
PRESENTATIONS AND 
WHITEPAPERS

JUNE 28-29, 2009 PARIS, FRANCE
MEETING 2

APRIL 7-8, 2009 SANTA FE, NEW MEXICO
MEETING 1



IESP

APRIL 7-8, 2009 SANTA FE, NEW MEXICO

Improving HPC Software: Welcome 
Pete Beckman (Argonne National 
Laboratory/University of Chicago) and Jack 
Dongarra (University of Tennessee/Oak Ridge 
National Laboratory)

e-Infrastructure in FP7: HPC related aspects 
Catherine Riviére, GENCI, France

Development of an Over Petascale Computer in 
Japan
Satoshi Matsuoka, GSIC Center, Tokyo Institute of 
Technology/National Institute of Informatics

International Exascale Software Program 
Abani Patra, NSF Office of Cyberinfrastructure

Improving HPC Software: Overview
Pete Beckman (Argonne National 
Laboratory/University of Chicago) and Jack 
Dongarra (University of Tennessee/Oak Ridge 
National Laboratory)

Thou Shalt Specialize or Commoditize? The 
Japanese Situation Towards Peta and Exascale
Satoshi Matsuoka, GSIC Center, Tokyo Institute of 
Technology/National Institute of Informatics

Technology and Architectures for Future 
Large-Scale Computing Systems 
Rick Stevens, Argonne National Laboratory and 
University of Chicago.

Computational Science and HPC 
Software-Development in Europe
Thomas Lippert and Bernd 
Mohr,Forschungszentrum Jülich, JSC and Gauss 
Centre for Supercomputing e.V.

Slides from the panel:Software Barriers to HPC, 
Today and Tomorrow
Panel participants:Al Gara, Jean-Yves Berthou, 
Mitsuhisa Sato, Peggy Williams, Vivek Sarkar, Ann 
Trefethen

Science Drivers, Current HPC Software 
Development, and Platform Deployment Plans 
for the USA Horst Simon,Lawrence Berkeley 
National Laboratory and UC Berkeley

MEETING 1 PRESENTATIONS



IESP

APRIL 7-8, 2009 SANTA FE, NEW MEXICO

Musings on the Path Toward Exascale 
Robert Lucas - ISI/USC

BSC Vision Towards Exascale 
Mateo Valero, BSC

Software Challenges of Extreme Scale 
Computing 
Michael Heroux - Sandia National Laboratory

Software and Exascale Computing 
Bill Camp - Intel Corporation

Application Analysis and Porting in the PRACE 
Project 
Peter Michielse - Netherlands National Computing 
Facilities Foundation (NCF)

The Application Perspective - Seeking 
Productivity and Performance 
David Barkai - Intel Corporation

EDF white paper  
J.Y. Berthou and J.F. Hamelin - EDF R&D

The Biggest Need: A New Model of Computation 
Thomas Sterling - Louisiana State University 

NSF IESP Whitepaper 
Abani Patra, Rob Pennington, Ed Seidel - Office of 
Cyberinfrastructure, National Science Foundation

A Proposal for a Capability Centers Consortium 
Bill Gropp, Mark Snir - NCSA and the University of 
Illinois at Urbana-Champaign 

Slouching Towards Exascale 
Rusty Lusk, Argonne National Laboratory

A Collaboration and Commercialization Model 
for Exascale Software Research 
Mark Seager and Brent Gorda, Lawrence 
Livermore National Laboratory

The Case for A Hierarchal System Model for 
Linux Clusters 
Mark Seager and Brent Gorda, Lawrence 
Livermore National Laboratory

PDE-based applications and solvers at extreme 
scale 
David Keyes, Columbia University & SciDAC TOPS 
project

Developing a high performance 
computing/numericalanalysis roadmap 
Ann Trefethen, Nick Higham, Ian Duff, and Peter 
Coveney

MEETING 1 WHITEPAPERS



Performance at Exascale
Bernd Mohr (Jülich Supercomputing Centre) and 
Matthias S. Mueller (Wolfgang E. Nagel Center for 
Information Services and HPC)

Resource Management
Barney McCabe (ORNL) and Hugo Falter (ParTec)

Programmability Issues
Vivek Sarkar (Rice U.), Jesus Labarta (UPC), 
Mitsuhisa Sato (U. of Tsukuba), Barbara Chapman 
(U. of Houston)

Models of Computation – Enabling Exascale
Thomas Sterling, Louisiana State University

Major Computer Science Challenges at 
Exascale
Al Geist (ORNL) and Robert Lucas (ISI)

Towards Exascale File I/0
Yutaka Ishikawa, University of Tokyo

Co-design of Architectures and Algorithms 
Al Geist (ORNL) and Sudip Dosanjh (SNL)

IESP Exascale Challenge: Resilience and Fault 
Tolerance
Al Geist (ORNL) and Franck Cappello (INRIA)

Consistent Application Performance at Exascale
William Kramer and David Skinner 

An Exascale Approach to Software and 
Hardware Design
William Kramer and David Skinner 

IESP JUNE 28-29, 2009 PARIS, FRANCE
MEETING 2

PRESENTATIONS
AND WHITEPAPERS



Improving 
HPC 
Software  

Pete Beckman & Jack Dongarra 



IESP the Need 

  The largest scale systems are becoming more 
complex, with designs supported by large 
consortium 
 The software community has responded slowly 

  Significant architectural changes arriving 
 Software must dramatically change 

  Our ad hoc community coordinates poorly, both with 
other software components and with the vendors 
 Computational science could achieve more with 

improved development and coordination 



Where We Are Today: 
We are not prepared for the changes coming 
  Hardware features are uncoordinated with software 

development 
  (power mgmt, multicore tools, math libraries, advanced memory models, etc) 

  Only basic acceptance test software is delivered with platform 
  UPC, HPCToolkit, Optimized libraries, PAPI, can be YEARS late 

  Vendors often “snapshot” key Open Source components and 
then deliver a stale code branch 
 Counterexample:  A model that works – MPICH for BG/P 

  Community codes unprepared for sea change in architectures 

  Coordination via SOW/contract is poor and only involves 2 
parties 

  No global evaluation of key missing components 



The IESP Workshops: 

  Goal:  Improve the world’s simulation and modeling 
capability by improving the coordination and 
development of the HPC software environment. 
  Build a plan for how the international community can join 

together to improve software available for high-end systems 
over the next 2 to 10 years. 

  The DOE (SC, NNSA), NSF, and EU have committed 
their support for the workshops.  

  This is the first workshop in the series of three. 



International Community Effort 

  We believe this needs to be international 
collaboration for various reasons including: 
 The scale of investment 
 The need for international input on requirements  
 Europeans, Asians, and others are working on their own 

software that should be part of a larger vision for HPC. 

