7th [ESP Meeting Working Group Report on:

Revolutionary Approaches:
Punctuated Equilibrium or Continuous Evolution?

Thomas L. Sterling, Indiana University
Bronis R. de Supinski, Lawrence Livermore National Laboratory
version-5

1. Introduction

Projection of the possible path forward for HPC towards exascale computing is
guided by two histories. One expresses the success of incremental techniques of
improvement over the last two decades in advancing delivered computing
performance. The second exposes as many as half a dozen paradigm shifts over the
extended period of 60 to 70 years when progress in underlying device technologies
catalyzed dramatic changes in the way computing was organized and conducted and
computing systems were designed and operated. At the 7t meeting of the
International Exascale Software Project (IESP) conducted in Cologne Germany, a
working group considered the potential needs and approaches of a revolutionary
strategy for exascale software. This brief note documents its initial findings.

The evolutionary path successfully supported an era, Pax MPI, of stability with
dependable improvements through incremental changes. The latter revolutionary
path over the extended history also provided marked events of dramatic
improvement but through disruptive changes that demanded redefinition of
structures and methods. These two histories provide contradictory lessons and
present the HPC community with the challenge of determining which path applies to
the realization of sustained exaflops performance by the end of this decade.

A sequence of incremental enhancements provides a clear path to preserve existing
investments in large-scale applications so it is far preferable to the more risky
disruptive strategy. However, if an evolutionary trajectory cannot reach the desired
end state then we must pursue a revolutionary although uncertain path even in the
presence of incurred costs to refactoring systems, applications, and methods.

The international HPC community dedicated to the realization of exascale
computing by the end of this decade is divided on the issue of the approach and
strategy of achieving this goal. Four dominant issues prevail: the socialization and
controversy of change; the exascale challenges that may demand revolution; the
candidate system areas in which revolution is possible; and the mitigation of the
disruptive impact of such revolutionary changes. We require a détente between
those demanding cautionary progress and those insisting on change in spite of
fracturing the means of scalability beyond current practices.



More than gap filling may be required but only through responsible methods that
include continuity with existing legacy codes, models, and skills. In a key finding, the
[ESP working group concluded that in many cases the same end goal could be
reached through both punctuated equilibrium (i.e., revolutionary change) or
continuous evolution. We may require large leaps to determine the correct end state
but we may also be able to reach that end state through more gradual methods once
we know the right direction.

Unfortunately the community has become polarized to a degree that inhibits the
formulation of a shared constructive middle ground. Fear of the extremes has
precluded the development of a rational all encompassing strategy to address the
daunting challenges while maintaining the continuity of productive capability from
passed software investment in applications and environments. This note begins the
dialog to bridge the current chasm and to derive the needed techniques.

2. Opportunities for Possible Revolutionary Approaches

The IESP “Revolutionary Approaches” working group focused on those areas that
may most require more than incremental extensions of current and recent practices.
We identified these areas through the subjective criterion of the level of concern felt
by working group members in reaching exascale by 2020. We discussed each issue
and we report the six issues for which no strong disagreement was raised. Thus, we
provide a conservative view on controversial ideas, which is perhaps an oxymoron.

2.1 Execution Models

The disruptive events in the history of supercomputing that mark the phase changes
of HPC in each case resulted in a new paradigm of computing as reflected in the
execution model. An execution model is a set of guiding principles that govern the
roles and relationships of the integral component layers of a computing. The current
predominant scalable execution model is Communicating Sequential Processes
(CSP). New execution models capture advances, and the associated challenges, in
underlying enabling technologies. The execution model impacts co-design across
programming models and architectures as well as the supporting system software.
As we prepare for exascale systems, we may require a new execution model that
better reflects challenges posed by extreme concurrency, multicore sockets and
GPUs, all of which may require greater support for asynchrony than CSP provides.

2.2 Changing the Way We Think

More broadly, an area that may require revolutionary changes is how we think
about the merger of systems and programming. Conventionally the user has the
illusion of controlling the machine. Future systems may require us to relinquish this
simplistic assumption. Extreme concurrency will require us to exploit runtime
information that allows non-determinacy and variability of the execution path that
produces dependable, but not bitwise reproducible, answers. Thus a change of



culture and attitude in which we do not control every cycle but rather influence the
execution to find a path to the right answer appears necessary to deliver
substantially greater performance than we achieve on current systems.

