

Synthesis of the IESP Santa Fe Whitepapers

The Whitepaper Authors

Compiled and summarized by

- Bernd Mohr, Thomas Lippert, JSC
- Jesus Labarta, BSC

Overall Topics Overview

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Productivity / Portability	X	X		X				X					X	X
Programming / Execution Model	X	X			X	X	X	X			X	X	X	X
Runtime	X						X					X		X
Applications		X	X			X	X		X				X	X
Fault resiliency			X		X		X					X		X
Libraries / APIs		X												
Development Environments		X	X											X
Power / Complexity		X					X					X		X
Cultural / Organization		X		X	X					X	X		X	

Programming / Execution Model

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Programming / Execution Model	X	X			X			X				X	X	X
Address space					X			X				X		X
Expression of Parallelism	X						X					X		
Tasks					X									X
Asynchrony		X				X								X
Hierarchy / mixed	X	X			X			X			X			X
Heterogeneity							X							X

Development environment / Runtime

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Runtime														
Dynamic resource management												X		X
Load balance	X													X
Latency hiding / BW minimization	X						X					X		X

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Development environments														
Compilers (single core performance)		X												
Debugging			X											
Performance tools		X												Χ

Applications

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Applications									X					
Data models and analysis			X				X							
Algorithmic developments		X				X							X	X
Porting/tuning effort									X					
Benchmarks									X				X	
Industrial, multi-physics/scale		X					X		X					
Preprocessing: meshing,		X				X								
Visualization, post processing		X												
Memory wall (volume per core)							X							

Cultural / Organization

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Cultural / Organization													X	
Info sharing and aggregation				X									X	
Collaboration				X	X									
Standardization		X		X										
Coordinated funding support										X	X			
Commercialization											X			
Training													X	

Libraries / Portability / Power

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Libraries, APIs		X												
Code coupling		X												

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Productivity / portability / ease of use	X	X		X									X	
Migration path		X						Χ						X

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Power management							X					Χ		X
Management complexity		X												

The Application Perspective: Seeking Productivity and Performance

David Barkai Intel Corporation

- The programming model for exascale computing needs to address both productivity and performance
- Both are helped by a model that maps the application design to cluster architecture with multi multicore processor nodes
- This may be achieved via a hierarchical MPI-based model
 - Layered by inter-node, intra-node, intra-socket
 - Exascale system also divided in groups or "gangs" of processes (Gropp et al) – only 'flat' component
- Companion topic: much performance is left untapped.
 - Focused effort on defining "computational operators" and optimizing hardware and software to support them may result in huge ROI
 - Methods for expressing parallelism need to comprehend such operators

EDF White Paper

J.Y. Berthou, J.F. Hamelin, EDF R&D

Challenge: addressing multi-physics, multi-scale simulations on massively parallel heterogeneous architectures, combining parallel software components developed independently from each other and dealing with constantly evolving legacy codes

Priority research themes:

- Programming massively parallel computers: languages/compilers/performance analysis
 tools for achieving mono-processor high performance, fault tolerant implementation of
 Libraries/Languages for mixed parallelism (MPI/OpenMP/"cuda like" language),
 algorithm/solvers and data structures adapted to heterogeneous/hybrid, multilevel and
 hierarchical massively parallel machines
- Unified generic interface for High Performance Solvers
- Unified stochastic HPC computing tools and methods for uncertainty and risk quantification
- Unified Simulation Framework and associated services adapted to massively parallel simulation:
 - Common data model and associated libraries for mesh and field exchange that enable interoperability and the coupling of independent parallel scientific software
 - Meshing tools: parallel meshing, mesh healing, CAD healing for meshing, dynamic mesh refinement
 - Parallel visualization, remote and collaborative post-treatment tools
 - Supervising and code coupling tool for tightly coupling schemes

Software and Exascale Computing

- Major software issue in developing a robust exascale computational economy: scalability
- Comes in numerous disguises
 - Programmability, debug-ability, optimization for 109 thread
 - Interpretability: exascale apps will produce yoddabytes data
 - Will need integrated (complex) HW and SW reliability
 - Performance: load imbalance, aggressive overlap of communication and computation, ...
 - Energy cost of software

