HPC System in NUDT

Prof. Lu Yutong
National university of Defense Technology, China email: ytlu@nudt.edu.cn

Outline

- Background
- Tianhe-1A brief
- Current system software stack
- Exascale computing

National University of Defense Technology

8 Colleges/Schools

- Aerospace and Material Engineering
- Science
- Mechanics Engineering and Automation
- Electronic Science and Engineering
- Information System and Management
- Computer Science
- Photo-Electronic Science and Engineering
- Social Sciences

School of Computer Science

- Scientific Research Directions
 - High Performance Computing
 - Tianhe-1/Tianhe-1A super computer
 - Galaxy high performance computers
 - Mirco-processors
 - CPUs, and DSPs
 - System Software
 - Operating system, compiler, middleware
 - Network and communications
 - Galaxy high-speed interconnect network
 - Galaxy routers

School of Computer Science

- Achievements on High Performance Computing
 - 1983, Galaxy, 100Mflops, the First Supercomputer in China
 - 1992, Galaxy, 1Gflops, the First Gflops supercomputer in China
 - 2000, Galaxy, 1Tflops, the First TFlops supercomputer in China
 - 2009, Tianhe-1, 1.2Pflops, Top5
 - 2010, Tianhe-1A, 4.7Pflops, Top1

TH-1A system

- Hybrid MPP architecture: CPU & GPU
- Custom software stack
- Peak performance 4.7PF, Linpack 2.57PF, No.1 Top500
- Power consumption 4.04MW(635.15MF/W), No.12 Green500

Items	Configuration
Processors	14336 Intel CPUs + 7168 nVIDIA GPUs + 2048FT CPUs
Memory	262TB in total
Interconnect	Proprietary high-speed interconnecting network
Storage	Global shared parallel storage system, 2PB
Cabinets	120 Compute / service Cabinets
	14 Storage Cabinets
	6 Communication Cabinets

From chips to Entire system

Hardware

- 3 kinds of LSI chips
 - CPU: FT-1000(PSoC)
 - High radix router ASIC: NRC
 - Network interface ASIC: NIC
- 15 kinds of PCB boards

- 4 kinds of nodes, 2 sets of networks
- Custom cabinet
- water cooling system

Interconnection network

- Optimized Channel bonding (8 Lane x 10Gbps)
- bi-BW- 160Gbps (2xIB QDR)
- Topology: Hierarchy fat-tree structure
 - First stage: 16 nodes connected by 16-port switching board
 - Second stage: all parts connected to eleven 384-port switches

TH-1A software stack

What's the point

Customization

Optimization

Operating system

- Kylin Linux
- compute node kernel
- Provide virtual running environment
 - Isolated running environments for different users
 - Custom software package installation
- QoS support
- Power aware computing

Glex communicating system

- Proprietary Interconnection based on high radix router
- High bandwidth packet and RDMA communication
 - Zero copy user space RDMA
 - MPI base on GLEX: Bandwidth 6.3GB/s
 - Accelerate collective operation with hardware support in communication interface
- Fault tolerance
 - Rapid error detection in large scale interconnection
 - Rebuild communication links

Resource management system

- Resource management, job scheduler (slurm based)
 - Heterogenous resources management and topologyaware scheduling
- Large scale parallel job launcher (custom)
 - Improve system structure, optimized protocol, network performance, file system performance
 - logN, klogN (whole system HPL launching time less than 2 mins)
- System power management
- Automatic CR supporting
- Accounting Enhance

Global parallel file system

- Object storage architecture (Lustre based)
- Capacity: 2 PB, Scalability: clients>8192, oss>128
- Performance: Collective BW (IOR): >100GB/s
 - Optimized file system protocol over proprietary interconnection network
 - Confliction release for concurrency accessing
 - Fine-grain distributed file lock mechanism
 - Optimized file cache policy
- Reliability enhancement
 - Fault tolerance of network protocol
 - Data objects placement
 - Soft-raid

Compiler system

- C, C++, Fortran, Java
- OpenMP, MPI, OpenMP/MPI
- CUDA, OpenCL
- Heterogeneous programming framework
 - Accelerate the large scale, complex applications,
 - Use the computing power of CPUs and GPUs, hide the GPU programming to users
 - Inter-node homogeneous parallel programming (users)
 - Intra-node heterogeneous parallel computing (experts)

Compiler Optimized

- Accelerating HPL (MPI(custom)+OpenMP+Cuda)
 - Adaptive partition Asynchronous data transfer
 - Software pipeline
 Affinity scheduling
 Zero-copy

Ratio: 54.6%

Programming environment

- Virtual running environments
 - Provide services on demand
- Parallel toolkits
 - Based on Eclipse
 - To integrate all kinds of tools
 - Editor, debugger, profiler
- Work flow support
 - Support QoS negotiate

Applications

- Weather and climate forecasting
- Oil exploration
- Bio-medical research
- High-end equipment development
- New energy research
- Animation design
- New material research
- Engineering design, simulation and analysis
- Remote sensing data processing
- Financial risk analysis
-

Current

- Our principle
 - Practicality and Usability
- HPC system in NUDT
 - Mature technology: correctness and functionality
 - Optimization technique: improve performance, scalability and reliability
 - Long-term accumulation
 - Various architectures
 - Various programming models and frameworks
 - Various applications supporting

Exascale computing

- Key issues of System software
 - Fault tolerance
 - Scalability
 - Power consumption
- Way...
 - Whole stack solution and optimization
 - Theory
 - Technique
- Goal...
 - Implementation of platform independent software system

Thanks