

Co Design breakout session

S. Dosanjh (SNL), S. Requena (GENCI)

IESP Cologne

Need for Co-design

- Basic assertion: Both architectures and algorithms will change dramatically in this decade
- Need a new methodology to enable algorithms
 R&D for supercomputers that don't yet exist, are much different from today and are not well-defined
- Reaching Exascale will require architectures R&D
 - Need to provide feedback on choices, prioritize investments

Co-design Breakout

- Co-design centers
- Can we really influence microprocessors, memory, architectures?
- Codesign methodology
- Co-design and the software stack
- International collaboration

Co-design Centers

- US
 - 3 initial ASCR co-design centers
 - ASC co-design centers being defined
- Europe
 - Intel labs, CERFACS, Juelich simulation labs, HP2C, Cresta
- Japan
 - 3? co-design subject areas being identified
- China
 - Significant focus for the future
- How and when to involve the vendors. Need >5yrs to impact processors, several years to impact system architectures and software.
- Will applications change in a fundamental way? General sense was yes.

Architectures

- Can we really influence microprocessors, memory, architectures? Generally HPC is important..
 - When do key decisions need to be made? Next two years to influence research for 2018 processors.
 - What information would help make these decisions? Kernels (early) to full applications (later). Frequent communications.
 - Cost. Must understand and leverage roadmaps.
 - IP. Ability to do deep dive and develop abstractions.
 - Develop a realistic view with systems/applications (e.g., is 128 PB realistic?)

Co-design Methodology

- Kernel, skeleton, compact and full applications
 - Should represent breadth of applications
 - Current applications and future needs
 - Still need communication between communities
 - Must evolve through co-design (i.e., iteration)
 - Validation

Co-design Methodology

- Performance and other Tools
 - Automatically extracting kernels
- Performance models (analytical and semiautomated)
- Simulation and Emulation
 - Needed to develop applications/algorithms for future computers and to provide feedback on architectural choices
 - HW/SW co-simulation
 - Open tools that can interface to proprietary tools
 - Multiscale
 - Validation

Co-design and the Software Stack

- Reduce the number of software stacks
- Open source
- Sharing and coordination across the co-design centers

Co-design Methodology

- Opportunities for international collaboration
 - Applications/software/architectures communities need a forum to openly exchange information, lessons learned
 - Recommendation: Continue co-design methodolgy discussions within IESP
 - Standing breakout
 - Deep dive at next meeting from Europe, Japan and U.S.

Applications Inventory - 21

- Magnetically Confined Fusion
 - Ethier, Princeton PPL
 - Guenter, Jenko & Heinzel, Max Planck Inst.
 - Koniges, LBNL
 - Nakashima, Kyoto University
- Molecular Dynamics
 - Zhong, Supercomputer Center, CAS
 - Swaminarayan, LANL
 - Streitz, LLNL
- Climate
 - Aloisio, Univ. of Salento & CMCC
- Combustion
 - Sankaran (Messer), ORNL
- Radio Astronomy
 - Cornwell and Humphreys, CSIRO
- Aerodynamics
 - Keyes, KAUST & Columbia

- Fluid Dynamics and Heat Transfer
 - Fischer, ANL
- Neutron Transport
 - Siegel, ANL
- Nuclear Fuel Assemblies
 - Berthou, EDF
- Aerodynamics and Combustion
 - Andre, CERFACS
- HEDP and Rad Hydro
 - Graziani, U Chicago
 - Messer, ORNL
- Electronic Structure
 - Scheffler, Blum, Heinzel, Fritz-Haber-Inst.
 - Eisenbach (Messer), ORNL
 - Harrison, ORNL