SCS _é?m

China Big Data and HPC Initiatives Overview

Xuanhua Shi

Services Computing Technology and System Laboratory
Big Data Technology and System Laboratory
Cluster and Grid Computing Laboratory

Huazhong University of Science and Technology, Wuhan, China
xhshi@hust.edu.cn

Outline

» In-Memory Computing

» New Funding by MOST
= HPC Initiatives (2016-2020)
» Big Data Initiatives (2016-2020)

_é:ECL

In-Memory Computing: Lifting the
Burden of Big Data — Aberdeen Group

Figure 3: Satisfaction and Trust in Business Data Table I: More Data, More Speed, More Efficiency
Use in-

80% Performance memory Don't use In-memory
= ®Use in-memory Metrics computing (n=163) Benefit
@ @Don't use in-memory (n = 33)
¢ 60% - .

? edian amount o .| times
% Med f 2.1t

o ; ; 38 terabytes |8 terabytes

g 50% active business data more data
c

40% - edian amount o terabytes terabytes .5 times
8 409 42% Med t of |4 teraby 4 teraby 35t
b ata analyze 6 of all data 6 of all data more data
: data analyzed 37% of all d 22% of all d dat
[

) Average response ;
£ 20% - . 8 P : ! 107 times
g time for data analysis 42 seconds 75 minutes
S faster
g or query
0 Data volume 375 thivies
B Sai . , , : — 1200 terabytes 3.2 terabytes more
atisfied with self- High trustindata Quality / relevance of ~Anytime, anywhere processed per hour 4
service queries systems / policies analyzed data access to information efficient

Source: Aberdeen Group, December 201 | Source: Aberdeen Group, December 201 |

(5 In-memory Database &=

Traditional Computing in-memory Computing

8 “Database of Record”

“Database of Record” f
App. Data App. Data . Persistency

App. Data App. Data
* Recovery
Application Application - Post-processing i Application Application
Code Code * Backup Code Code

Main Memory (DRAM) Main Memory (DRAM)

» Traditional systems exchange data pages between memory and disk when

computing with big data : Expensive 10O cost
» Speed of Disk: ms > Speed of Memory: ns
» In-Memory Computing: CPU reads data from memory and provides real-

time data processing.

Downsides of DRAM Refresh

Energy consumption: Each refresh consumes
energy

Performance degradation: DRAM bank
unavailable while refreshed

QoS/predictability impact: (Long) pause times
during refresh

Refresh rate limits DRAM capacity scaling

Emerging Non-volatile Memory (NVM)
Technologies

BL

Top Electrode

WL

i

Phase-change RAM (PCRAM)

, 14 LN |
’ﬁo.J

GST

GST

—

Heater

Bottom
Electrode

()

Substrate

A=

i B

h/)/: en! M

Vacuum

Single crystal

N

EI Bit Line

Free layer
Pinned layer

Transistor

Deoxidation
OFF—0ON

Oxidation
ON—OFF

Resistive RAM (RRAM)

From left to right: Filament-based, Interface-based and PMC

Metal

Top
Electrode »_
N
2.x
Bottom \
Electrode N
h N\ N\

Domain wall motion in free layer
Pinned reference layer

il

D
i)
Memristor

Top: thin-film device
Bottom: Spintronic material

Emerging Non-volatile Memory (NVM) Technologies

Storage Class Memory

* SCMis a new class of data storage and memory devices

 SCM blurs the distinction between
— MEMORY (= fast, expensive, volatile) and
— STORAGE (= slow, cheap, non-volatile)

* Characteristics of SCM
— Solid state, no moving parts
— Short access times (~ DRAM like, within an order-of-magnitude)
— Low cost per bit (DISK like, within an order-of-magnitude)
— Non-volatile (~ 10 years)

Reconstruction of Virtual Memory Architecture:
Break the I/0 Bottleneck

Logic Memory Active Storage Archival

1980 | CPU

<+ fast, synch slow, asynch —»

2008 CPU

2017 | CPU -

row? CPU -

New In-Memory Computing Architecture

Build DRAM + SCM hybrid hierarchical/parallel memory structure

Traditional Data Access Architecture

CPU

I »RmU

L

Disk

Flash/
SSD

CPU

MRAM

i “I FeRAM
G-

New In-memory Computing Architecture

The new in-memory computing architecture supports the
shift from computing-centric to combination of computing

and data

Challenges of Hybrid Memory Systems

* How should SCM-based (main) memory be

organized?

CPU

ICIRgicERg i

| DRAM Lol DRAM T DRAM Clbg
| DRAM Luang DRAM JESL DRAM Lo

* Partitioning

—@D G-
—@D @GP

— Should DRAM be a cache or main memory, or

configurable?

— What fraction? How many controllers?

