

European Exascale Software Initiative

April 12, 2010

Oxford, UK

Jean-Yves Berthou

Context in Europe

HPC Eur - European High Performance Computing Initiative, "The Scientific Case for a European Super Computing Infrastructure", Petascale Computing in Europe - input for the ESFRI Roadmap process, spring 2006

DEISA, Distributed European Infrastructure for Supercomputing Applications

PRACE, Partnership for Advanced Computing in Europe (**PRACE**)

Context in Europe

EU-Grant: INFSO-RI-211528, 10 Mio.

Foreseen: PRACE Tier-0 centres providing HPC-capability service in a legal entity

Context in Europe

PRACE – A Partnership with a Vision

- Provide world-class HPC systems for word-class science
- Support Europe in attaining global leadership in public and private research and development

... and a Mission

- Create a world-leading persistent high-end HPC infrastructure managed as a single legal entity
 - Deploy 3 6 systems of the highest performance level (Tier-0)
 - IBM BlueGene/P in Jülich will be the first European Tier-0 system
 - Ensure a diversity of architectures to meet the needs of European user communities
 - Provide support and training

Performance Development in Top500

www.exascale.org

IESP Booth/SC'09, J. Dongarra

Average Number of Cores Per Supercomputer Top20 of the Top500

6

IESP Booth/SC'09, J. Dongarra

Factors that Necessitate Redesign

- - Steepness of the ascent from terascale to petascale to exascale
 - Extreme parallelism and hybrid design
 - Preparing for million/billion way parallelism
 - □ Tightening memory/bandwidth bottleneck
 - Limits on power/clock speed implication on multicore
 - Reducing communication will become much more intense
 - Memory per core changes, byte-to-flop ratio will change
 - Necessary Fault Tolerance
 - MTTF will drop
 - Checkpoint/restart has limitations

Software infrastructure does not exist today

Exascale Computing

- Exascale systems are likely feasible by 2017±2
- 10-100 Million processing elements (cores or cores) with chips perhaps as dense as socket, clock rates will grow more slowly
- 3D packaging likely
- Large-scale optics based interconnects
- 10-100 PB of aggregate memory
- Hardware and software based fault management
- Heterogeneous cores
- □ Performance per watt stretch goal 100 GF/watt of sustained performance ⇒ >> 10 - 100 MW Exascale system
- Power, area and capital costs will be significantly higher than for today's fastest systems

Google: exascale computing study

A Call to Action

9

- Hardware has changed dramatically while software ecosystem has remained stagnant
- Previous approaches have not looked at co-design of multiple levels in the system software stack (OS, runtime, compiler, libraries, application frameworks)
- Need to exploit new hardware trends (e.g., manycore, heterogeneity) that cannot be handled by existing software stack, memory per socket trends
- Emerging software technologies exist, but have not been fully integrated with system software, e.g., UPC, Cilk, CUDA, HPCS
- Community codes unprepared for sea change in architectures
- No global evaluation of key missing components

www.exascale.ora

International Community Effort

- We believe this needs to be an international collaboration for various reasons including:
 - The scale of investment
 - The need for international input on requirements
 - US, Europeans, Asians, and others are working on their own software that should be part of a larger vision for HPC.
 - No global evaluation of key missing components
 - Hardware features are uncoordinated with software development

www.exascale.org

IESP Goal

Improve the world's simulation and modeling capability by improving the coordination and development of the HPC software environment

Workshops:

Build an international plan for developing the next generation open source software for scientific high-performance computing

www.exascale.org

Where We Are Today:

SC08 (Austin TX) meeting to generate interest Nov 2008 Funding from DOE's Office of Science & NSF Office of Cyberinfratructure and sponsorship by Europeans and **Asians** Apr 2009 US meeting (Santa Fe, NM) April 6-8, 2009 □ 65 people NSF's Office of Cyberinfrastructure funding Jun 2009 European meeting (Paris, France) June 28-29, 2009 □ 70 people □ Outline Report Asian meeting (Tsukuba Japan) October 18-20, 2009 □ Draft roadmap Oct 2009 □ Refine Report SC09 (Portland OR) BOF to inform others Nov 2009 Public Comment Draft Report presented www.exascale.ora

Motivations for launching EESI

Coordinate the European contribution to IESP

Enlarge the European community involved in the software roadmapping activity

Build and consolidate a **vision and roadmap** at the European Level, including applications, both from academia and industry

EESI main Goals

Build a **European vision and roadmap** to address the **challenge of performing scientific computing** on the new generation of computers which will provide multi-Petaflop performances in 2010 and Exaflop performances in 2020.

- •Investigate how Europe is located, its strengths and weaknesses, in the overall international HPC landscape and competition
- Identify priority actions
- Identify the sources of competitiveness for Europe induced by the development of Peta/Exascale solutions and usages
- investigate and propose programs in education and training for the next generation of computational scientists
- Identify and stimulate opportunities of worldwide collaborations

EESI main tasks

Coordination of the European participation in IESP

Make a thorough assessment of needs, issues and strategies Develop a coordinated software roadmap

Provide a framework for organizing the software research community Engage and coordinate vendor community in crosscutting efforts Encourage and facilitate collaboration in education and training

Cartography of existing HPC projects and initiatives in Europe, US and ASIA

Coordination of "disciplinary working groups" at the European level

- Four groups "Application Grand Challenges"
- •Four groups "Enabling technologies for Petaflop/Exaflop computing"

Synthesis, dissemination and **recommendation** to the European Commission

EESI expected outputs

A **roadmap** and **set of recommendations** to the funding agencies shared by the European HPC community, on software - tools, methods and applications - to be developed for this new generation of supercomputers.

June 1, 2010 October 2010

June 2011

December 2011

Numerical, libraries, solvers and algorithms Chair: Iain Duff/STFC-Rutherford Appleton Laboratory Vice-Chair: Andreas Grothey/ Edinburgh University

T0 T0+5

5 months

8 months

T0+12 T0+13 T0+16 T0+17 T0+18 1 month 1 month 1 month

June 1, 2010 October 2010

June 2011

December 2011

TO

Link with US and ASIA

TOKYO TECH

Joint IESP/EESI workshops: present EESI Working Groups outputs, include inputs from US and ASIA, identification of US, ASIA and European cross actions

EESI Partners In Europe

EESI Partners around the world