  The process must be totally open 
Executive Committee:     
    Co-Chair: Jack Dongarra, Univ, of Tennessee / ORNL, US 
    Co-Chair: Pete Beckman, Argonne National Laboratory, US 
    Franck Cappello, INRIA, FR 
    Thomas Lippert, Jülich Supercomputing Centre, DE 
    Satoshi Matsuoka, Tokyo Institute of Technology, JP 
    Paul Messina, Argonne National Laboratory, US  



A Plan Could Include: 

  Work with vendors to create the HPC equivalent to the ITRS 
(Int’l Tech Roadmap for Semiconductors) 

  Get community working on software before machine becomes available 

  Community proposed unified roadmap for exascale software 

  Identify missing components for future architectures and a plan 
to address them 

  Develop models for working more closely with vendors 
  (support, acceptance tests, target features) 

  Identify key application areas to drive development 

  Community software development models 

  Funding and organizational models     



Achievable Outcomes 

  Improve the capability of computational science 

  Build and strengthen international collaborations and 
leadership; deliver more capable, productive HPC systems 

  Build and improve R&D program developing new 
programming models and tools addressing extreme scale 

  Open source HPC development guided by roadmap with 
better coordination and fewer missing components 

  Joint programs in education and training for the next 
generation of computational scientists. 

  Vendor engagement and coordination for more capable 
software supporting exascale science 



Workshops and Report 

  3 workshops over the next year 
 1: Santa Fe, April 7-8 
 2: Paris France, June 28-29 
 3: Japan in the early Fall 

  Broad engagement by the community 
  Initial reports in summer 2009 
  Final report for first year at SC09 
  Planning for IMMEDIATE payoff 

 Could begin ramping up next year 



www.exascale.org 



IESP 

  Plan to build an international partnership that joins 
together industry, the HPC community, and production 
HPC facilities in a collective effort to design, 
coordinate, and integrate software for leadership-
class machines. 

  Build an international plan for developing the next 
generation open source software for scientific high-
performance computing 



Engagement in the Following 
Activities  
•  Build international collaborations in the areas of high-performance 

computing software and applications. 
•  Development of open source systems software, I/O, data 

management, visualization, and libraries of all forms targeting 
tera/peta/exascale computing platforms, 

•  R&D of new programming models and tools addressing extreme 
scale, multicore, heterogeneity and performance, 

•  Cooperation in large-scale systems deployments for attacking 
global challenges, 

•  Joint programs in education and training for the next generation of 
computational scientists. 

•  Vendor engagement to coordinate on how to deal with anticipated 
scale. 



Goals for this the workshop include 

  Assess the short-term, medium-term and long-term 
needs of applications for peta/exascale systems 

  Explore how laboratories, universities, and vendors 
can work together on coordinated HPC software 

  Understand existing R&D plans addressing new 
programming models and tools addressing extreme 
scale, multicore, heterogeneity and performance 

  Start development of a roadmap for software on 
extreme-scale systems 



Topics 

  Purpose of the workshop series, desired outcome (international 
Research, Development, & Deployment efforts for open source 
system software and tools for exascale computers) 

   Identify key technical areas on which to focus, e.g., file 
systems, message-passing and multi-threading sw, fundamental 
numerical sw, system management tools, debuggers, ...  

   Begin to identify which groups would like to tackle what areas 
and which funding sources might support the work  

   Begin to develop the open source model, cooperation and 
collaboration modes, project organization  

   Goals for next two workshops, i.e., focus of their agendas 



Plan 

  Day 1 
 Overviews of architecture trends 
 Current status of HPC systems and SW models 
 Science Drivers in US, EU, and Japan 
 Panel on SW Barriers for HPC, today and tomorrow 

 Three evolutionary SW items 
 Three revolutionary SW items 
 What are the community interaction models to address both 

evolutionary and revolutionary themes? 



Plan Day 2 

  Breakout 1: Technical Roadmap Discussion: What is 
feasible? What are the top challenges?  

  Breakout 2: Collaboration model and funding: How 
can we work together?  

  Goals and agenda for next workshop 



Follow on Meetings 

  Refine the ideas that emerged from the earlier 
meetings. 

  Incorporate new ideas into the plan. 
  Expose the IESP to a wider group of people. 
  We would like to get buy in from as many people 

as possible. Some may not be able to attend the 
earlier meetings. 





••• 1 

e-Infrastructure in FP7: 
 HPC related aspects 

"The views expressed in this presentation are those of the author and do not necessarily reflect the views of the European Commission" 

Mme Catherine Riviére 
(on behalf of DG INFSO/F03) 

IESP Workshop  
Santa Fe, 7-8 April 2009 



••• 2 

•  e-Infrastructure: the mission 

•  Framework Programme 7 

•  Main flagship projects 
– GÉANT 
– EGEE 
– DEISA & PRACE 
– … and scientific data repositories  

•  FP7 ‘Capacities’: RI Call 7 topics 

Main contents: 



••• 3 

 e-Infrastructure refers to the 
creation of a new research 
environment in which all European 
researchers have shared access to 
unique or distributed scientific 
facilities (including data, 
instruments, computing and 
communications), regardless of their 
type and location in the world.  

e-Infrastructure: the mission! 



••• 4 

Framework Programme 7: 2007 to 2013 

Capacities 
4097 M€ 

JRC 
1751 M€ 

Ideas 
7510 M€ 

Euratom 
4062 M€ 

People 
4750 M€ 

Cooperation 
32413 M€ 

Dev. of policies 
INCO 

Science 
in Society 

Research Infrastructures  
42% - 1715 M€ 

SMEs Research Potential 
Regions of Knowledge 

e-Infrastructures 
572 M€ 

~55B€  



••• 5 

  Pan-European coverage  
(40+ countries /3900 universities / 30+ million students) 

  Hybrid architecture: 

  connectivity at 10 Gb/s  
(aggregated traffic) 

  dark fiber wavelengths 
(demanding communities) 

GÉANT: connecting Europe 



••• 6 



••• 7 

 >300 sites 
 >100 000 CPUs, 25 PByte of storage 
 ~300 000 jobs successfully completed per day 
  200 Virtual Organisations  
 >16000 registered users, representing  1000s of scientists 

Astrophysics and astroparticle physics 
Biomedical and bio-informatics 

Computational chemistry 
Computational sciences  

High Energy Physics 
Disaster recovery 
Digital Libraries 

Earth sciences 
Geophysics 

Finance  
Fusion 



••• 8 

Scientific Data Infrastructure 

scientific data infrastructure 



••• 9 

DEISA: ‘virtual’ HPC services 

  12 sites in 7 countries connected
 at 10 Gb/s 

  Over 22,000 CPUs with an
 aggregated peak performance of
 close to 1 Peta flops 

  Running larger parallel
 applications in individual sites 

  Enabling workflow applications
 with grid technologies
 (UNICORE) 

  Providing a global data
 management service  

  Extreme Computing Initiative  



••• 10 

PRACE: the preparatory phase 

18 European countries signed the PRACE MoU !! 

Image courtesy of the PRACE partnership 



••• 11 

Draft WP2010 topics: 
RI Call 7: Open 30.07.09; close 24.11.09 

  INFRA-2010-1.2.1: Distributed computing 
infrastructure (DCI) 

  INFRA-2010-1.2.2: Simulation software and 
services 

  INFRA-2010-1.2.3: Virtual Research Communities 

  INFRA-2010-2.3.1: First implementation phase of 
the European HPC service 

  INFRA-2010-3.3: Coordination actions, 
conferences and studies supporting policy 
development, incl. international cooperation 

TOTAL Indicative budget: 115 Million Euro 



••• 12 

www.cordis.europa.eu/fp7/ict/e-infrastructure/ 

Konstantinos.Glinos@ec.europa.eu 



Contents 

  simulations for predictions (example) 

  science and technology policy in Japan 

  project of the next generation supercomputer 

  grand challenges in applications 

  collaborations with private sectors 

  concluding remarks 



Contribution to the IPCC by the Earth Simulator  

Working GroupⅠ 
(Physical Science Basis) 

Working Group Ⅱ 
              (IAV*) 

Working Group Ⅲ 
 (Mitigation) 

Synthesis Rep. 

