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“Data intensive” vs “Data Driven”

Depends on the C(I)qﬁzrqhons are driven and defined by
perspective BIG analytics
P Top-down query (well-defined operations)
rocle.sso.r, memaory, 0 Boﬁﬁ;n up discovery (unpredictable time-to-
application, storages resu
. ., BIG data processing
An CIppIICCITlon can be Predictive modeling
data intensive without Usage model further differentiates these
. . Single App, users
gneces.solrlly) belng I/O Large number, sharing, historical /temporal
Infensive

Very few large-scale applications of practical importance are NOT Data Intensive



- Data Mining, Analytics and Actionable Insights?

Time to Compute = Time to Insights




A Poem

s
The Unknown

As we know,
There are known knowns.
There are things we know we know.

Conventional Wisdom * High Humidity results in outbreak of Meningitis
 Customers switch carriers when contract is over

* Nuclear Reaction happens under these conditions
Validate Hypothesis * Did combustion occur at the expected parameter values
* | think this location contains a black hole
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The Unknown

[ We also know I

There are known unknowns.
That is to say
We know there are some things
We do not know.

* Will this hurricane strike the Atlantic coast?

* What is the likelihood of this patient to develop
cancer

Top-Down Discovery - We

know the question to ask

* Will this customer buy a new smart phone?
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The Unknown

But there are also unknown unknowns,
The ones we don't know
We don't know.

* Wow! | found a new galaxy?

Bottom up Discovery - We « Switch C fails when switch A fails followed by switch
don’t know the question to B failing
ask * On Thursday people buy beer and diaper together.
* The ratio K/P > X is an indicator of onset of
diabetes.

© Alok Choudhary  Northwestern University



Who Knew?

The Unknown
As we know,

There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

But there are also unknown unknowns,
The ones we don't know
We don't know.

—Feb. 12, 2002, Department of Defense news briefing by
Donald Rumsfeld

Northwestern University



Knowledge Discovery Life-Cycle: Transactional to
Relationships — Current to Historical

Instruments, sensors

supercomputers

Trigger/
questions



From multi-dimensional data analytics to
relationship mining
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Edge weights: significant correlations
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Multivariate Networks

Multiphase Networks
CMIP3 = CMIP5 => Climate BIG DATA : 10s of TBs to 10s of PBs



A different way of thinking: Extreme Computing
+ Big data analytics => Accelerating Discovery

MATERIAL SCIENCE: A
“DATA DRIVEN

DISCOVERY” WORTH
A THOUSAND
SIMULATIONS? o



Discovery of stable compounds
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Ranking — Approximation is good enough
for ranking © (closing the loop)

True positive rate (sensitivity)

o
o
|

o
o
|

o
~
1

o
AV
|

DM: bin.
+4k tern. ¢
P S
¥
&, 7
-' .I’I
r )
4
’
I,’
,/'random
/. guessing
0.2 0.4 0.6 0.8 1

False positive rate (1 - specificity)

1 indicates a model prediction
associated with a known stable
ternary compound that had was
absent from DFT thermodynamic
database; the prediction

is thus confirmed, but no crystal

structure search was necessary.



Structure-Property Optimization - Try
optimization for 103 dimensions

Microstructure
Representation
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Accelerating Time to Insights
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Extreme Computing + Big data : Not a
single dimensional challenge




An instrument and a discovery engine

Millions of cores

Each core is like a sensor

Each core generates data based on a model




BDEC: Can we do this type of analytics in-

* DBSCAN 10

Scalable DBSCAN+
Identifying arbitrary shaped structures using
astrophysics data (
8,000 -
J Climate, Astronomy, Biology, Earth science .
J Advanced data structure to break the inherent n6'°°° 1
sequential data access order of DBSCAN 2 4000 -
] Scalable DBSCAN identifies the clusters without &
sacrificing the quality of the solution 2,000 1
) Strong scaling on astrophysics datasets 0 & : : : :

0 2,000 4,000 6,000 8,000
Cores



Right Computing infrastructure? What characteristics do
typical analytics functions have?

Benchmark of Applications
Parameter! SPECINT SPECFP MediaBench TPC-H MinsBsneh
Data References 0.81 0.55 0.56 0.48 1.10
Bus Accesses 0.030 0.034 0.002 0.010 0.037
Instruction Decodes 117 1.02 1.28 1.08 0.7
Resource Related Stalls 0.66 1.04 0.14 0.69 D43
CPI 143 1.66 1.16 1.36 1.34
ALU Instructions 0.25 0.29 0.27 0.30 0.31
L1 Misses 0.023 0.008 0.010 0.029 0.918
L2 Misses 0.003 0.003 0.0004 0.002 0.006
Branches 0.13 0.03 0.16 0.1 v.4
Branch Mispredictions 0.009 0.0008 0.016 0.0006 0.00%

T The numbers shown here for the parameters are values per instruction



Data Analytics/Mining applications: Do
they have different characteristics?
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Clear Implications on architecture, modes, memory hierarchy and other components
|dentify similarities and design for co-existence



Develop scalable versions — Pay attention to | /O :
Particularly reads

- @ Parallel hierarchical clustering
— Speedup of 18,000 on 16k processors
— I/O significant at large scale
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Good News: Approximation is a TOP Option in
analytics => Power aware data analytics

Power-aware analytics  Energy Consumption | Speedup Correlation
@ Reduced bit fixed-point

Correlations :
representations
@ Pearson correlation I I I I . 5
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Extreme Computing + Big Data Analytics =

BDEC Knowledge Discovery Engine
| 24|

“““Extreme-Scale Computing «i#=Big Data Analytics “#*BDEC Knowledge Discovery Engine
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