2.3 Incorporating Intelligent Methods

As systems become more complex and heterogeneous with highly varying latencies
and overheads and potentially unpredictable contention, we may have to select
among alternatives at multiple levels on-the-fly through intelligent controls.
Intelligent controls could measure and detect conditions on a continual basis
throughout a computation and can support introspective operation. They could
employ goal-driven objective functions that determine how to select among
alternative approaches or paths. Such methods must operate in real time but cannot
impose significant overhead or any potential benefits will be dissipated. Objective
functions are reflected at multiple levels from simple autonomic low-level responses
to high-level complex decisions that reflect difficult choices. For future HPC,
intelligent controls must reflect spatial awareness, as well as temporal, from a data
perspective. Further we may require hardware support for operational knowledge
and prediction, potentially through an Information Backplane that provides a
protocol between system layers for mutual dynamic introspective behavior.

2.4 Operating Systems

Most existing supercomputers employ some variant of the Unix operating system,
with Linux dominating the Top-500 list. While continually evolving, the basic
architecture of this critical software was established over 30 years ago. Because of
the inadequacies of conventional Unix, several variations, including lightweight
kernels and user runtime systems for improved efficiencies, have been pursued.
During much of the last two decades on clusters and MPPs systems have really been
collectives of many operating systems running side by side instead of a single
system image with some umbrella scheduling package.

The challenge of managing a billion cores and the associated scale of their memory
and interconnection network is unprecedented. Exascale systems will pose
additional challenges such as fault tolerance through graceful degradation, dynamic
resource management, and energy control. Also, system and core architectures are
changing significantly, with multicore and heterogeneous computing emerging.
Future parallel programming languages may require new classes of service from the
OS as programming models change to meet scaling and efficiency requirements. We
have not yet resolved the OS role in addressing these additional complexities.

OS changes may be proactive with new concepts in system control or they may be
reactive in support of dramatic changes in architecture, programming paradigms,
and runtime systems that rely on the OS. In either case, the OS may require
revolutionary change to meet its fundamental role in HPC systems.



2.5 Programming Models

Future programming models are the source of the greatest dissonance in the plans
for exascale systems, perhaps because the right solution (i.e., end state) is so
unclear. Parallel programming models change in response to advances in system
structure to represent parallelism, data structures, and control flow in response to
technology progress. These changes may arise from a new execution model or
simply reflect an alternative means of crafting parallel programs. In either case, a
programming model provides a necessary level of abstraction that couples the
demands of an application with the resource capabilities of the physical system.

Exascale programming models must devise a set of semantics that yield sustained
billion-way concurrency in heterogeneous environments. These semantics include
the forms of parallelism and the means of sequencing and enabling operations such
as synchronization constructs. They also entail the interrelationship of control flow
with data structures and their distribution. While we still must determine how to
provide the required support, the new semantics will often require algorithmic
changes since many existing algorithms cannot sustain billion-way concurrency.

Many factors besides concurrency are important to exascale programming models.
A particularly critical concern is the migration path for legacy codes from existing
programming models. Further, those existing programming models must derive
some benefit from exascale systems because the existing investment in large-scale
applications, as well as the time required to produce them, is so large. For similar
reasons, new programming models must interoperate effectively with old ones. For
these reasons, concurrently pursuing revolutionary and evolutionary paths to the
final exascale programming model may provide the greatest benefit.

2.6 Correctness and Debugging

One objective widely thought to require a revolutionary approach is the critical
challenges of achieving correctness through methods of verification and debugging.
Exascale performance does not impose this need: existing strategies provide
inadequate insight into the root cause of programming errors. However, billion-way
asynchronous parallelism may make this lack of insight intolerable. We may even
have to replace current concepts of correctness and absolute exactness with
boundedness and quasi reproducibility. Tools for verification and validation, error
detection and debugging, and confidence in answers at varying scales require new
models, quite possibly revolutionary, to solve this problem.

2.7 Persistent Storage

We face an entire array of application challenges that are largely data-intensive and
bound by the capabilities of the storage system. We have relied on the basic model
of file systems that was derived in the 1960s with some semantics from the 1940s
(e.g., rewind). Even with important strides such as MPI-10, HPF5, and RAID, we still
treat mass storage as an entirely separate system from in-memory computation.



This view fails to balance the computational and storage capabilities of our systems.
The growing imbalance between them as well as reduce main memory capacity
relate to computational capabilities will exacerbate existing problems with how
applications use storage capabilities. Further NVRAM technology may lead to
another layer in the storage hierarchy. Thus, vertical movement of data may
increase, leading to techniques reminiscent of out-of-core algorithms. We may
require far more lightweight and agile transitions between the storage technologies
and new programming methods to unify them in a single name space to achieve
dynamic reactive data movement. We may need these revolutionary strategies to
realize the full potential of exascale computing for the widest array of applications.

3. Related Factors and Issues

We discussed several issues related to responsibly realizing potential revolutions in
computing systems and techniques in order to achieve exascale computing
capability. This section summarizes some of the most prominent ones.

