Applications Breakout Group:

“What Apps want from HW and SW”

IESP Workshop
San Francisco, 6-7 April 2011
David Keyes, facilitator

Apps breakout participants

Giovanni Aloisio, CMCC
Jean-Claude Andre, CERFACS
Michael Ashworth, Daresbury
Jean-Yves Berthou, EDF
Arndt Bode, LRZ Munich
Riccardo Brunino, CINECA
Jackie Chen, SNL

Tim Cornwell, CSIRO

Anshu Dubey, U Chicago
Ramon Goni, BSC

Bill Gropp, UIUC

Stefan Heinzel, MPI DEISA

Ryutaro Himemo, RIKEN
David Keyes, KAUST/Columbia
Alice Koniges, LBNL

Paul Mackenzie, Fermi

Paul Messina, ANL

Kengo Nakajima, U Tokyo
Hiroshi Nakashima, Kyoto U
Stefan Requena, GENCI
Andrew Siegel, ANL
Godehard Sutman, Juelich
Bill Tang, PPPL

John Taylor, CSIRO

Apps scope

Dialog with Vendors
required to help
determine breadth

All

Dialog with Applications
required to help
determine breadth

Many

Vendor Software

Tools, Math
Libraries, Analysis,
I/O libraries, etc

0S, Run-time, 1/O Clients, etc

One Application Capabilities

Number of Applications Needing Software

_'_l_l ' J

Exascale System Software Exascale Apps Software

History of Apps Charge

* Oxford, 13-14 April 2010: “Assess the short-term,
medium-term, and long-term software and algorithm
needs of applications for peta/exascale systems”

— http://www.exascale.org/mediawiki/images/8/86/
BlueDots13April2010.pdf

 Maui, 18-19 October 2010 : “What do the apps teams
need from the software and hardware sides?”

— http://www.exascale.org/mediawiki/images/e/ee/
AppsBreakoutMaui.pdf
 We structured our response in both cases in terms of
“Co-Design Vehicles” (candidate apps to be first on the
exascale systems)

We mainly changed the question:

“What have we heard and what
should HW and SW want from us?”

What have we learned so far?

 The hardware picture seems to have “converged” to a
configuration in which (smearing swim lanes)

— we have 100-1000 threads per processor-memory unit

— we lose, in a relative sense, factors of 10-100 in memory per
thread (capital limit) and in memory bandwidth per thread
(operational limit)

— we give up floating point performance reliability, putting codes
that synchronize frequently at risk for scaling

* The software picture has evolved to a set of development
plans that are less revolutionary and more evolutionary,
after all

— combination of weak scaling through MPI, then strong scaling
through threads

* Probably both pictures are ultimately optimistic, but they
provide targets for apps planning today

How does this affect apps outlook?

* The software projects (ESSI, ESC, PP) will provide
a layer above the hardware and a set of open
source examples of how to code effectively for it
in the form of numerical libraries

* Apps will be far more conscious of the
unreliability and unreproducibility of hardware
than ever before

* Performance-seeking apps (namely all exascale
apps) will be substantially rewritten, but much of
the hard work will be done and demonstrated by
SW development experts

How does this affect apps outlook

(cont)?
* Programming model of “MPI+X" (or “MPl®X")
is comforting
— new tools like “blameshifting”, etc. will be very
useful

 We will still have to recode almost all our
algorithms to reduce their synchronization
and increase their locality of data, to avoid an
Amdahl bottleneck in the apps-authored part
of the overall executable

— but we can use a familiar hybrid programming
model in which to implement the new code

What we need to provide is
“exaskeletons”:

& sample implementations of
basic “dynamical cores” (a step
up from the 13 “motifs”)

Skeletons do not have to give
' the right physical answers, but
they should stress the HW and
1 | SW representatively; on the
. \ other hand, they should also be

L *““"" representative with respect to
A issues beyond floating point
performance, like
checkpointing