　　　　     IPCC 
Fourth Assessment Report (2007）


Global warming projections  
 by climate modeling groups  
<under the MEXT* research project> 

        Some of major outcomes 

  Highest resolution coupled model 
   →　“Very likely” Attribution (stronger  
        confirmation) 
 Super-high resolution Global Atmospheric 
  model  →　Projection of increased strength  
  of Typhoons & Hurricanes (new finding) 
  Earth system model 
  → Carbon cycle feedback causing  
     additional warming (new finding) 

Earth 
Simulator 

Sound  
Scientific 
Basis for:  

Bali 
Roadmap 

(Climate 
Change  

Conference 
in 2007) 

Nobel  
Peace 
 Prize 

(* IAV = Impact,  Adaptation and Vulnerability) 



Outline of the ３rd S&T Basic Plan 
1. Fundamental Concept 

2. Strategic Priority Setting in S&T 

3. S&T system reforms 

●Promotion of basic researches 
●Prioritization of R&D for policy-oriented subjects 

Primary prioritized areas; Life science, IT, 
Environmental sciences, Nano-tech. & materials 
Secondary prioritized areas; Energy, 
MONODZUKURI tech., Infrastructure, Frontier 
(outer space & oceans)  

●Promotion strategy for the prioritized areas 
●Fostering S&T personnel and  

providing opportunities 
●Progress in science and leading to 

innovation 
●Upgrading infrastructures for S&T 

promotion 
●Strategic commitment on international  

S&T activities 

5. Missions of the CSTP 
●More efficient and effective management of governmental R&D 
●Break of institutional or operational bottle necks 
●Follow-up of the Plan and promotion of progress in S&T 

4. Public Confidence and Engagement 
●Responsible actions regarding ethical, legal 

and social issues 
●Reinforcement of accountability and public 

relations of S&T activities  
●Promotion of public understanding of S&T 
●Facilitation of public engagement with S&T-

related issues 

●Recent situation revolving around S&T 
●Basic stance toward the 3rd plan 
●Fundamental ideas and policy goals 
●Total gov’tal R&D investment:  
    \25 trillion ($200 billion) 



Key Technologies of National Importance 

Space transport system 

X-ray free electron laser 

イメージ図 

Next Generation 
Supercomputer 

 Fast breeder reactor  
technology 

Ocean & earth  
exploration system 

tentative image 

: projects RIKEN is conducting 



Six Goals of the Third Science and Technology  
Basic  Plan (FY2006-FY2010) 

<Goal 1> 
Discovery & Creation  of 

Knowledge toward the future 

< Goal 3 > 
Sustainable Development 

- Consistent with Economy and 
Environment - 

< Goal 5 > 
Good Health over Lifetime 

< Goal 2 > 
Breakthroughs in  

Advanced Science and 
Technology 

< Goal 4 > 
Innovator Japan 

- Strength in Economy & Industry  - 

< Goal 6 > 
Safe and secure Nation 

Development and Application 
of Advanced High-performance 

Supercomputer  

Tsunami damage prediction 

Clouds analysis 

An influence prediction of El Nino phenomenon 

Car development Nano technology 

Multi-level unified simulation 

Laser reaction 
analysis 

Nuclear reactor 
analysis 

Plane development 

Rocket engine 
design 

Aurora outbreak process 

Milky Way formation 
process 

Planet formation 
process 

by JAMSTEC 

by RIKEN by RIKEN 

by JAEA 

by JAEA 

by JAXA 

by JAXA 

by JAMSTEC 

by Univ. of Tokyo and RIKEN 

by Tohoku 

Univ. 
by MRI 

by IMS 
by NISSAN 



6 

1P


100G


10T


100P


Sustained Performance (FLOPS)


2000
 2010
 2015
 2020


The Next Generation 
Supercomputer Project


10T


1990


Personal 
Entertainment


PC, Home Server


Workstation,


Game Machine, Digital TV


Enterprise


Company,


Laboratory


National 
Infrastructure


Institute,


University


Enterprise


Company,


Laboratory


National 
Infrastructure


Institute


University


National 
Infrastructure 
 Institute,


University


Enterprise


Company,


Laboratory


National 
Infrastructure


Institute,


University


1P


100G


100P
National 
Leadership


（The Next Generation Supercomputer）


National 
Leadership


(Earth Simulator)


National 
Leadership 


CP-PACS, 


NWT


Personal 
Entertainment


PC, Home Server


Workstation,


Game Machine, Digital TV


Government 
Investment


Earth Simulator Project


2025


Enterprise


Company, 


Laboratory


National 
Infrastructure


Institute,


University


Personal 
Entertainment


PC, Home Server


Workstation,


Game Machine, Digital TV


National 
Leadership


National 
Leadership


Next-next 
Generation 
Project


Next-next-
next 

Generation 
Project


Expansion of Highest Computer for 
Global Usage  



7 

Kobe Port-
Island 



The Location of the Next Generation 
Supercomputer Center 



Relations with Other Supercomputer Centers 

ProjectＶＯ


Virtual research 
environment for 
various fields 

Next Generation 
Supercomputer 

ＶＯs ( Virtual Organizations ）


Infrastructural middleware 
（GRID、Infrastructure for certification, etc.) 

Industrial project ＶＯ 


University/inter-
university research 
institutes ＶＯ


As of  Feb. 2006 

Cyber Science Infrastructure Plan 
Proposed by National Institute of Informatics (NII) 

(Note)V O :Virtual Organization
 9 



２． Expected effects 　

As an important tool for simulation, supercomputing needs to be developed further.  This project 
aims to bring the Next-Generation Supercomputer to completion in 2012. 
In order to maintain world-leading position in variety of areas,  the following academic-industrial 
collaboration activities will be conducted under the initiative of MEXT. 

(1) Development and implementation of the world's most advanced high-performance Next-
Generation supercomputer 

(2) Development and dissemination of software that makes optimum use of the supercomputer 
(3) Establishment of  the world's most advanced and highest standard supercomputing Center of 

Excellence, which includes the Next-Generation Supercomputer 

３．Project Framework  
•  Integrated development of computer and software 
•  Establishment of nationwide academic-industrial collaborative structure, with RIKEN as the project 

headquarters 
•  A new law has been introduced for the framework of usage and administration 

FY2006: 3,547Million yen / FY2007: 7,736Million yen 
FY2006～FY2012 (total budget expected）about 110billion yen 

１．Purpose of policy 
Development and implementation of the world's most advanced and high-performance Next-
Generation Supercomputer, and to develop and disseminate its usage technologies, as one of 
Japan's "Key Technologies of National Importance" (National Infrastructure). 

