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Other forces matter Higgs

Quantum mechanics spacetime gravity

http://www.preposterousuniverse.com
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Technical application complexity is rising

… along with multiple optimization axes

C, Fortran, 

C++, MPI, 

OpenMP

Python, Ruby, R

Cloud/Web 

Services

Technical and mainstream software 
development have diverged
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The talent in data analytics have shifted from science to 
companies.  We can’t compete.

Astronomy researcher

Vectors
(1980s)

Mainframes MPPs
(1990s)

Clusters & Grids
(2000s)

Clouds, Big Data
and Devices
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Mostly similar technology issues With substantial differences
• SAN/local storage models

• Virtualization and scheduling strategies

• Software development tools

• Culture and expectations
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Programming efficiency

Network optimization

Supply chain optimization

Generic server design

Energy optimization

Systemic resilience
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Requested 200 nodes and 2 PB for four years?

Logged onto a node and killed processes just to see what would happen?

Wished you could load containers rather than just applications?

Found your code performance limited by the I/O bandwidth of a Raspberry Pi?

Thought SAN was just a typo in a message meant for Sam?

Asked your system for recommendations?

Wondered why R came after S and C doesn’t matter?
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Map-Reduce Storm
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Mahout, R and Applications

Domain-specific Libraries
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SAN vs. node-local temporary data

Software-defined networks (SDNs)

Content distribution networks (CDNs)
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User allocations

Software models

Job scheduling
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Chaos Monkey

Latency Monkey

Janitor Monkey

Conformity Monkey

Doctor Monkey

Security Monkey
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Virtual machines (VMs)

Containers

Implications
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UnstructuredSemi-structured

Next-generation architecture

(mostly open source and cloud based)
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Known questions, the traditional approach

Unknown questions, the big data approach

What information consumes is rather obvious: it consumes the attention of its 

recipients. Hence a wealth of information creates a poverty of attention, and a 

need to allocate that attention efficiently among the overabundance of 

information sources that might consume it.

Herbert Simon 
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Item hierarchy (Amazon)

Attributes (Pandora)

Item similarity (Netflix)

User similarity (Walmart)

Social network (Linkedin)

Model based (HPC challenges and needs)
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Clustering (grouping similar items)

Hidden Markov models (HMMs)

Blind signal separation/feature extraction for dimensionality reduction

Artificial neural networks (ANNs)
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Materials

Astronomy

Sensing

Network 

science

IoT

Bioscience

Environment

Social 

media

Scheduling

Monitoring & 

adaptation
VMs, containers & 

stacks
Storage & file 

systems Parallel algorithms

Libraries & tools

DSLs

Multicore/GPUs Networks & QoS

Data Analytics

Ecosystem

HPC

Ecosystem
Spark

Mahout/MLlib

R  Python

Storm

PIG

HBase

Zookeeper

MPI

LustreSLURM

OpenMP

PAPI

OpenCL

Graphs StreamingDeep 

learning

Core machine 

learning
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Discussion


