Large numbers of nearly independent records – web, financial 

transactions, twitter feeds.  MapReduce and slightly better; cloud 
platforms, Databases; large scale instrument data (images) 

♦  Large single records; highly and unpredictably correlated data.  
Simulation results, large-scale graphs 
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Some Architecture Issues for  
Big Data 

•  Parallelism in I/O 
♦  Systems optimized for zillion independent files or records 

can use cloud resources 
♦  Deeper hierarchy in I/O system 

•  BW example: 26 PB disk, 380 PB tape with 1.2 PB cache for 
the 26 PB cache; use of RAIT to improve performance, 
reliability 

•  Important distinction for extreme scale systems: All data 
accessible at nearly same performance from all nodes 

♦  Metadata design has a major impact on performance, 
reliability 

•  Other architectural features important 
♦  One-sided access with remote operations 

•  At least multi-element compare-and-swap 
•  Even better, compute to data (active messages, parcels, …) 

♦  And others (better stream processing, custom control 
logic…) 
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Workflows 

•  Simulation reads input data, performs simulations 
(perhaps ensembles, which may be computed 
cooperatively), writes results 
♦  Bulk synchronous vs. data flow 

•  Challenge: exploring data.  E.g., many data sets now 
map to multiple value per pixel, even for 2-d slice of 3-d 
data 
♦  Many data sets represent unstructured data (e.g., 

unstructured mesh); access not easy to precompute, data 
dependent 

•  Read data about mesh (transfer data trom file to processors) 
•  Compute data region to access, issue I/O requests 
•  Read data with values 
•  Operation is doubly bad: requires two separate I/O operations 

and has strong data dependency 
♦  Data representation can make a huge difference in 

performance  
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Common Simulation I/O 
Pattern 

•  Program writes data, 
waits for data to be 
“written” 
♦  Data may be in I/O 

buffers 
•  Minimizes extra 

memory needed by 
application 
♦  Relevant for memory 

constrained 
applications and 
extreme scale 
systems 

•  Variations include 
parallel collective I/O 
♦  MPI_File_write_all 

Program 
Data 

Program 
Continues 
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Double Buffer 

•  Memory copy to permit 
application to continue 
♦  Memory may be same node 

(memory-to-memory copy) 
♦  Memory may be another 

node (send/put over fast 
interconnect) 

•  Significantly greater 
memory required 

•  Variations include parallel 
independent and collective 
I/O 

•  Still constrains progress – 
data write must be 
complete before next I/O 
step 
♦  Of course, can fix in short 

term with even more memory 
♦  Long term; sustained I/O 

bandwidth to file system 
must be at least rate at which 
data is generated 

Program 
Data 

Program 
Continues 

Data 
Copy 

Data copy 
may be off 
compute 

node (e.g., 
burst buffer) 



14 

DataFlow 

•  Break the “BSP” 
style of compute/IO 
phases 
♦  Deliver data to I/O 

system when ready, 
in sensible-sized block 

♦  Can avoid copy if data 
access well-marked 
(don’t overwrite until 
I/O completes or data 
copied) 

♦  Few (no?) good 
programming models 
or systems for this 

Program 
Continues 
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All Programs Are Parallel 

•  But (natural) data representation is 
not parallel 
♦ Single file/database/object/timestamp/

checkpoint is the natural unit 
♦ At extreme scale, the number of parallel 

processing elements (nodes/cores/etc.) 
likely to vary from run to run 
• Reliability, resource availability, cost 

•  In preceding, assumption is that 
“program” was a parallel program, 
writing data to a file/store that hides/
ignores the fact that n processes/
threads/teams wrote the file 



16 

HPC Software A Good Base 

• MPI-IO, HDF5, pnetCDF, HPSS, other 
ad hoc solutions provide good 
building blocks 

• Needed: Better abstract models, for 
both high and low level abstractions 
♦ “DSL” for data manipulation at scale 
♦ Such systems are data structure + 

methods (operators) 
•  Implementations that fully exploit 

good and clean semantics of access 
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Avoid Bad Science 

•  What is wrong with this statement: 
♦  “Our results show that XX is faster than MPI-IO” 

•  Testing the performance of an implementation on a 
platform provides little data about a language or 
specification 
♦  Confusing a test of an implementation with fundamental 

properties of a specification is bad science.  
•  There are many ghastly mismatches between what an 

MPI IO implementation should accomplish and what it 
does in current implementations 
♦  Leads to the development of ad hoc solutions that work 

around limitations of the implementations, not the 
definitions. 

♦  We can repeat this error if we aren’t very careful 
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Define Consistency Models 
for Access and Update   

•  Need consistency models that match use in applications 
♦  Or trade accuracy for speed 
♦  Already happened in search, e-commerce, even when 

solution is to trade accuracy for speed 
•  Witness Amazon’s pseudo cart implementation – items aren’t 

really under your control (“in your cart”) until you complete the 
purchase.  But greatly simplifies data model. 

•  Even though it angers customers on popular deals 

•  POSIX consistency model is stronger than sequential 
consistency and almost never what applications require 
♦  Even when strong consistency is needed, it is almost always 

on the granularity of a data object, not bytes in a file 
♦  Long history of file systems falsely claiming to be POSIX 

•  A bad alternative is the “do what is fast” consistency 
model – usually but not always works 
♦  Some systems have taken this route – both I/O and RDMA  
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Interoperability 

•  HDF5 provides strong support for many aspects of data 
provenance.  Mechanisms exist in pnetCDF. 
♦  Should a base set be “automatic”, much as file creation/

modify time is today? 
♦  Can we evolve to better interoperability, or are radically 

new models needed? 
•  Mathematical representation for continuous data 

♦  How should the information about the mapping of discrete 
è continuous be stored in the file? 

♦  How should this be generalized to other representations? 
•  Accuracy of data values 

♦  How should accuracy be efficiently stored with file? 
•  Data formats impact performance and scalability 

♦  Optimizing for interoperability or performance alone may 
impede application 

♦  You cannot pick the format and then (successfully) say 
“make it fast” 
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Conclusions  

•  Extreme scale systems offer opportunities for unmatched 
data-centric computing 
♦  Memory as large as many databases 
♦  Order 10µsec access to all data 
♦  I/O system optimized for large, complex objects 

•  HPC software recognizes essential role of locality, latency, 
consistency 
♦  But inadequate implementations have diverted attention 

from core issues – lets not make that mistake again 
♦  Data structures + algorithms = problems is true here 

•  choice of data representation has strong effect on performance 

•  Big Data and Extreme-Scale Systems should focus on 
problems that can’t be done on lesser systems 
♦  Focus on 

•  Data dependent, fine-grain compute 
•  Truly large single problems 