Development & Application of Next-Generation 
Supercomputer Project by MEXT 



Goals of the Next Generation Supercomputer Project 

1.  Development and installation of the most advanced  

high performance supercomputer system 

2.  Development and wide use of application software to 

utilize the supercomputer to the maximum extent 

3.  Provision of flexible computing environment by sharing        

the next generation supercomputer through connection 

with other supercomputers located at universities and 

research institutes 

4.    Establishment of “Advanced Computational Science 

and   Technology Center (tentative name)” 



Project 
Committee 

Evaluation Scheme 

Evaluation 
 Committee 

Industry Users 

Industrial Committee 
for Promotion 
of Supercomputing 

MEXT: Policy & Funding 
　Office for Supercomputer  

Development Planning 

R&D Scheme 

Advisory  

Board 

Universities, Laboratories, Industries 

RIKEN: Project HQ 

Next-Generation  
Supercomputer R&D Center  

(Ryoji Noyori)  

NII: Grid Middleware 
and Infrastructure 

IMS: Nano Science 
Simulation 

(Note) NII: National Institute of Informatics, IMS: Institute for Molecular Science  

Project Leader: Tadashi Watanabe 

Project Organizations 

Riken Wako Institute:  
Life Science Simulation 



 RIKEN 
  comprehensive research in science and 

technology (excluding only humanities 
and social sciences)  

  physics, chemistry, medical science, 
biology, and engineering extending from 
basic research to practical application  

  7 campus in Japan, 5 outside Japan 
  about 3000 researchers 
  an Independent Administrative 

Institution under the Ministry of 
Education, Culture, Sports, Science & 
Technology (MEXT) from 2003 

 Advance Center for Computing & 
Communication 

  Providing RIKEN researchers with 
computer resources and network 
services 

  Operating RSCC(RIKEN Super 
Combined Cluster) 



Policy and Outline of  
A Next Generation Supercomputer Project 

Purpose of policy: 
  development, installation and application of an advanced  
  high performance supercomputer system, as one of  
  Japan’s “Key Technologies of National Importance” 

Total Budget:  
　　　　about 115 billion Yen  ( 0.7 billion Euros )　

                                           100% national funds 
Period of Project:  
　　　　FY2006 – FY2012   



Applications Selected for Basic Designs 
of Hardware  

21 application codes have been selected for 
basic designs of hardware: 
          6 from nano sciences 

          6 from life sciences 

          3 from environment and disaster protection 

          4 from engineering 

          2 from physics and astronomy 

15 



The Next-Generation Supercomputer project started in 2006 which is being 
carried out by RIKEN, with partners in industry, universities, and the government, 
under an initiative by MEXT (the Ministry of Education, Culture, Sports, Science 
and Technology). 
  Due to be ready in 2012, the peta-scale computing by the new supercomputer 
will ensure that Japan continues to lead the world in science and technology, 
academic research, industry, and medicine. 

The Next-Generation Supercomputer project 

The Next-Generation Supercomputer will be 
hybrid general-purpose supercomputer that 
provides the optimum computing 
environment for a wide range of 
simulations. • Calculations will be performed in processing 
units that are suitable for the particular 
simulation.　

• Parallel processing in a hybrid configuration of 
scalar and vector units will make larger and 
more complex simulations possible.  



2008 2009 2010 2011 

Computer 
building 

Research 
building 

2007 2006 2012 

Shared file 
system 

Processing unit 

Front-end unit 
(total system 
software) 

Next-Generation 
Integrated  
Nanoscience 
Simulation 

Next-Generation 
Integrated 
Life Simulation 

　　   Operation▲ 　　 Completion▲ 

Verification Development, production, and evaluation 

      Tuning and improvement 

Verification 

Production, installation, and adjustment 

    Production, installation,  
and adjustment 

Construction Design 

Construction Design 

Operation Preparation Decisions on policies and systems 

Prototype and 
evaluation 　Detailed design 

Conceptual 
design 

Detailed design Basic 
design 

Development, production, and evaluation 

Production and evaluation 

System
 

B
uildings 

Operation 

 Detailed design Basic 
design 

Schedule of Project  



Major Applications of Next Generation Supercomputer 

Targeted as grand 
challenges 



Task Forces to Develop the Grand Challenges 
Application Codes 

Nano Science


Life Science


Conducting Institute: Institute for Molecular Science (IMS) 

Conducting Institute: RIKEN 

Budget for 2008 Fiscal Year: 5.6 Million US Dollars  

Budget for 2008 Fiscal Year: 14.4 Million US Dollars  

Contributing Institutes and Universities: 6 

Contributing Institutes and Universities: １４




Basic Concept for Simulations in Nano-Science  

20 



Water molecules and  
Ions recognized by 
a protein  

Cellulase 

A water molecule  
recognized by enzyme- 
cellulose complex. 

Molecular Recognition of Proteins 
 Reproduced  by ３D-RISM  

Courtesy of IMS




Basic Concept for Simulations in Life Sciences  

Micro


Meso

Macro


http://ridge.icu.ac.jp 

http://
info.med.vale.
edu/ 

RIKEN 

RIKEN 
22 



Lung (Wada et al.) 

Brain (Oshima et al.) 

Vessels Network (Liu et al.) 

Blood Circulation Heart (Hisada et al.) Capillaries 



Promotion Program of Supercomputers 
for Industries 

Industrial Committee for Super Computing Promotion 

  established in 2006 

  participated by more than 170 companies from  
various industries  

  activities: simulation of engines, analyses of car body,    
material and polymer simulation, weather simulation 

ICSCP 



seminar and expo to industrial researchers about usefulness of simulations 

Recent Activities of ICSCP 

6 seminars a year 
for member 
industries 



Promotive Activities by Public Computer 
Centers for Industrial Use of HPC  

Computer Center of Tokyo University 

MEXT is conducting a project to 
stimulate use of public high-

tech facilities for industrial R&D     

Earth Simulator and computer centers 
of major universities provide their 
computer resources for industries 


test use for free and  productive use for charged 

Fields of  
about 40  

applicants  
from industries 

drug design  semi conductors aerodynamics


functional materials banking system 

internet search engine 

fuel cell 

noise control of cars and bullet train catalyst


audio interpretation 



Concluding Remarks 

   The next generation supercomputer project aims at: 
      ■to keep cutting-edge computer technologies inside Japan 
       ■to prompt application software developing activities  
       ■to rear young scientists for HPC fields 

   Consequently, we expect: 
　　　　　　■to maintain competitiveness in worldwide HPC technology 

　　　　　　■to innovate R&D in industries by computational science 
　　　　　　■to create new IT businesses such as SaaS (service as a software) 

  Then, we accomplish: 
　　　　　　■to reinforce science infrastructure in Japan

　　　　　　■to retain high economic activities  



National Science Foundation
Where Discoveries Begin

Office of 
Cyberinfrastructure

Abani K. Patra
apatra@nsf.gov

International Exascale 
Software Program

Abani K. Patra
Office of Cyberinfrastructure, 
National Science Foundation

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov


National Science Foundation
Where Discoveries Begin

Office of 
Cyberinfrastructure             

Abani K. Patra
apatra@nsf.gov

Drivers

• Advances in most branches of science and engineering are critically dependent on 
increasingly complex multi-scale, multi-physics, data driven computations and analysis.

• Complexity of Systems 
• Moore’s Law and Beyond -- Multicore, manycore, ...
• Heterogeneous machines 
• Data Intensive Scalable Computing
• Workflows, Grids, Clouds ...

First Cosmological simulations to 
include black hole physics by Di 
Matteo et. al. at Carnegie Mellon 
funded by OCI and MPS/AST. 

