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What if a Resilience and Checkpointing Solution Provided

- Improved Resilience via more frequent relevant
checkpoints, while

« Reducing the amount of data to be stored by an order
of magnitude, and

- Guaranteeing user-specified tolerable maximum error
rate for each data point, and

« an order of magnitude smaller mean error for each
data set, anad

* reduced |/O time by an order of magnitude, and

 Enabling faster restart and faster convergence after
restart, while

* Providing data for effective analysis and visualization




Simulation Represents a State
Transition Model -

What if we analyze the Change in
Value?

Observations:

e Variable Values — distribution

* Change in Variable Value — distribution

* Relative Change in Variable Value - AD; j =
distribution Di—lfj

 Al(t) =100, A1(t+1) = 110 => change = 10, rel change = 10%
« A2(t)= 5, A2(t+1) = 5.5 => change = .5, rel change = 10%

1. Relative change is more predictable. 2. The relative changes in variable values can be

learned (ML) and represented in a much smaller state space (compressions). 3. Anomalies
are preserved.
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“Incompressible” with Lossy Encoding
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* Forward coding
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Different Tolerable Error Rates: Incompressible Ratio (0.1% - 0.5%)

0.02%
0.02%
0.02%
0.01%
0.01%
0.01%
0.01%
0.01%
0.00%
0.00%
0.00%

60

~#~Kmeans-0.3 —>~Kmeans-0.4

>

=#=Kmeans-0.1 =#-Kmeans-0.2

—#=Kmeans-0.5

50

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1rr1rr1i

1357 911131517192123252729313335373941434547495153555759
[ ]

~4-dens “®-pres “ener ““eint ““temp

Mean Error Rate

— T T T T T T T T T T T T T 1 1 7 T T 7 71

1234567 89101112131415161718192021222324252627282930313233
FLASH dataset, 0.1% error rate
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