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CERF Code Areas and Leads

Core Transport:

GYRO/NEO, J. Candy, E. Belli, A. Collier (GA)
Collisional Edge Plasma:

BOUT++, M. Umansky, R. Cohen, X. Xu (LLNL)
MHD:

M3D-C1, S. Jardin, J. Chen (PPPL);

NIMROD, C. Sovinec (Wisconsin), S. Kruger (Tech-X)
Explicit PIC Modeling:

GTS, W. Wang, S. Ethier (PPPL);

VORPAL, P. Messmer, D. Smithe (Tech-X)
Code Integration Framework:

FACETS, J. Cary, S. Kruger (Tech-X)



ITER, currently under construction

in the South of France, aims to
demonstrate that fusion is an energy
source of the future
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® Top-to-bottom exascale computer
design is essential for efficient design/
operation of large-scale experiments

— Typical ITER discharge can be
estimated at 1MS




Z(cm)

The magnetic fusion codes are challenged by the
large range of temporal and spatial scales
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What makes this effort unique:
CERF vision for an integrated exascale simulation

Gyrokinetic Core
Turbulence and
global stability

Fluid Edge

Core Solvers: 100 surfaces
Turbulence

-> 100000 PEs
MHD Stability: 100 modes

Particle, Energy, (N

& momentum Neutral Beam Sources

Sources (N

RF Sources 1000 PEs
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Categories of CERF Applications

Group 1: Discretized fluid equations requiring implicit solutions:
BOUT++, M3D-C1, NIMROD

* incorporates global linear and nonlinear solvers to handle both advection
and diffusion, including issues of global communication and sparse matrix
operations

* Different grid layouts and parallelization strategies

Group 2: Particle-in-cell (PIC) approaches: GTS, VORPAL

» gather/scatter issue of data misalignment, as the particles close in
memory have to communicate with fields at disparate locations

Group 3: Discretized kinetic equations with implicit/explicit
solvers: GYRO, NEO

* high-dimensional continuum discretizations combined with regular
spatial discretizations, for yet another kind of data layout, a mix of
communication patterns, and a rich space of strategies



The GLUE: FACETS — Highly scalable coupling framework

for Plasma Simulations | = .
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BGP runs of FACETS-driven-Gyro scales on 32K cores

Hot central plasma: nearly completely ionized,
magnetic lines lie on flux surfaces, 3D turbulence
embedded in 1D transport

Cooler edge plasma: atomic physics important,
magnetic lines terminate on material surfaces, 3D
turbulence embedded in 2D transport

Material walls, embedded hydrogenic species,
12 1d 16 1 7.0 recycling




CERF methodology includes building skeleton and
compact apps, math input, testing, build and vendors
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CERF Co-design process will be integrated with
exascale associations and vendors

» Several high-level elements of the CERF co-design process are
understood

— CERF will develop several co-design vehicles (CDVs)
* Kernels to investigate node-level behavior
e Skeletons to investigate large-scale behavior
* Compact apps to provide a simplification of the full application
— Simulation will be used to predict performance
* Hardware-based simulation for rapid turnaround of node designs

e SST/macro: Coarse-grained network simulation to study large-
scale behavior

* Vendor simulators: will be used subject to IP issues and availability

— ROSE-based tools aid with automatic generation of skeletons from
application code.



Co-design process is inherently iterative

* Develop realistic CDVs in collaboration with plasma physicists

* Vendors and CERF CS team analyze CDVs using simulation,
prototypes, proxy hardware, etc.

* Programming models explored using the CDVs

* Simulate coupled-physics app using FACETS CDV to link other
CDVs

* Vendors and CERF team examine the options for hardware and
software alterations

* |[terate



What the Fusion Codes need for Exascale

* Whole application coupling using FACETS (or other) enabled by OS
 Math Research
— Variety of TOPS scalable libraries (e.g., PETSc, SUNDIALS, SuperLU)
— Linear solvers, nonlinear solvers, time integration
— Communication-avoiding and latency-tolerant algorithms

* Programming Model Research — see examples of OpenMP tasking
and mixed CAF/MPI/OpenMP code

e Enabling tools (e.g. ROSE for skeleton extraction and possible
automatic hybridization)

* Architecture Research
— HW simulators for exascale designs
* Tools that work with our mixed programming model codes
* UQ Analysis especially in connection with experimental data

» Data management and |I/O support for full simulations and
visualization



Preliminary results with DOE Co-design Center
Planning Grant, ARRA, and existing SciDAC funding

e Performance analysis, bottleneck identification
— Profiling of all component codes
— Starting work on codes coupled with FACETS
— Experimentation with different tools
* Programming Models
— PGAS hybrid models on 130K cores
— Advanced OpenMP (tasking model)
— CUDA
e Data Analysis
* Algorithms—scalable replacements for existing solvers

* Auto-tuning
OUR Motto: Just do it ...
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Sample Performance results for each of the three major

code groups using IPM, CrayPAT
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0.5

g
o
v
@
Q
S
=
G
: == Performance (ideal)
Odp e—e Performance (experiment)||
‘ o—e %Communication
L L L L L
00 512 1024 2048 4096 8192

Number of cores

GTS performance on franklin.nersc.gov

Gflops/core

o= Performance (ideal)
| e Performance (experiment)|
%Communication

i \ I l I I | l
128 256 512 1024 2048 4096 819216384
Number of cores

115

GROUP 3

Gflops/core

Compute Power (number of particles/sec/step)