 Optimal siting of  oil exploration 
platform estimated by using 
simulation and optimization tools to 
maximize product

http://www.amd.com/us-en/assets/content_type/

AMD Phenom

http://domino.research.ibm.com/comm/
research.nsf/pages/r.arch.innovation.html?ope
n

IBM Cell Broadband Engine

Gallery http://www.frik-n-frak.com/zoomify.asp?catalogid=1957&image=http...

1 of 1 9/30/08 9:33 PM

Tower of Hanoi (Pagoda Game) Close Window

hanoi.gif (GIF Image, 350x350 pixels) http://www.ibm.com/developerworks/xml/library/x-xslrecur/hanoi.gif

1 of 1 9/30/08 9:40 PM

• All this complexity dealt with by software and tools!  
• Support for which is ad hoc, disjoint and spread across divisions, directorates and agencies! 

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov


National Science Foundation
Where Discoveries Begin

Office of 
Cyberinfrastructure             

Abani K. Patra
apatra@nsf.gov

How?
• NSF/OCI engaged in actualizing “CI Vision...” -- Atkins et. al.

• Computational Science -- the unifying theme across many 
threads that lead to successful use of computational hardware 
in the discovery and innovation process -- support for which is 
ad hoc, disjoint and spread across divisions and directorates

• Advisory Committee on Cyberinfrastructure (ACCI) has formed 
sub-committees -- “Task Forces” to deal with multiple aspects 
-- HPC, Grand Challenges, Software, Campus Bridging, Data, 
LWD

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov


National Science Foundation
Where Discoveries Begin

Office of 
Cyberinfrastructure             

Abani K. Patra
apatra@nsf.gov

“CI Task  Force”
• “opportune time to carefully investigate alternate mechanisms and methodologies for ensuring 

that the research, development and sustenance of the nation’s software and tool infrastructure 
is well positioned to help our scientists with a competitive advantage and not a disadvantage.”

• The charge to the group comprises of the following:

• Characterize and estimate the magnitude and scope of need

• Develop initiatives and programs to promote future growth, development and sustainability 
of the software and tool infrastructure needed for transformative research and innovation 
leading to industrial competitiveness and knowledge leadership.

• Analyze institutional and other barriers at NSF to promoting and supporting such an 
infrastructure. 

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov


National Science Foundation
Where Discoveries Begin

Office of 
Cyberinfrastructure             

Abani K. Patra
apatra@nsf.gov

Questions?
• What are the new applications that are emerging or likely to 

emerge in the coming decade?  

• How can NSF best stimulate development of exascale software 
applications?

• How can useful software that has been developed as part of the 
exascale effort be sustained beyond the development period?

• What systems software will be required? Distributed systems 
support, programming environments, runtime support, data‐
management user tools?



National Science Foundation
Where Discoveries Begin

Office of 
Cyberinfrastructure             

Abani K. Patra
apatra@nsf.gov

Questions?
• What application support environments will be needed? 

Application packages, numeric and non‐numeric library 
packages, problem‐solving environments?

• How can NSF aid or catalyze developments that make it 
possible to use the same tools, including compilers, debuggers 
and performance tools, on system scales all the way down to 
the typical researcher’s laptop or desktop?

• What education and training actions should be considered to 
prepare researchers, students and educators for future 
cyberinfrastructure?

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov


Improving 
HPC 
Software  

Pete Beckman & Jack Dongarra 



IESP Workshop #1 
Santa Fe, New Mexico: April 7 & 8 

  Version 1.0 started by Ken Kennedy in 2006… 
  Effort was re-launched in 2008 
  Initial planning meeting at SC08 
  This meeting sponsored by DOE & NSF in coordination

 with EU and Japanese 
  68 attendees 

  Subsequent meetings will be held and sponsored by
 Europe (end of June) and Japan (October) 

  Workshop reports will focus plans and identify issues 
  PIES? 



Agenda 

  Today 
 Goals and HPC Software Status 
 Science drivers and HPC plans: Japan 
 Architectural trends for HPC 
 Science drivers and HPC plans: Europe 
 Software Barriers for HPC, today and tomorrow 
 Science drivers and HPC plans: Europe: USA 

  Tomorrow 
 Breakout groups:  

 Tech Roadmap, Collaboration / Coordination models 



IESP Goal 

Build an international plan for developing 
the next generation open source software 
for scientific high-performance computing 

Improve the world’s simulation and modeling 
capability by improving the coordination and 

development of the HPC software environment 
Workshops: 

Then Do It… 



Components / Workshop Charge 

  Outline of what a plan would include, and possible outcomes 

  Assess the software needs for peta/exascale computation 

  Explore how to develop a community architecture roadmap 
  Gather and analyze existing R&D plans for addressing extreme

 scale; what is missing? 

  Identify key technical areas to be included in plan 

  Begin development of a roadmap for peta/exascale software 

  Identify R&D models that enable laboratories, universities, and
 vendors to co-develop coordinated open source HPC software 

  Examine funding and governance models that support
 international development 



A Running Start: www.exascale.org 



Outline: HPC Software 

  Current State:  HPC Software 
  Background:  Activities in Europe and Japan 
  The Changing Architecture 
  The IESP Workshops 
  Roadmap and Outcomes 



The Open Source Community Provides
 Most of the World’s HPC Software 



The Community is Diverse and Robust 

  Linux Operating System, libc 

  Python, Perl 

  PAPI, TAU, Kojak 

  dCache 

  UPC 

  MPICH, OpenMPI 

  ScaLAPACK 

  JuBE 

  VisIt 

  GASNet, ARMCI/GA 

  CFEngine, bconfig 

  Ganglia 

  SLURM, Cobalt 

  Dyninst 

  Torque/Moab, OpenPBS 

  Charm++ 

  pNetCDF, HDF5 

  GridFTP 

  FFTW 

  PVFS 

  In the last 10 years, galvanization of Open Source
 development dramatically improved software 

A very small sample: 



A Long History of Collaboration & Sharing 

The Result…. 

The massive archive site WSMR-
SIMTEL20.ARMY.MIL at White Sands 
Missile Range, New Mexico, USA, 
which is home to more than 2 
gigabytes of files for many computer 
systems, including MSDOS, Unix, VMS 
and some mainframes, will be shut 
down by its operators as of September 
20, 1993.  Unless a new home is found 
for the archives, this major archive site 
will vanish. 



Open Source HPC Software Stacks for
 Small Linux Clusters are Everywhere 



Just Buy It? 
Scalability Thins the Market 

  For some markets, a closed
 source business model
 continues to work well 
  Single-node optimized math

 libraries & compilers 

  Debuggers for small clusters 

  Some queuing systems, parallel
 file systems, HSMs 

  Small cluster applications: Fluent,
 CFD++, etc 





Why Seek to Improve This? 

  The largest scale systems are becoming more
 complex, with designs supported by large
 consortium 
 The software community has responded slowly 

  Significant architectural changes arriving 
 Software must dramatically change 

  Our ad hoc community coordinates poorly, both with
 other software components and with the vendors 
 Computational science could achieve more with

 improved development and coordination 



Extreme-Scale Platform Design: 
Industrial revolution and globalization has arrived 

Seymour & team 
designs and 
hand builds set 
of computers 

Dozen HPC 
companies 
flourish: 
incompatible OS 
& components 

Commodity 
components and 
Open Source 
move effort to 
integration   

Globally Distributed 
teams, Diverse 
technology 
providers, Open 
Source Software 

e.g: PRACE 

Today Yesterday Tomorrow 

Design-Build partner-
ships for extreme scale 
e.g.  
•  LLNL/ANL/IBM 
•  Sandia/ORNL/Cray 
•  Fujitsu/NEC/Hitachi/Riken 



Traditional Sources of Performance 
Improvement are Flat-Lining (2004) 

•  New Constraints 
–  15 years of exponential 

clock rate growth has ended 

•  Moore’s Law reinterpreted: 
–  How do we use all of those 

transistors to keep 
performance increasing at 
historical rates? 