— @D
— @D

Challenges of Hybrid Memory Systems

* Data allocation/movement (energy, performance,
lifetime)
— Who manages allocation/movement?
— What are good control algorithms?
— How do we prevent degradation of service due to wearout?

e Design of cache hierarchy, memory controllers, OS
— Mitigate PCM shortcomings, exploit PCM advantages

® Persistent data can be randomly and synchronously

addressed
— Huge non-volatile address spaces, memory-mapped DB,
persistent objects...

— Should SCM be used like I/0 or like memory or in a totally new
way?

Challenges of Hybrid Memory Systems

e Software Architecture

— Should one make SCM visible to applications software?
— If visible, in which form?
* New APIs, libraries, memory models, new |/O devices,...
e Databases, Business Intelligence and Streams are first
impacted

— Data-intensive HPC - predictable execution time of complex
business analytics - streaming search

Challenges of Enabling and Exploiting NVM

* Enabling NVM and hybrid memory
— How to tolerate errors?
— How to enable secure operation?
— How to tolerate performance and power shortcomings?
— How to minimize cost?

* Exploiting emerging technologies
— How to exploit non-volatility?

— How to minimize energy consumption?
— How to exploit NVM on chip?

Technology and System of In-Memory

Computing for Big Data Processing
* Hybrid Memory Architecture for In-Memory
Computing System

« System Software for In-Memory Computing
System

« Parallel Processing for In-Memory Computing
System

« Data Management for In-Memory Computing
System

14

Technology and System of In-Memory
Computing for Big Data Processing

* Project Overview

— Total budget: 170M RMB
— Period: January 2015 — December 2017

— Participants
* Inspur
* Huawel
e Sugon
« Shanghai Jiaotong University
* Huazhong University of Science and Technology
« Chongqing University
« National University of Defense Technology
« Huadong Normal University
 Jiangnan Computing Institute

15

Technology and System of In-Memory
Computing for Big Data Processing

* Project Mission

— Hybrid NVM-based high reliable, massive storage, and
low power in-memory computing system, the capacity
of NVM in each node should be in TB level, supporting
zero bootup

— System software and simulation platform for in-
memory computing system

— Parallel processing system for in-memory computing
system

— In-memory database for hybrid memory architecture
to support decision making and other data
management applications 16

System Architecture

([mamsitess

G

lll Il

DRAM ||-{ NVM |

~N

|

NWVM

] ocor |

EEEA

[
| DRAM
CDR

N'-M

..............

| AFEEE :PClEEEi
E ®wO0 | &0

HMC 2522

/—M\AC % HmC

CDR PCIEF M

CDR

WY |

5 | Maser | Masier |
__ -y \ Mamory] \ Mamary |
S L | Conrasier | | Conrolar |
Lo o R !

fhIEE fEE

12 BB HIEE
_______ | .| _IITE
= o Mame | Masr
| Memary | i Mamory |
| Confroiar | Controlar |

w»;aq |

HMC

DRAM

DRAM

Full System Simulator

Applications
i
. Software Level
Libs Migration Libs
OS
Core Core Core Core
) 4 v)

Latency-Aware Shared Cache

A
y

Data Migration Service

Channel Redirect . Hardware Level
. Migrator . . .
Mapping Migration Strategies
3
1
PCM DRAM

Designed Based
On:

MARSSX86+
NVMain

* More flexible
(supports
NVMain,
DRAMSim.
HybridSim as
main memory
simulator)

« Simulate
memory system
precisely, easy
to configure

S

e Pros and Cons of DDPS

User Program ubTt

UDF

—

d L

N
Distributed []:[]:[]
Data Process Stalgel Sta?eN i

CGCL

Benefit from the
— high-level object-
oriented

System

Produce date

objects with

differen

lifetime

Platform with
memory management

Ap;;\\\\‘ PJ

Memory

Y

allocate

GC

language

The automatic
memory
management of
platform effect
the performance
seriously,

Cached Data (GB)

Deca: Exploiting Raw Data of In-Memory Data
Objects 1n Distributed Data-Parallel Systems

o Com plete|y decom posing in_ Cached RDD: Array[LabeledPoint] In Memory Data Objects
. [T
memory data objects to L i |
.. L L — — ——1
ellmlnate the referenCeS LabeledPoint DenseVector[Double]
invocation and reduce frequent [oy reaturas o dute |IESRESEIRENGIC)
:I int stride '