See co-design centers’ skeleton
™ apps

The 13 algorithmic motifs*

* Dense direct solvers o« Combinatorial logic

* Sparse direct solvers e Graph traversal

* Spectral methods o Graphical models

* N-body methods o Finite state machines

» Structured grids / iterative e Dynamic programming
solvers « Backtrack and branch-and-

* Unstructured grids / iterative bound
solvers

« Monte Carlo (“MapReduce”)

* The Landscape of Parallel Computing Research: The View from Berkeley, UCB/
EECS-2006-183

Example of a SciDAC “petaskeleton”

* PETSc for PFLOTRAN http://ees.lanl.gov/pflotran/
Flow of Control for PDE Solution

User control code — Main Routine

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

PETSc

PC

- Application Function | Jacobian .
User node code — _Initialization _ Evaluation J Evaluation _ Processing

¢ user ® PETSc

Apps issues/responsibilities
(algorithmic)

Synchronization
— Locate all synchronization points

— Separate work between synchronizations into critical path and
non-critical path parts

Locality
— Reduce data motion, both vertically and horizontally

Arithmetic intensity

— Consider high-order methods to swap many small blocks for
fewer big blocks

— Consider recomputation to avoid storage-retrieval bottlenecks
Precision

— Consider how to work with the deltas rather than the whole
guantities

/0

— Implement data triage

Apps issues/responsibilities
(programming models)

* “Domain specific” interfaces for source-to-
source transformations

— Not exactly the right word

— Prefer “data structure/algorithmic specific”
interfaces

— E.g., one for explicit PDEs, one for implicit PDEs,
integral equations, particle methods, kinetic
equations, data mining, etc.

Apps issues/responsibilities
(political/social)

Determine qualitative thresholds of scientific discovery
in performance/capability that are crossed from peta to
exa, for motivation and lobbying for resources

— E.g., no. of particles, full dimensions, high resolution, no. of
energy groups, etc.

Help police false promises, for credibility of the
campaign
— Will entire workflows and multiphysics combinations really
work from the data motion viewpoint?

Critique completeness and relevance of IESP’s apps
inventory for own domain

Provide compact/skeletal apps

What apps needs to provide to SW/
HW (through the exaskeletons?)

 Quantitative ideas about relative rates, sizes,
frequencies, and granularities

* Not just flops and loads/stores, but things like
branching frequency, what sorts of random
accesses

What we want that we didn’t hear
(enough)

Tools for development, not just production
And the ability to turn them off ©

Tools for dynamic processor allocation (e.g., in
multiphysics applications)

Need to get more data-intensive applications into the
application inventory

— Need to hear more about exascale challenges from
observational sciences, biosciences, etc.

— Need to focus more on the entire vertically integrated
process including input/output staging and pre/post-
processing (not just simulation, but UQ, in situ analytics,
etc.)

A development environment that helps us make trade-
off decisions about coding alternatives

For IESP audience interest ...

New reports of interest to |IESP people

Scientific Grand Challenges

CROSSCUTTING TECHNOLOGIES FOR
COMPUTING AT THE EXASCALE

February 2-4, 2010 + Washington, D.C.

T
Bro 5.
Ry V.S, DEPARTMENT OF

NERGY

NG

Sponsared by:
Office of Advanced Scier
Offico of Advanced Simul

Computing Res=arch, Office of Science
n and Computirg, Mational Nuclear Socurty Adminstraton

2011, DOE (Brown, Messina, eds.

National Science Foundation
Advisory Committee for Cyberinfrastructure
Task Force on Software for Science and Engineering

Final Report, March 2011

2011, NSF (Keyes, Taylor, eds.

Meeting of likely interest to IESP
algorithms people

* Brown University ICERM workshop:

* Synchronization-reducing and Communication-
reducing algorithms and programming models
for large-scale simulations

* 9-13 January 2012

* Co-organizers: J. Hesthaven, D. Keyes, M.
Knepley, K. Yelick