–  Industry Response: 
parallelism doubles every 18 
months instead of clock 
frequency!  

Figure courtesy of Kunle Olukotun, Lance 
Hammond, Herb Sutter, and Burton Smith 



Multicore comes in a wide variety 
  Multiple parallel general-purpose processors (GPPs) 
  Multiple application-specific processors (ASPs) 

“The Processor is the new 
Transistor” [Rowen] 

Intel 4004 (1971): 
4-bit processor, 
2312 transistors, 

~100 KIPS,  
10 micron PMOS, 

11 mm2 chip  

Sun Niagara 
8 GPP cores (32 threads) 

Intel® 
XScale

™ 
 Core 
32K IC 
32K DC 

MEv2 
10 

MEv2 
11 

MEv2 
12 

MEv2 
15 

MEv2 
14 

MEv2 
13 

Rbuf 
64 @ 
128B 

Tbuf 
64 @ 
128B 
Hash 

48/64/1
28 

Scratch 
16KB 

QDR 
SRAM 

2 

QDR 
SRAM 

1 

RDRAM 
1 

RDRAM 
3 

RDRAM 
2 

G 
A 
S 
K 
E 
T 

PCI 

(64b) 
66 

MHz 

S 
P 
I 
4 
or 
C 
S 
I 
X 

Stripe 

E/D Q E/D Q 

QDR 
SRAM 

3 
E/D Q 

MEv2 
9 

MEv2 
16 

MEv2 
2 

MEv2 
3 

MEv2 
4 

MEv2 
7 

MEv2 
6 

MEv2 
5 

MEv2 
1 

MEv2 
8 

CSRs  
-Fast_wr 
-UART 
-Timers 
-GPIO 
-BootROM/
SlowPort 

QDR 
SRAM 

4 
E/D Q 

Intel Network Processor 
1 GPP Core 

16 ASPs (128 threads) 

IBM Cell 
1 GPP (2 threads) 

8 ASPs 

Picochip DSP 
1 GPP core 
248 ASPs 

Cisco CRS-1 
188 Tensilica GPPs 

You Are Here 



3D Packaging: Changing Paradigms 
How will 
System 
Software 
change? 



Vision of Photonic NoC Integration 

Courtesy: Keren Bergman, Columbia 



Power and Programming Models 



To Build a SW Roadmap & Plan: 

  What do we use
 today? 

  What we need
 tomorrow? 

  How we can fill in the
 gaps? 



Inventory Exercise… 

  Broadly divide software
 and functionality into
 hierarchical categories: 
  I/O Storage 
 Math Libraries 
 Performance Tools 
 Etc. 

  Where it is run… 
 Service node, I/O nodes,

 compute nodes, login
 nodes, etc 



Example Snippets:  ORNL XT3   



LLNL BG/P 



LLNL Viz/Analysis: 



Where We Are Today: 
We are not prepared for the changes coming 
  Hardware features are uncoordinated with software

 development 
  (power mgmt, multicore tools, math libraries, advanced memory models, etc) 

  Only basic acceptance test software is delivered with platform 
  UPC, HPCToolkit, Optimized libraries, PAPI, can be YEARS late 

  Vendors often “snapshot” key Open Source components and
 then deliver a stale code branch 
 Counterexample:  A model that works – MPICH for BG/P 

  Community codes unprepared for sea change in architectures 

  Coordination via SOW/contract is poor and only involves 2
 parties 

  No global evaluation of key missing components 



International Community Effort 

  International collaboration is required because: 
 The scale of investment 
 The need for international input on requirements 
 Computational science projects are international 
 Europeans, Japanese, and Americans are each working 

on portions of the software 

  The process must be open 
Executive Committee:     
    Co-Chair: Jack Dongarra, Univ, of Tennesse / ORNL, US 
    Co-Chair: Pete Beckman, Argonne National Laboratory, US 
    Franck Cappello, INRIA, FR 
    Thomas Lippert, Jülich Supercomputing Centre, DE 
    Satoshi Matsuoka, Tokyo Institute of Technology, JP 
    Paul Messina, Argonne National Laboratory, US  



  Asians, and Asians, and  

An Example Development Community 



Apache Foundation 

  Create a foundation for open, collaborative software
 development projects by supplying hardware, communication,
 and business infrastructure 

  Incubator projects can become Apache projects 

  800 “committers” 

  The ASF Infrastructure is mostly composed of the following
 services: 
  the web serving environment (web sites and wikis) 

  the code repositories 

  the mail management environment 

  the issue/ bug tracking 

  the distribution mirroring system 



A Plan Could Include: 

  Work with vendors to create the HPC equivalent to the ITRS
 (Int’l Tech Roadmap for Semiconductors) 

  Get community working on software before machine becomes available 

  Community proposed unified roadmap for exascale software 

  Identify missing components for future architectures and a plan
 to address them 

  Develop models for working more closely with vendors 
  (support, acceptance tests, target features) 

  Identify key application areas to drive development 

  Community software development models 

  Funding and organizational models (Apache, etc)       



Achievable Outcomes 

  Improve the capability of computational science 

  Build and strengthen international collaborations and
 leadership; deliver more capable, productive HPC systems 

  Build and improve R&D program developing new
 programming models and tools addressing extreme scale 

  Strategic plan for HPC research 

  Open source HPC development guided by roadmap with
 better coordination and fewer missing components 

  Joint programs in education and training for the next
 generation of computational scientists. 

  Vendor engagement and coordination for more capable
 software supporting exascale science 



Possible Models  
(from loose to tight collaboration) 

  Identify needs, focus Int’l R&D attention on missing components 

  Coordinate features, delivery schedule, interoperability, and improvements across
 international R&D teams 

  IESP community recommends funding for key areas 

  Provide forums for vendors and community to work together on roadmaps 

  Fund R&D and subsequent deployment of key components 

  Fund collaborative relationship with vendors and co-develop components 

  Test, integrate, and support internationally developed software components 

  Build integrated software that can pass acceptance tests on extreme platforms 



Future Workshops and Report 

  3 workshops over the next year 
 1: Santa Fe, April 7-8 
 2: France, June 28-29 
 3: Japan in the early Fall 

  Broad engagement by the community 
  Initial reports in summer 2009 
  Final report for first year at SC09 
  Planning for IMMEDIATE payoff 