A Proposal for a Capability Centers Consortium

Bill Gropp, Mark Snir NCSA and UIUC

- Addressing challenges in HPC software and systems requires collective effort
 - High-end HPC users have specific and demanding needs from software, including (trans)portability between high-end systems
 - Increasing user productivity will require collaborative efforts in software
 - Activities proposed include
 - Information sharing and aggregation
 - Collaborations
 - Standardization

Software Challenges of Extreme Scale Computing

Michael Heroux Sandia National Laboratories

- Parallel Programming Transformation:
 - New layer: Manycore, shared memory, underneath MPI.
 - No standard, portable manycore API.
 - Preparation: All computation in stateless functions.
- Beyond the "Forward Problem":
 - Make current apps into subroutines.
 - 100-1000x increase in parallelism.
- Fault-resilient Application Environment:
 - Vertically integrated solution, application in charge.
- Hierarchical, Multi-organization Software Engineering:
 - Collaborative effort: physically and culturally diverse orgs.

6

PDE-based Applications and Solvers at Extreme Scale

David Keyes Columbia University and SciDAC TOPS Project

- The availability of high capability architecture makes algorithms more, not less, important
 - All algorithms can only be log-linear at worst!
 - Needs synchronization-free (or -minimized) algorithms
 - Needs performance analysis beyond flops
- Scalability needed beyond solvers
 - Tools to manage meshes, fields, particles, ...
 - Probably needs new generation of codes!

Major CS Challenges at Exascale

Al Geist, Paul Messina, & Robert Lucas ORNL, ANL, & USC/ISI

Numerous studies in last two years have examined Exascale

- Three DARPA studies and many DOE meetings
- Their findings are remarkably consistent

The major CS challenges to achieving Exascale:

- Accelerating growth in concurrency (finding billion-way parallelism)
- Memory wall (latency, BW, and volume of memory seen by a core)
- Continuous faults, often silent (requires a paradigm shift in SW)
- Heterogeneity (programming nodes with different types of cores)
- Knowledge discovery (data volumes, multiple formats and types)
- Increasing complex application software (multi-scale multi-physics)
- Power management (power is a limiting factor to reach Exascale)

Slouching Towards Exascale

Rusty Lusk Argonne National Laboratory

The programming model problem:

- Where we are now
 - MPI provides a robust, portable, effective standard for communication among separate address spaces
 - We require, but do not have, a similarly effective standard for expressing parallelism within an address space that interacts in a defined way with MPI
 - A hybrid approach (MPI + X for some X) is most likely to provide a migration path for applications to the million-core regime
- What we need to do
 - Eschew ritualized denigration of MPI
 - Recognize the need for a shared-memory programming model
 - Understand the difference between end applications and libraries
 - Don't abandon the HPCS language ideas

Application Analysis and Porting in the PRACE Project

Peter Michielse
Netherlands National Computing Facilities Foundation (NCF)

- Foundation of initial PRACE Application Benchmark Suite (PABS) in spring 2008
 - Applications with broad usage in Europe
 - Coverage of main scientific areas that require HPC
 - Scalability potential
 - Foundation for PRACE optimisation and petascaling tasks
 - Horizontal approach: one person responsible for porting, optimisation and petascaling (with collaborators)
- Review of PABS in spring 2009:
 - Focus on scalability and licensing issues
 - Adapt initial PABS accordingly

10 NSF IESP Whitepaper

Abani Patra, Rob Pennington, Ed Seidel Office of Cyberinfrastructure, National Science Foundation

- NSF 's Vision for Cyber infrastructure for 21st Century Discovery
 - Comprehensive program for supporting the national cyber infrastructure for science and engineering
 - NSF wants to pursue global partnerships with other organizations and agencies
- Exascale challenges will drive innovation in may areas
 - Integration between software, applications, hardware
- Whitepaper outlines inputs desired by NSF in order to understand requirements and to define details of this program

11

A Collaboration and Commercialization Model for Exascale Software Research

Mark Seager, Brent Gorda Lawrence Livermore National Laboratory

- We recommend a coordinated strategy between Research & Development (R&D), Development & Engineering (D&E) and Productization and Service (P&S). With migration path towards commercialization.
- Keep current focus areas and funding agents for R&D, D&E and P&S
 as they currently are and add stake holders from next stage in the
 process.
- Keep the model flexible as possible to encourage development and competition.
- Multiple iterations required to get to exascale.

