
Beyond Embarrassingly
Parallel Big Data

William Gropp
www.cs.illinois.edu/~wgropp

2

Messages

•  Big is big
♦  Data driven is an important area, but not all data

driven problems are big data (despite current hype).
The distinction is important

♦  There are different measures of big, but a TB of data
that can be processed by a linear algorithm is not big

•  Key feature of an extreme computing system
is a fast interconnect
♦  Low latency, high link bandwidth, high bisection

bandwidth
♦  Provides fast access to data everywhere in system,

particularly with one-sided access models
•  Think map(r1,r2, …) – function that requires more

than one record, where the specific input records are
unpredictable (e.g., data dependent on previous result)

3

Messages (2)

•  I/O operations must reflect data objects,
access patterns, latency tolerance, consistency
♦  Uncoordinated I/O is easy to program but costly in

performance and correctness
♦  “Bulk Synchronous” style easy to program but costly

in performance
•  This is a talk about highly scalable parallel I/O

and how extreme system capabilities may
differ from other systems
♦  See other talks for great things to accomplish with

big data and extreme computing

4

My Research Areas

•  Scalable algorithms
♦  Communication optimizations
♦  Latency tolerance
♦  Performance analysis and modeling

•  Programming models and systems for parallel
computing at scale
♦  MPI standard design (e.g., MPI-3 RMA)
♦  MPICH: Algorithms and system design for implementation
♦  Hybrid programming, esp. coordination of resources
♦  Decoupled execution models and programming systems

•  Exploit hierarchical, collective, and dynamic features
♦  PETSc: Domain decomposition in scalable numerical

algorithms
♦  pnetCDF: Collective I/O in interoperable data models
♦  MPI Slack: light-weight, locality-sensitive, communication-

informed load balancing

5

Blue Waters Computing System

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: >300 PBs

120+ Gb/sec

WAN

IB Switch

6

Independent and Collective I/O

•  Independent I/O
♦  Processes/threads/tasks

write to I/O system
without coordinating with
others in same parallel job

•  Collective I/O
♦  Processes/etc coordinate

to make access efficient
•  Sophisticated caching and

forwarding strategies can
improve performance, but
adds complexity, cost,
energy

CPU CPU CPU CPU CPU CPU CPU

Independent I/O Abstraction

CPU CPU CPU CPU CPU CPU CPU

IO Node IO Node

Independent I/O Reality

7

Gemini Interconnect Network

Blue Waters
3D Torus

Size
23 x 24 x 24

InfiniBand

SMW GigE

Login
Servers
Network(s)

Boot Raid
Fibre Channel

Infiniband

Compute Nodes
Cray XE6 Compute
Cray XK7 Accelerator

Service Nodes
Operating System

Boot
System Database

Login Gateways
Network

Login/Network

Lustre File System
LNET Routers

Y

X

Z

Interconnect
Network Lustre

Service Nodes spread
throughout the torus

8

Cross-Cutting Themes

•  Latency
♦  All levels of memory hierarchy
♦  Strategies (Algorithms and Implementations)

•  Active (Prefetch)
•  Passive (Latency tolerant/overlap)

•  Representation of data
♦  Fields (data is discrete approximation to continuous field)
♦  Graphs and other discrete data
♦  Choice has a strong impact on performance and

productivity
•  Access to data and consistency

♦  Independent access is convenient but with penalties in
performance and correctness

•  Performance modeling and performance/flexibility
tradeoffs
♦  E.g., collective I/O
♦  Quantify design and evaluation

9

Taxonomy: How to define “Big”

•  All of memory or more (size)
•  As fast as or faster than I/O Bandwidth (velocity)
•  Too complex to process

♦  Computation of data is not linear in data size
♦  Variety of data formats, representation, and models requires experts

to grok
•  Leaves out: embarrassingly parallel data (nearly independent

records)
♦  Many “mid size” data
♦  Many “MapReduce” applications (important, but others leading here)

•  Need some clear examples of the different kinds of workflows
(the NAS PB of Big Data) that illustrate different needs
♦  High velocity – real time filter/compression; lossy. Large scale

instruments (SKA, LSST); ubiquitous low-quality sensors
♦  Large numbers of nearly independent records – web, financial

transactions, twitter feeds. MapReduce and slightly better; cloud
platforms, Databases; large scale instrument data (images)

♦  Large single records; highly and unpredictably correlated data.
Simulation results, large-scale graphs

10

Some Architecture Issues for
Big Data

•  Parallelism in I/O
♦  Systems optimized for zillion independent files or records

can use cloud resources
♦  Deeper hierarchy in I/O system

•  BW example: 26 PB disk, 380 PB tape with 1.2 PB cache for
the 26 PB cache; use of RAIT to improve performance,
reliability

•  Important distinction for extreme scale systems: All data
accessible at nearly same performance from all nodes

♦  Metadata design has a major impact on performance,
reliability

•  Other architectural features important
♦  One-sided access with remote operations

•  At least multi-element compare-and-swap
•  Even better, compute to data (active messages, parcels, …)

♦  And others (better stream processing, custom control
logic…)

11

Workflows

•  Simulation reads input data, performs simulations
(perhaps ensembles, which may be computed
cooperatively), writes results
♦  Bulk synchronous vs. data flow

