# Mission: Extreme Scale Science

### **Next Generation of Scientific Innovation**

- DOE's mission is to push the frontiers of science and technology to:
  - Enable scientific discovery
  - Provide state-of-the-art scientific tools
  - Plan, implement, and operate user facilities
- Causing a data explosion a natural component of exascale computing
  - Experimental facilities face exponentially burgeoning data caused by technology advances
- Extreme Scale Computing, however, cannot be achieved by a "business-as-usual" evolutionary approach



 Extreme Scale Computing will require major novel advances in computing technology – Exascale Computing

**Exascale Computing Will Underpin Future Scientific Innovations** 



# Mission: Extreme Scale Science Data Explosion



### **Genomics**

Data Volume increases to 10 PB in FY21



High Energy Physics (Large Hadron Collider)

15 PB of data/year



# **Light Sources**

Approximately 300 TB/day



### **Climate**

Data expected to be 100 EB

### **Driven by exponential technology advances**

#### **Data sources**

- Scientific Instruments
- Scientific Computing Facilities
- Simulation Results
- Observational data

## **Big Data and Big Compute**

- Analyzing Big Data requires processing (e.g., search, transform, analyze, ...)
- Extreme scale computing will enable timely and more complex processing of increasingly large Big Data sets

1 EB =  $10^{18}$  bytes of storage 1 PB =  $10^{15}$  bytes of storage 1 TB =  $10^{12}$  bytes of storage

"Very few large scale applications of practical importance are NOT data intensive." – Alok Choudhary, IESP, Kobe, Japan, April 2012



# **Exascale Challenges and Issues**

# Four primary challenges must be overcome

- Parallelism / concurrency
- Reliability / resiliency
- Energy efficiency
- Memory / Storage

## Productivity issues

- Managing system complexity
- Portability / Generality

# System design issues

- Scalability
- Time to solution
- Efficiency

### Extensive Exascale Studies

US(DOE, DARPA, ... ), Europe, Japan, ...





# **Key Performance Goals** for an exascale computer (ECI)

| Parameter             |                                                  |
|-----------------------|--------------------------------------------------|
| Performance           | Sustained 1 – 10 ExaOPS                          |
| Power                 | 20 MW                                            |
| Cabinets              | 200 - 300                                        |
| System Memory         | 128 PB – 256 PB                                  |
| Reliability           | Consistent with current platforms                |
| Productivity          | Better than or consistent with current platforms |
| Scalable benchmarks   | Target speedup over "current" systems<br>TBD     |
| Throughput benchmarks | Target speedup over "current" systems<br>TBD     |

ExaOPS =  $10^{18}$  Operations / sec



# **Exascale Target System Characteristics**

- 20 pJ per average operation
- Billion-way concurrency (current systems have Million-way)
- Ecosystem to support new application development and collaborative work, enable transparent portability, accommodate legacy applications
- High reliability and resilience through self-diagnostics and self-healing
- Programming environments (high-level languages, tools, ...) to increase scientific productivity



#### FY2011:

**Computer Science:** Execution Models

Computational Partnerships: 3 Exascale Co-Design Centers Funded

**Networking:** Terabit Networking for Extreme-Scale Science **Request for Information:** Critical and Platform Technologies

#### FY2012:

Computer Science: Programming Environments (X-Stack), Performance Modeling (BMS), HWArch, e.g. CAL

**Applied Math:** Resilient Extreme-Scale Solvers (RX-Solvers) **Networking:** Scientific Collaborations at Extreme-Scale

FastForward: Critical / Cross Cutting technologies (joint with NNSA)

#### FY2013:

**Exascale Strategy Plan to Congress** 

**Computer Science:** Operating System / Runtime (OS/R)

**Applied Math:** Uncertainty Quantification

**DesignForward**: Critical / Cross Cutting technologies (joint with NNSA) **FastForward**: Critical/Cross Cutting technologies (joint with NNSA)

#### FY2014:

**CORAL:** The joint Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) **Computer Science:** Scientific Data Management, Analysis and Visualization at Extreme Scale

**Computer Science:** Software Productivity

**Exploratory Research for Extreme-Scale Science (EXPRESS)** 

**Networking:** Analytical Modeling for Extreme-Scale Computing Environments

**FastForward 2:** Critical/Cross Cutting technologies (joint with NNSA) **DesignForward 2:** Critical/Cross Cutting technologies (joint with NNSA)

#### **FY2015:**

Preliminary Conceptual Design for an Exascale Computing Initiative: Developed jointly with NNSA

**Computer Science:** Resilience for Extreme-Scale Supercomputing Systems





# Schedule Baseline





# Current partnerships with vendors Fast and Design Forward Programs

# **Fast Forward Program – node technologies**

- Jointly funded by SC & NNSA
- **Phase 1:** Two year contracts, started July 1, 2012, **Phase 2:** Two year contracts, starting Fall 2014: IBM, Cray, AMD, NVIDIA, Intel (\$64M / \$100M)

## **Project Goals & Objectives**

- Initiate partnerships with multiple companies to accelerate the R&D of critical node technologies and designs needed for extreme-scale computing.
- Fund technologies targeted for productization in the 5–10 year timeframe.

# **Design Forward Program** – *system technologies*

- Jointly funded by SC & NNSA
- Phase 1: Two year contracts, started Fall 2013, Phase 2: Two year contracts. Starting Winter 2015: Cray, AMD, IBM, Intel (\$23M / \$10M)

## **Project Goals & Objectives**

- Initiate partnerships with multiple companies to accelerate the R&D of interconnect architectures and conceptual designs for future extreme-scale computers.
- Fund technologies targeted for productization in the 5–10 year timeframe.



# Summary

- High-performance computing (HPC) and large-scale data analysis will advance national competitiveness in a wide array of strategic sectors, including basic science, national security, energy technology, and economic prosperity.
- The U.S. semiconductor and HPC industries have the ability to develop the necessary technologies for an exascale computing capability early in the next decade.
- An integrated approach to the development of hardware, software, and applications is required for the development of exascale computers.
- ECl's goal is to deploy, by FY-2023, two capable exascale computing systems.



# **BACK-UP**

