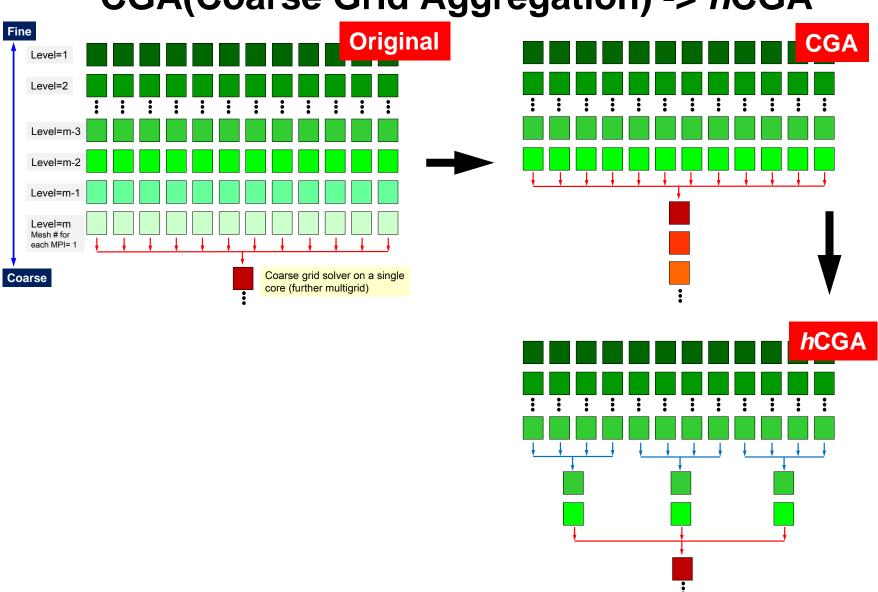

Parallel MGCG Solvers for PDE's with Sparse Matrices

- Multigrid
 - Scalable, one of the choices for post-peta/exascale HPC
 - HPCG
- Serial Communications
 - Data Transfer through Memory Hierarchy: Sparse Matrices
- Parallel Communications
 - Message Passing through Network
- Fujitsu FX10 (Oakleaf-FX)
 - up to 4,096 nodes (~1PF)
 - Weak/Strong Scaling
 - Hybrid/Flat-MPI

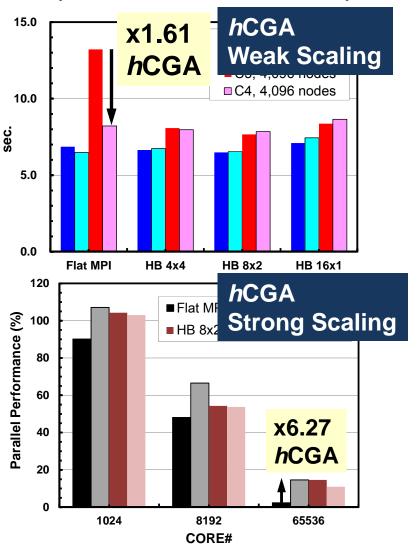
Optimization of Serial Comm. ELL (Ellpack-Itpack), Sliced-ELL for Matrix Storage



Separate arrays are introduced

Pure Internal Cells
AUmew3 (3, N)

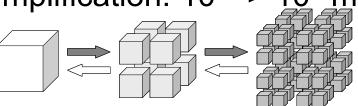
- A lot of X-ELL-Y-Z's!
 - focusing on SpMV
- SELL-C-σ
 - M. Kreutzer et al
- Recently, X-ELL-Y-Z's are applied to forward/backward substitutions with data dependency
 - HPCG: SC14 BoF
 - Gauss-Seidel: Easy
- ILU
 - Much more difficult than GS


Optimization of Parallel Comm. CGA(Coarse Grid Aggregation) -> hCGA

GW Flow Simulation with up to 4,096 nodes on Fujitsu FX10 (GMG-CG)

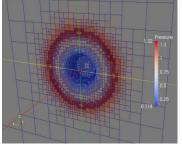
up to 17,179,869,184 meshes (64³ meshes/core)

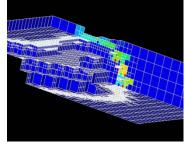
Summary


- CRS-> Sliced ELL + CGA: x1.90
- CGA->hCGA is good for Flat-MPI
 - x1.61 for weak scaling, x6.27 for strong scaling at 4,096 nodes of Fujitsu FX10
 - Performance of coarse grid solver has been much improved
 - hCGA will be effective for HB 16x1 with more than
 2.50x10⁵ nodes (= 4.00x10⁶ cores) of FX10 (=60 PFLOPS)
 - Computational amount of coarse grid solver for each core of *flat MPI* is 256 (=16×16) times as large as that of HB 16×1.
 - Therefore, hCGA is expected to be really effective for HB 16×1 with more than 2.50×10⁵ nodes (4.00×10⁶ cores) of Fujitsu FX10, where the peak performance is more than 60 PFLOPS.
 - Comp. time of coarse grid solver is significant for Flat MPI with >10³ nodes

HPC+BDA

Co-Development & Sharing Common Libraries


- Automatic Tuning using Machine Learning
 - Multigrid: So many parameters: performance, convergence
 - Xeon Phi: Combinatorial explosion for selection of optimum prefetching distance
 - Already some examples AT research with machine learning


- Visualization
 - Simplified Parallel Visualization using Background Voxel developed in ppOpen-HPC
 - http://ppopenhpc.cc.u-tokyo.ac.jp/
 - Octree-based AMR
 - Feature Detection &
 Simplification: 10⁹ -> 10⁴ meshes

Compiler Options for MIC

	AC-2		BC-2	
	sec.	GFLOPS	sec.	GFLOPS
-O3 -openmp -mmic -align array64byte (base)	2.654	10.53	2.603	10.74
-opt-streaming-stores always	3.165	8.832	3.159	8.849
-opt-streaming-cache-evict=0	2.625	10.65	2.600	10.75
-opt-streaming-cache-evict=1	2.639	10.59	2.605	10.73
-opt-streaming-stores always -opt-streaming-cache-evict=0	2.486	11.24	2.539	11.01
-opt-streaming-stores always -opt-streaming-cache-evict=1	2.477	11.29	2.556	10.94
-opt-streaming-stores always -opt-streaming-cache-evict=0 -opt-prefetch-distance=a,b	2.385 (2,0)	11.72	2.477 (8,1)	11.29
-opt-streaming-stores always -opt-streaming-cache-evict=1 -opt-prefetch-distance=c,d	2.404 (2,0)	11.63	2.487 (16,1)	11.24