 Could begin initial components of plan this year 



www.exascale.org 



Thou Shalt Specialize or Commoditize? 
The Japanese Situation Towards Peta 

and Exascale 

Satoshi Matsuoka, Prof., Dr. Sci. 
GSIC Center, Tokyo Institute of Technology /  

National Institute of Informatics 

DoE IESP Workshop @ Santa Fe, NM, USA Apr. 6-8, 2009 



2 

The Ideal: Hiearchy of Deployments 
2 



Vector Machines- NEC SX 
•  ACOS/SX-1 
•  SX-2 (1983): Bipolar, 4-wide, 

1.3GFlops, single CPU 
•  SX-3: (1989): Bipolar, 8-wide, 

22GFLOPS(2x4CPUs) 
•  SX-4 (1994): CMOS 8-wide 64GF/

node (2GF x 32CPUs) 
•  SX-5 (1998): 16wide, 128GF/node 

(8GF x 16 CPUs) 
•  SX-6 (2001): 8-wide x 2 clock, 64GF/

node (8x8CPUs), core of ES 
•  SX-7 (2002): 8-wide x 2 clock, 

282GF/node (9GF x 32 CPUs)  
•  SX-8 (2004): 8-wide 2Ghz vector, 

128GF/node (16GF x 8CPUs) 
•  SX-9 (2007): 8-wide x 4 3.2 Ghz 

102GF/CPU, 1.6TF/node, 128GB/s 
inter-node BW 



Glory Days of 
Vectors…just 12 

years ago 

Top500 June 1996, 40 NEC SXs 

“Cretaceous
” 

Japan had ~30% performance share as a country 



5 

High Performance Commodity 
Computing 
- High Performance x86 CPUs 
- Fast Commodity Interconnect 
- Cluster Software 

Myrinet, Infiniband, etc. 

Rise and spread of 
Commodity Clusters and 
increase in their size 

Rise of the Commodity Clusters: “The Scenario” 

Real-time tracking of  
technology curve 

Co
st

/P
er

fo
rm

an
ce

 

SC Technology Curve 
(x1.68 per Year) 

Complete 
Decommision 

Design 
Start 

Operation 

Operation 

Time 

Widespread Use of Clusters: 
Small to very large (e.g. 
TSUBAME, Ranger) 

Rapid Increase in the 
Top500 => RoadRunner 
1st Peta in 2008 

High-
Performance 
x86 CPUs 



March 15, 2004 Slide Courtesy Thomas Sterling - Caltech & 
NASA JPL 

6 

The First Beowulf – Wiglaf (1993~4) 
(NASA/CalTech) 

•  16 processors 
•  Intel 80486 100 MHz 
•  VESA Local bus 
•  256 Mbytes memory 
•  6.4 Gbytes of disk 
•  Dual 10 base-T Ethernet 
•  72 Mflops sustained, on 

real PPM code 
•  $40K 
•  Did not even come close 

to Top500 



Early PC Clusters & Top500 
•  The 1st WS Cluster ranked: June 1997 (The 

9th Top500) 
–  UC Berkeley NOW, 344th (10.14 GFlops) 

•  The 1st PC Cluster ranked: June 1999 (The 
13th Top500) 
–  Univ. Bonn、Parnass2 Cluster, 362nd (29.5 GFlops) 

•  The 1st US PC Cluster: June 2000  
(The 15th Top500) 
–  NCSA (Windows) NT Supercluster, 207th (62 

GFlops) 
•  The 1st Teraflop Cluster: Nov. 2002 

(The 19th Top500) 
–  LLNL MCR Linux Networx Linux Cluster Xeon 2.4 

GHz – Quadrics, 5th (5694 Gflops) 



8 

And this went to Petascale, 
Despite all the Skepticism 

•  TACC Ranger 
–  The largest x86 Linux Cluster 

~50,000 x86 cores 
–  4th (326 TFlops) June 2008 

(The 30th Top500) 
•  RR: the first #1 “commodity” cluster on 

Top500 June 2008(The 30th Top500) 
–  The first Petaflop machine 
–  The first #1 machine to use IB 
–  The first #1 Linux machine  
–  The first #1 “heterogeneous” 

SC (Cell and Opteron) 



From Computonik Shock to 
Apollomodity Shock 

•  2002 The Japanese 
Earth Simulator New 
York Times “Computonik 
Shock” 
–  Top500 #1 @ 35.8 

TeraFlops 
•  2004-5 US BG/L 

>100Tera like the 
Geminis 

•  2008 US Roadrunner 
hitting Peta like Apollo 
11 “commodity prevails” 

“One small step for RR, one giant leap for 
supercomputing”  

Computnik article here 



Hokkaido University 
Information Initiative Center 

HITACHI SR11000 
5.6 Teraflops 

Tohoku University 
Information Synergy Center 

NEC SX-7 
NEC TX7/AzusA 

University of Tokyo 
Information Technology Center 

T2K-Todai x86 140 Teraflops 
HITACHI  SR11000 18 Teraflops 
Others (in institutes) 

Nagoya University 
Information Technology Center 

FUJITSU  PrimePower2500 
11 Teraflops 

Osaka University 
CyberMedia Center 

NEC  SX-8 or SX-9 
2008 x86 Cluster 35 Teraflops 

Kyoto University 
Academic Center for Computing 
and Media Studies 

T2K-Kyoto x86 61 Teraflops 

Kyushu University 
Computing and 
Communications Center 

2007  x86 20 TeraFlops? 
Fujitsu Primequest 
Hitachi SR11000 

Japan’s 9 Major University Computer Centers 
(excl. National Labs) circa 2008 – a Grid at Petascale by 2009 

The 4 T2K + TSUBAME clusters 
are  national leadership machines 

Tokyo Inst. Technology 
Global Scientific Information 
and Computing Center 

NEC/SUN TSUBAME  
85 Teraflops   170 TFlops? 

University of Tsukuba 

2006 PACS-CS 14.5 TFlops 
T2K -Tsukuba 95 Teraflops 

National Inst. of Informatics 
NAREGI  Testbed 
4 Teraflops 2009 NEC ES2 

(131TF), Fujitsu-
Jaxa (135TF) 
2011-12 NLP 
(10PF) 

?

?

?



11 

The TSUBAME 1.0 @ Tokyo Tech. 
Spring 2006-- ~80 Teraflops Peak 

ClearSpeed CSX600 
SIMD accelerator 
360 boards, 
35TeraFlops(Current)) 

Storage 
1.0 Petabyte (Sun “Thumper”) 
0.1Petabyte (NEC iStore) 
Lustre FS, NFS, WebDAV (over IP) 
50GB/s aggregate I/O BW 

500GB 
48disks 500GB 

48disks 500GB 
48disks 

Unified IB network 

Sun Galaxy 4 (Opteron Dual 
core 8-socket) 

10480core/655Nodes 
21.4Terabytes 
50.4TeraFlops 

OS Linux (SuSE 9, 10)   
NAREGI Grid MW 

Voltaire ISR9288 Infiniband 10Gbps 
x2  (DDR next ver.)  
~1310+50 Ports 
~13.5Terabits/s (3Tbits bisection) 

10Gbps+External 
Network 

“Fastest 
Supercomputer in 

Asia” 7th on the 27th 
Top500@38.18TF 



T2K Open Supercomputer Alliance 

Univ. Tsukuba 
648 nodes (95.4TF) / 20TB 
Linpack Result: 
  Rpeak  = 92.0TF (625 nodes) 
  Rmax  = 76.5TF 

Univ. Tokyo 
952 nodes (140.1TF) / 31TB 
Linpack Result: 
  Rpeak  = 113.1TF (512+256 nodes) 
  Rmax  =   83.0TF 

Kyoto Univ. 
416 nodes (61.2TF) / 13TB 
Linpack Result: 
  Rpeak  = 61.2TF (416 nodes) 
  Rmax  = 50.5TF 

  Primary aiming at design of common 
 specification of new supercomputers. 