•  Challenge: exploring data. E.g., many data sets now
map to multiple value per pixel, even for 2-d slice of 3-d
data
♦  Many data sets represent unstructured data (e.g.,

unstructured mesh); access not easy to precompute, data
dependent

•  Read data about mesh (transfer data trom file to processors)
•  Compute data region to access, issue I/O requests
•  Read data with values
•  Operation is doubly bad: requires two separate I/O operations

and has strong data dependency
♦  Data representation can make a huge difference in

performance

12

Common Simulation I/O
Pattern

•  Program writes data,
waits for data to be
“written”
♦  Data may be in I/O

buffers
•  Minimizes extra

memory needed by
application
♦  Relevant for memory

constrained
applications and
extreme scale
systems

•  Variations include
parallel collective I/O
♦  MPI_File_write_all

Program
Data

Program
Continues

13

Double Buffer

•  Memory copy to permit
application to continue
♦  Memory may be same node

(memory-to-memory copy)
♦  Memory may be another

node (send/put over fast
interconnect)

•  Significantly greater
memory required

•  Variations include parallel
independent and collective
I/O

•  Still constrains progress –
data write must be
complete before next I/O
step
♦  Of course, can fix in short

term with even more memory
♦  Long term; sustained I/O

bandwidth to file system
must be at least rate at which
data is generated

Program
Data

Program
Continues

Data
Copy

Data copy
may be off
compute

node (e.g.,
burst buffer)

14

DataFlow

•  Break the “BSP”
style of compute/IO
phases
♦  Deliver data to I/O

system when ready,
in sensible-sized block

♦  Can avoid copy if data
access well-marked
(don’t overwrite until
I/O completes or data
copied)

♦  Few (no?) good
programming models
or systems for this

Program
Continues

15

All Programs Are Parallel

•  But (natural) data representation is
not parallel
♦ Single file/database/object/timestamp/

checkpoint is the natural unit
♦ At extreme scale, the number of parallel

processing elements (nodes/cores/etc.)
likely to vary from run to run
• Reliability, resource availability, cost

•  In preceding, assumption is that
“program” was a parallel program,
writing data to a file/store that hides/
ignores the fact that n processes/
threads/teams wrote the file

16

HPC Software A Good Base

• MPI-IO, HDF5, pnetCDF, HPSS, other
ad hoc solutions provide good
building blocks

• Needed: Better abstract models, for
both high and low level abstractions
♦ “DSL” for data manipulation at scale
♦ Such systems are data structure +

methods (operators)
•  Implementations that fully exploit

good and clean semantics of access

17

Avoid Bad Science

•  What is wrong with this statement:
♦  “Our results show that XX is faster than MPI-IO”

•  Testing the performance of an implementation on a
platform provides little data about a language or
specification
♦  Confusing a test of an implementation with fundamental

properties of a specification is bad science.
•  There are many ghastly mismatches between what an

MPI IO implementation should accomplish and what it
does in current implementations
♦  Leads to the development of ad hoc solutions that work

around limitations of the implementations, not the
definitions.

♦  We can repeat this error if we aren’t very careful

18

Define Consistency Models
for Access and Update

•  Need consistency models that match use in applications
♦  Or trade accuracy for speed
♦  Already happened in search, e-commerce, even when

solution is to trade accuracy for speed
•  Witness Amazon’s pseudo cart implementation – items aren’t

really under your control (“in your cart”) until you complete the
purchase. But greatly simplifies data model.

•  Even though it angers customers on popular deals

•  POSIX consistency model is stronger than sequential
consistency and almost never what applications require
♦  Even when strong consistency is needed, it is almost always

on the granularity of a data object, not bytes in a file
♦  Long history of file systems falsely claiming to be POSIX

•  A bad alternative is the “do what is fast” consistency
model – usually but not always works
♦  Some systems have taken this route – both I/O and RDMA

19

Interoperability

•  HDF5 provides strong support for many aspects of data
provenance. Mechanisms exist in pnetCDF.
♦  Should a base set be “automatic”, much as file creation/

modify time is today?
♦  Can we evolve to better interoperability, or are radically

new models needed?
•  Mathematical representation for continuous data

♦  How should the information about the mapping of discrete
è continuous be stored in the file?

♦  How should this be generalized to other representations?
•  Accuracy of data values

♦  How should accuracy be efficiently stored with file?
•  Data formats impact performance and scalability

♦  Optimizing for interoperability or performance alone may
impede application

♦  You cannot pick the format and then (successfully) say
“make it fast”

20

Conclusions

•  Extreme scale systems offer opportunities for unmatched
data-centric computing
♦  Memory as large as many databases
♦  Order 10µsec access to all data
♦  I/O system optimized for large, complex objects

•  HPC software recognizes essential role of locality, latency,
consistency
♦  But inadequate implementations have diverted attention

from core issues – lets not make that mistake again
♦  Data structures + algorithms = problems is true here

•  choice of data representation has strong effect on performance

•  Big Data and Extreme-Scale Systems should focus on
problems that can’t be done on lesser systems
♦  Focus on

•  Data dependent, fine-grain compute
•  Truly large single problems