3.1 Managing Revolution

If future supercomputer designs do not deliver increased application performance,
they will not be deployed and the field will stall, perhaps irrevocably as commercial
aviation did in the 1960s, after when flight times have not changed significantly. We
may require a perhaps oxymoronic “incremental revolution” by which the workload
continues to run but for which significant performance improvements require
concomitant investment in code refactoring.

Supporting gradual steps will permit planning by which organizations, agencies, and
nations can project their respective paths across HPC generations. Before we
impose change, we must identify the destination, possibly through preparatory
research and proof-of-concept development. At launch time of the revolutionary
system concepts, the process must begin with something credible. Further, we
expect many current practices will convey to future methodologies.

Nonetheless, for something new to be born, something has to die. HPC users will
adopt new practices over time and adapt to them in order to achieve orders of
magnitude benefits in science, technology, commerce, and security. We require a
culture change but one that can be managed and transitioned rather than disruptive
through bridging methods and education. Rewriting of widely used libraries by
groups of experts could provide many early benefits to the broad community. High
level programming models, even declarative or domain specific programming
interfaces may also mitigate the challenge of transition. All of these approaches and
others constitute means of managing the possibly essential HPC revolution.

3.2 Intelligence in Systems

Except in some special cases, future systems will rely, perhaps heavily, on runtime
functionality realized through new runtime system software in cooperation with the



OS and architecture driven by compiler and user programming interfaces. The
incorporation of intelligent controls will provide the opportunity to introduce
higher order operational policies. Many methods are already being pursued to self-
adapt codes to underlying core architectures, for work scheduling, and for dynamic
load balancing. Other areas such as fault management and energy optimization are
potential candidates. A new multilevel intelligence that manages these disparate
goals may provide a quasi self-aware environment through introspective means that
can optimize potentially conflicting requirements to achieve overall best operation.

3.3 Reliance on More than Compiler Technology

Historically compilers have dictated system usage. Decades of remarkable progress
in advanced compiler technology has bred a culture of strong reliance on this
system layer. However, reliance on compilers has also limited progress in efficiency
and scalability. Problems like inter-procedural analysis and automatic
parallelization are still topics of research even after decades of admittedly good
work. Often limited to static information, compilers are necessarily conservative.

The common culture to rely on compilers hinders future directions to deliver
superior capabilities. Compilers cannot alone provide the necessary understanding
to proscribe how large-scale systems must operate. With the emergence of new
runtime systems applied to the field of HPC, an entirely new class of opportunities is
becoming available. Although compilers will continue to play a crucial role, we must
also trust runtime systems and even some advances in hardware support to guide
the computation of exascale systems and their applications.

4. Conclusions

We, the international community planning for exascale, are uncertain at this time of
the software architecture and the software components of which it is comprised
required to support of exascale systems by the end of this decade. Some elements
may reflect revolutionary methods in order to support part or all of the workload.
We have summarized the initial conclusions of a self-selected representative group,
the working group on “Revolutionary Approaches” of the 7th [ESP meeting.

IESP is considering four important issues in order to establish its long-term
strategy. First, we must socialize the topic to overcome the current polarization with
respect to possible strategies. Second, we must assess which functional areas will
most likely demand some revolutionary techniques. Third, we must identify the
revolutionary approaches that can address those requirements. Fourth, we must
mitigate the potentially disruptive effects of those revolutionary approaches. This
report can serve as initial attempt to overcome the polarization by identifying
consensus functional areas for significant change and discussing potential
mitigation approaches. Importantly, we still require much more research to identify
the appropriate end states before the international HPC community can confidently
pursue either revolutionary or evolutionary strategies to reach those states.



Contributors:

e Pete Beckman, Argonne National Laboratory

* Ron Brightwell, Sandia National Laboratories

e Barbara Chapman, University of Houston

e Jack Dongarra, University of Tennessee, Knoxville

* Anshu Dubey, University of C

e Al Geist, Oak Ridge National Laboratory

¢ Andrew Jones, NAG

e Alice Koniges, Lawrence Berkeley National Laboratory
* Jesus Labarta, Barcelona Supercomputing Centre

¢ Bob Lucas, USC Information Sciences Institute

* Paul Messina, Argonne National Laboratory

e Hiroshi Nakamura, University of Tokyo

e Hiroshi Nakashimi, Kyoto University

e Thomas Sterling, Indiana University (Co-Chair)

e Shinji Sumimoto, Fujitsu Inc.

* Bronis de Supinski, Lawrence Livermore National Laboratory (Co-Chair)
e Kenjiro Taura, University of Tokyo

* Rajeev Thaker, Argonne National Laboratory

e Anne Trefethen, Oxford University

e Vladimir Voevodin, Moscow State University