The Case for A Hierarchal System Model for Linux Clusters

Mark Seager, Brent Gorda Lawrence Livermore National Laboratory

- HPC pyramid investment model requires we pull up the rest of the pyramid while pushing to exascale or the model breaks down.
- Hierarchal systems model developed for petascale systems is a good starting point, with possibly more than one level in the hierarchy, for exascale systems research
- The current "Flat" Linux cluster systems model can be turned into a hierarchal systems model and scale up to 10K to 100K nodes.
- A change to both hardware (simpler compute nodes) and software are required.
- We can mine existing petascale systems efforts and combine it with readily available commercialization paths.

12

The Biggest Need: A New Model of Computation

Thomas Sterling Louisiana State University

- HPC is in a phase change (VIth)
 - Exascale heterogeneous multicore systems
 - Power & reliability constrained with billion-way parallelism
- Model of Parallel Computation What is it?
 - Supports co-design of all system layers
 - Governing principles guiding management, naming, control
- Towards a New Exascale Model of Computation
 - Work-queue dynamic allocation of cores for high utilization
 - Message-driven for system wide latency hiding & limiting
 - Active Global Address Space for Programmability
 - Lightweight object oriented synchronization for low overhead
 - Threads as 1st-class objects for dynamic adaptive scheduling

Developing a High Performance Computing/Numerical Analysis Roadmap JÜLICH

Anne Trefethen, Nick Higham, Ian Duff, and Peter Coveney Universities of Oxford, Manchester, London & Rutherford Lab

Leveraging work in the US and Europe together with UK specific workshops and discussions groups have lead to barriers for software development that fall into five themes

1.Cultural Issues

- some people won't share with, or trust, others...
- 2. Applications and Algorithms
 - Need to bring application and algorithm development closer
 - Need new algorithms for new architectures

3. Software Challenges

- Engineering, portability, programming models,
- 4. Sustainability
 - Need better models for sustainability not only for UK efforts but those we depend on!
- 5. Knowledge base
 - It would be good to know who is doing what and where
 - We need to train more people with this cross cutting set of skills.

http://www.oerc.ox.ac.uk/research/hpc-na

14

BSC Vision Towards Exascale

Jesus Labarta, Eduard Ayguade, Mateo Valero BSC

- Programming model: the key component
 - Decoupling: algorithms from systems, naming from containers, writing from execution
 - Global address space, task based: dependences and data access information
 - Heterogeneity support and hierarchically scalable: from node to cluster level, tunable granularity, asynchrony
 - Intelligence/responsibility to the runtime: dynamic, malleable; load balancing; architecture optimized; locality, latency, reuse and bandwidth aware
- Algorithmic work, only once restructuring, smooth path
- Tools: down to details, more intelligence, provide insight
- BSC contrib.: CellSs/SMPSs, Paraver/Dimemas, http://www.bsc.es

Note: New Whitepapers for IESP Paris

- An Exascale Approach to Software and Hardware Design William Kramer (NCSA) and David Skinner (LBNL)
- Consistent Application Performance at Exascale
 William Kramer (NCSA) and David Skinner (LBNL)
- Performance at Exascale
 Bernd Mohr (JSC) and Matthias S. Mueller , Wolfgang E. Nagel (ZIH/TUD)
- Resource Management, Barney McCabe (ORNL) and Hugo Falter (ParTec)
- Programmability Issues, Vivek Sarkar (Rice U.), Jesus Labarta (UPC),
 Mitsuhisa Sato (U. of Tsukuba), Barbara Chapman (U. of Houston)
- Models of Computation Enabling Exascale, Thomas Sterling (LSU)
- Major Computer Science Challenges at Exascale,
 Al Geist (ORNL) and Robert Lucas (ISI)
- Towards Exascale File I/O, Yutaka Ishikawa (U. of Tokyo)
- Co-design of Architectures and Algorithms,
 Al Geist (ORNL) and Sudip Dosanjh (SNL)
- IESP Exascale Challenge: Resilience and Fault Tolerance,
 Al Geist (ORNL) and Franck Cappello (INRIA)