arbage collection in JVM Spark .
g g \—k double | Array[double] _

| |
® A system to automatic converse [] reference | | _ I
T | |
Arra I |
the user codes, decompose data L [array T = L_,
. . v = Matchup |-‘ |
objects and manage in-memory ;
—— e — — —_—— ¥ _
|
® Speedup from 22.7x to 41.6x, Lo Lo S .___J
. label data(@) data(1) ... data(D-1)
compare with Apache Spark Cached RDD: Array[byte] In Memory Bytes
200 " 18 25
180 rSparkSer-cache 1 16 - —
0| spoliS | nE 8 e A Spark Deca
120 | 0z £ Is 8 PP exec. gc ratio gc reduction
1001 s E 3 05 WC: 150GB 4980s | 2016s | 40.5% | 12.2s 99.4%
ol 62 35 E LR: 80GB 2820s | 2069.9s | 73.4% | 2.5s 99.9%
w0l 4 ; “ \ 5 5 KMeans: 80GB 5443s | 4294.8s | 78.9% 7.2s 99.8%
20 ¢ X 2 o I NZN\ENZ NZ 0 PR: 30GB 5544s 3588.6s | 64.7% 21.7s 99.4%
o LBeeEtere T . 13066 T306p T 50Gs CC: 30GB 2088s | 1443.9s | 69.2% | 36s 97.5%

Data Size APP / Data Size

(c) KMeans (d) Amazon Image Dataset

SCS

_é@

Hadoop Engine: IO-intensive

Map Task
1.1/0 operations

final\output

Jvm

collect Merge-Sort (Combine)
» Map buffer
sortA ndSpil/\ p

2.1/0 operationsé/i / —2(

5 3.1/Ooperations

Local Disk

L%
le
NetWork

6.1/0 operationv/

7.1/0 operations

Reduce Task ™

Reduce <«—

Sort

Pull

4.1/0O operations

16/6/17

21

Mammoth: Memory-Centric MapReduce System

A novel rule-based heuristic
to prioritize memory
allocation and revocation
mechanism

* A multi-threaded execution
engine, which realize global
memory management

* Compatible with Hadoop

e Sources available at Github
and ASF

 |EEE Computer Spotlight

SPOTLIGHT ON TRANSACTIONS [f_]

(=) (&) (@)

|\‘

When Data
\ = Grows Big
Al W=

Hai Jin, Huazhong University of Science
and Technology

This installment of Computer’s series highlighting the work published
in IEEE Computer Society journals comes from IEEE Transactions on
Parallel and Distributed Systems.

adoop is an open

source software

framework that

uses the well-known
MapReduce model to process large-
scale datasets. It's widely used by
many data processing companies
including Google, Yahoo, Face-
book, and LinkedIn. Most of these
have dedicated Hadoop clusters,
which have abundant memory to
achieve high system throughput.
However, many smaller companies,
research institutes, and universi-
ties might only have access to
high-performance computing (HPC)
or ordinary commodity clusters,
which are both memory-con-
strained compared to Hadoop.

The latest survey conducted by
the International Data Corporation
(IDC) indicates that 67 percent of
HPC systems are now used for big
data analysis. It's unclear whether
the MapReduce model can reach its
full potential in these constrained
platforms. If it can’t, how might we
re-engineer the traditional Hadoop
system toward this purpose?

In the forthcoming article “Mam-
moth: Gearing Hadoop towards
Memory-Intensive MapReduce Ap-
plications” (IEEE Transactions on
Parallel and Distributed Systems;
DOI 10.1109/TPDS.2014.2345068),

the authors conducted benchmark-
ing experiments with Hadoop and
observed inefficiencies in both
memory usage and I/O operations.
These deficiencies cause significant
performance reduction in Hadoop,
especially when the supporting plat-
form’s memory is constrained.

The authors observed static and
coarse-grained memory manage-
ment inefficiencies in Map and
Reduce tasks; unnecessary disk
spilling during the Map/Reduce
procedure; lack of coordination
among the Map tasks with differ-
ent memory demands; excessive
1/0 waits caused by the merge-sort
procedure; excessive disk seeks
caused by the parallel I/O; and the
long-tail effect caused by an inap-
propriate priority setting for the
file buffer. To tackle these prob-
lems, the authors developed a new
MapReduce data processing system
called Mammoth for memory-con-
strained systems.

Mammoth is a multi-thread
execution engine that’s based
on Hadoop but runs in a single
JVM on each node. Each Map or
Reduce task on a node is executed
as a thread in the engine, and all
task threads can share memory
at runtime. A memory-schedul-
ing algorithm is developed in the

execution engine to realize global
memory management.

The authors further implemented the
techniques of disk access serializa-
tion, multi-cache, and shuffling from
memory, and also solved the problem
of full garbage collection in the JVM.
The authors also designed a novel
rule-based heuristic to prioritize
memory allocation and revocation
among execution units (mapper,
shuffler, reducer, and so on), which
maximizes the holistic benefits of
the Map/Reduce job when scheduling
each memory unit.

he authors conducted

extensive experiments

to compare Mammoth
with Hadoop and another popular
in-memory processing framework
called Spark. The results show
that Mammoth can dramatically
improve performance in terms of
execution time on memory-con-
strained clusters.