0.8

o
o

0.0

GROUP 2
TGYRO performance on franklin.nersc.gov
135

[ N N N 130
L U i1 25

— ', |20
o """"""" T A s

; (== Performance (ideal)  |{10

- e—e Performance (experiment)||

: o—eo %Communication

16 64 256 1024 4096 16384 °

Number of cores

GTS on Jaguarpf
Weak scaling
F MPI+OpenMP
[ 6 OpenMP threads
[ per MPI process

384 768 1536

Needs: More standardization of tools, continued tools for

scale, wider variety of programming language support

3072 6144 12288 24576 49152 98304 196608

Number of cores

Postdoctoral Researcher: P. Narayanan



Performance monitoring of CERF codes

* Need performance monitoring tools to support
advanced programming models in CERF codes

— MPI+OpenMP+PGAS

— MPI generally well supported, OpenMP and PGAS
need work
— PGAS challenging because of one-sided ‘ W PGAS
communication model W GTS_
MPI

* Approach:

— Build code and instrument it to monitor function
groups of interest (MPI, CAF, OpenMP)

— Run instrumented binary and process results
— Identify potential bottlenecks and optimize code

e Qutput for sample CAF+MPI code
— Code spends 80 % of time in CAF, 5 % in MPI

— Breakup by walltime for individual functions in CAF
and MPI available
* Eg.Pgas_put_strided forms largest PGAS chunk PGAS pgas_aadd
* Moniter at high concurrency to catch scaling bottlenecks ‘

M pgas_put_strided

i pgas_barrier_wait

M pgas_aor

others



Advanced Programming Model Studies using Co-Array Fortran

(CAF) in the GTS code

Extend the existing hybrid

MPI/OpenMP communication
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Newer versions of OpenMP include hybrid tasking
model used to speed up the GTS particle code

MPI_Init MPI _Init
MPI process MPI process MPI process MPI process MPI process MPI process
Start l l l Start l l l
treadss OpenMP- e Comp: threadss 3 ) OpenMP- 1 ‘l\ Comp:
parallel do *— utation | Tasking i P— utation
Merge__, ! I i
threads I i ! Merge__, ¥—¥_Y¥ A 4 i Y — Y
1 | | “—Prc "
v v v MPI comm threads
unication MPl comm=
/' unication

MPI_Finalize

MPI _Finalize

Successfully overlapped MPI

communication in the GTS m | WTasking
particle shifter routine - m B Original
(4 OpenMP threads per MPI E 100

process in a 2048 MPI process 50

run on Franklin Cray XT4) 0

Shifter
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Preliminary Experiments with CUDA on GPUs for
Vorpal PIC Code are promising

Embedded-boundary, explicit electromagnetics computations using
Vorpal 5-8x faster on 1 GPU compared with 8-CPU-core node. GPU
power only 1.5x higher.
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Data management issues towards exascale: Efficient

Searching Algorithms

Using FastBit compressed data structures and an application specific

coordinate system to significantly reduce the feature identification time

high magnetic potential

* We break the task into two steps: (1)
use FastBit index to find all points of
interest; (2) assign a unique label to
all connected points

* Working with groups of points (arcs)
instead of individual points reduces
execution time by 8X on average

* Using the magnetic coordinate
system to connect the points further
reduces the execution time

identify features such as regions with
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Contact: John Wu, LBNL (kwu@1Ibl.gov)



Example of how SST/macro can be used to understand
performance of a CERF Skeleton Application
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Algorithm Improvement being explored as needed —
Here: 2D example for a developing CERF app

M3D-C1 matrix211

T T

60

Bl superLU |

8 32 128 512
Core count

Improvement of the new domain decomposition hybrid solver over direct solver SuperLU for a
M3D-C1 linear system. This result is for a 2D case — 800K dimension (since M3D-C1 is being
developed), but the solver has been shown to scale on systems of dimension of ~ 60M.
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Auto tuning experiments yield 4X potential
speed-up In a particle code

Performance evaluated on CPU’s and GPU'’s

Defined and explored a large optimization space including threading and
floating-point atomics.

Push (optimized)

/)
) O Push(baseline)—
Observed substantial speedups O Charge deposition (optjmized)
O Charge deposition (baseline)

on all machines via optimization
(nearly 4x on Hopper2 proxy) Hopper2
Although speedups on GPU'’s Proxy

were larger, GPU performance
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IP issues with Vendor Interaction

e Concern about IP issues

— Details of vendor architecture are closely guarded secrets
* Its not co-design unless we can have a detailed 2-way conversation
But vendors cannot afford to have information bleed even accidentally through codesign interactions

— Suggestions from Vendors

* Have suggested having entire CoDesign teams bound to one “association”
Subset of team members dedicated to single vendor
* One vendor has suggested there would be no issue if all exascale systems adopt their design

* Open (non-proprietary) simulation capability for target architectures to
support safe multi-vendor interaction for co-design cycle

— Create model that is structurally similar to target, but sufficiently different to not
expose vendor IP

— Provide concrete advice to vendors about impact of hardware changes on
algorithm performance during concept phase of design cycle
* Enables rapid exploration of hardware/software design trade-offs that are cross-platform issues
* Vendor simulators come available later, when we can do fewer changes
* We can shift to vendor-specific optimizations when vendor sims arrive

— Provide air-gap for sensitive vendor IP using proxy model

* CERF also depends on advice from vendors on policy board for
guidance (prior to selection of exascale associations)