Hai Jin is a Cheung Kung Scholars
Chair professor of computer science
and engineering at Huazhong Univer-
sity of Science and Technology (HUST)
and dean of the School of Computer
Science and Technology at HUST. Con-
tact him at hjin@hust.edu.cn.

Landscape of Disk-Based and In-Memory
Data Management Systems (2014)

Data Management System
for Relational Data

Data Management System

for Graph Data for Streams

—_ D
VERTICN | 5o,

[HP 2011] [Hadapt Inc. 2011]

the world's
leading graph database

[Neo Technology 2007]
AP ACHE
HBASE
Q [Apache 2008b] TITAN "%
IVE Google [Aurelius 2012) Graphiao [Biem et al. 2010]
[Thusoo et al. 2009] Spanner GraphChi
[Corbett et al. 2014) [Kyrola et al. 2012]
Asterixe>
[Alsubaiee et al. 2014] ‘ |nﬁniteGraph
[Objectivity Inc. 2010] [Hoffman 2013;]
cassandra
M SQ L [Apache 2008a]

[MySQL AB 1995]

ORACLE

[Oracle 2013)

Apache Hama=* /
[Apache 2010]

mc‘
Dryad
[1sard et al. 2007]

epiC

[Jiang et al. 2014]

[Apache 2005]

'@hadaap Hyracks

[Borkar et al. 2011]

Generic Data Processing Engine

amazon
DynamoDB G Fs
[Vo et al. 2012) [DeCandia et al. 2007] [Ghemawat et al. 2007)
‘@Ihadmm oS
HIES] p [Cao et al. 2011] —-__—
[Shvachko et al. 2010] FOUNDATIONDB
[FoundationDB 2013]

HDD-based Big Data Storage System

Data Management System

NVM

FAWN

[Andersen et al. 2009]

[Lim et al. 2011]

SkimpyStash

[Debnath et al. 2011)

~ | Clustrix

[Clustrix Inc. 2006)

TEROSPIIKE

[Srinivasan and Bulkowski 2011]

[Kemper and Neumann 2011a)

[Lindstrém et al. 2013] \

[MemsQL Inc. 2012]

Data Management System Data M. 1t Sy

for Relational Data for Graph Data

Data M. Sy
for Streams

s HyPer *G P . .
S GridGain s,

[Salihoglu and Widom 2013] REAL TIME BIG DATA

[GridGain Team 2007]

HEKATON
[:]'Store SOL server :.4-:3 -’?“: Trinit
[Kallman et al. 2008] [Diaconu etal. 2013] | ¥&& LIS y
[Shao et al. 2013] s distributed stream
{ ,‘ computing platform
ORACLE’ I [Neumeyer et al. 2010]
TIMESTEN) lAverV 2011]

IN-MEMORY DATABASE [Tu et al. 2013]
[Lahiri et al .2013]

GraphLab

[Low et al. 2012]

[gnr;ta 2013] v‘ﬁﬁ

or
[BackType and Twitter 2011]

s’ A :I
[Plattner 2009]

$ Oﬁ'(\Z Streaming

[Zaharla etal. 2013)

nuo
memsql (srynko 2012]
[WhiteDB Team 2013]

Mammoth)JPhoenix M3R

[Shi et al. 2014) [Yoo et al. 2009] [Shinnar et al. 2012]

ory MapReduce)

Spc:rl‘tZ

[Zaharia et al. 2012)

Piccolo

[Power and Li 2010]
Generic Data Processing Engine

FaRM

[Dragojevi¢ et al. 2014]

AMCloud

[Ousterhout et al. 2010]

[Fitzpatrick and Vorobey 2003]

MemC3 MICA .mongoDB

[Fan et al. 2013] [Lim et al. 2014] [MongoDB Inc. 2009] [Sanfilippo and Noordhuis 2009]
Memory-based Big Data Storage System

Outline

» In-Memory Computing

» New Funding by MOST
= HPC Initiatives (2016-2020)
» Big Data Initiatives (2016-2020)

_é:ECL

HPC Initiatives (2016-2020) (2)

* Two 100PFlops Supercomputer

— One is located Wuxi, another is located in
Guangzhou

» E-scale architecture
* E-scale processors

* High-speed network
« HPC software stack

« Co-design: Aircraft design and Weather
forecasting

« Some typical applications 2

Big Data Initiatives (2016-2020) &3

T

* Big data infrastructure
— New storage system
— Data flow based data analyzed stack
— Domain specific data management system
» Data-driven software
« Data analyze applications and Human-like
intelligence

— From data to knowledge
— Large scale objects recognition

26

Thanks!

_é:-‘JCL