  Now extending to collaborative work 
 on research, education, grid operation, 
 ..., for inter-disciplinary computational 
 (& computer) science. 

  Open hardware architecture with 
 commodity devices & technologies. 

  Open software stack with open- 
 source middleware & tools. 

  Open to user’s needs not only in 
 FP & HPC field but also INT world. 

12




From Glory Days to 
Near Extinction...in 

10+ years 

Top500 June 1996, 40 NEC SXs 

“Cretaceous” 

Top500 Nov 2007, 2 NEC SXs “Paleogene” 

(Top500 Jun 2008 --- just 1 SX) 

•  Japan as a country now only 
has 4% share --- now beaten 
by France 

•  Big Iron Vector & SMP SC 
now “niche” 

•  Clusters too small for cost, 
vendor inexperiences




In Response: Japanese Petascales 
•  The Next Leadership 

Petascale machine 
–  > 10 Petaflops 
–  Specialized 

•  ½ NEC Vector, ½ Fujitsu SPARC 
derivative 

•  Huge, Expensive ($1 billl) 

Vs. 

•  Commodity efforts e.g. 
TSUBAME 2.0, T2K follow ons 
–  The ES vs. TSUBAME 1.0 battle 
–  The ES2 & Jaxa Fujitsu vs. 

T2K&TSUBAME 1.2 
–  NLP vs. Gen 2 T2K& 

TSUBAME2.0? 

Kobe, Japan 



15 1TF 

10TF 

100TF 

1PF 

2002Mar 2006Mar 2008Mar 2010Mar 2012Mar 2004Mar 

Earth Simulator 
40TF (2002) 

10PF 

Japanese NLP 
>10PF (2012-1Q) 

LANL Roadrunner 
(Jun2008) 

BlueGene/L 
360TF(2005) 

US >10P  
(2011~12?) 

1.3TF 

TSUBAME Upgrades Towards Petaflops 
Sustained Acceleration 

Titech Campus Grid 
Clusters 



Biggest Problem is Power…  

TSUBAME 2.0  x24 improvement in 4.5 years…?  ~ x1000 over 10 years 



Circa 2004 My Prediction for a Petaflops Machine 
in 2004 (as TSUBAME was being designed) 

IBM/Toshiba/
SONY Cell (Chip 
Vector) + SMT/
CMT 
256GF-1TFlops 
(@0.065-0.03)


OR


Multicore SMT/CMT, 
̃50Gflops@0.065μ


GPU or DSP, 
̃1TFlops @ 0.045


“Future PC Vector-
Graphics”


“Future AV Vector-Parallel”


100CPUs/Rack => A 100 Teraflops per Rack




•  E.g., NVIDIA Tesla, AMD Firestream 
–  High Peak Performance 1TFlops 

•  Good for tightly coupled code e.g. Nbody 

–  High Memory bandwidth (>100GB/s) 
•  Good for sparse codes e.g. CFD 
•  High 3DFFT performance (>100 GFlops) due 

primarily to memory bandwidth 

–  Looks very much like classic vector machines 
•  Many many registers, small cache, abundunt 

multithread ~= long vectors 

–  Restrictions: Limited non-stream memory 
access, PCI-express overhead, etc. 

How do we exploit them given vector 
computing experiences? 



19 

TSUBAME 1.2 Evolution (Oct. 2008) 
World’s first GPU Accelerated SC 

500GB 
48disks 

NEC SX-8i 
Voltaire ISR9288 Infiniband x8 
 10Gbps x2  ~1310+50 Ports 
~13.5Terabits/s 
(3Tbits bisection) 

10Gbps+External NW Sun x4600 (16 Opteron Cores) 
32~128 GBytes/Node 
10480core/655Nodes 

21.4TeraBytes 
50.4TeraFlops 

OS Linux (SuSE 9, 10)   
NAREGI Grid MW 

Unified Infiniband 
network 

ClearSpeed CSX600 
SIMD accelerator 
360    648 boards,  
35      52.2TeraFlops 

PCI-e 

Nvidia Tesla T10P-one card per node, ~680 cards 
High Performance in Many BW-Intensive Apps 

10% power increase over TSUBAME 1.0 (130TF SFP / 80TF DFP) 

Storage 
1.5 Petabyte (Sun x4500 x 60) 
0.1Petabyte (NEC iStore) 
Lustre FS, NFS, CIF, WebDAV (over IP) 
60GB/s aggregate I/O BW 

NEW: co-TSUBAME 
90Node 720CPU (Low Power) 

~7.2TeraFlops 



20 

But wait, we now have this in commodity…the 
GPUs (Tesla, FireStream, Larrabee, ClearSpeed) 

nVidia Tesla T10: 65nm, 600m2, 1.4 bil Tr 
1.08TF SFP 

Thread Processor 
Cluster (TPC) 

Thread Processor 

Thread Processor 
Array (TPA) 

x86  
16 cores 
2.4Ghz 

80GFlops 

4GB 
32GB 

PCI-e 

Tesla Accelerator 

“Massive FMA FPUs” 
“Powerful Scalar” 

65~55nm(2008)  
  => 15 nm (2016) 
x20 transitors (30 bil) 
20TF FMA SFP 
10TF FMA DFP 



21 

680 Unit Tesla Installation… 
While TSUBAME in Production Service (!) 



Historical 10 year Parallel---Commodity 
x86 Clusters vs. GPU Clusters


•  The 1st HPC GPU Cluster-2004 Stony Brook-U  
–  Zhe Fan et. al. “GPU Cluster for High Performance 

Computing”, SC2004 
–  32-node Xeon 2.4Ghz + nVidia GeForce FX5800 

•  The 1st HPC GPU Cluster-2008 TSUBAME 1.2 

22 

X86 Cluster
 GPU Cluster


1st Cluster
 1993-4 (Wigraf@NASA)
  2004 (Stony Brook)


1st Top500
 1999 (Bonne Parnass2)
 2008 (TSUBAME)


1st Tera/Peta
 2004 (LLNL MCR)
 ??? 2010-2011


1st Peta/Exa
 2008 (Ranger (1/2))
 ???  2014-16




•  100MW power capacity => 1TFlop / 100W 
•  nVidia Tesla 10p@55nm is 1TFlop SFP/

~170W incl. 4GB memory circa 2008… 
–  1-2TF DFP @ 100W w/8-16GB in 2012-13@22nm  

•  10KW/m2 power density => 10,000m2 

–  Save cooling energy via ambient cooling, PUE < 1.2 
–  Various power optimization innovations 

•  Network design to stay within 25% of system 
power and cost 
–  10TF Nodes => 100,000 nodes, hard to build full 

fattree, bisection BW will suffer greatly 

Extrapolating to Exascale 





Future Architecture Trends and their 
Applications/Algorithms 

 The “n2 (component density) vs. n (I/O BW) problem “

•  Very Dense computation 

–  Vector/SIMD/Multithreading arch. 
–  Power consumption the issue 

•  Good absolute local memory BW  
–  1TB/s per chip soon, fast/opto signaling, 3-D packaging 
–  but deepening memory hierarchy 

•  Relatively poor node I/O channel and NW BW 
–  (only) 40Gb/100Gb soon, long distance signaling hard 
–  There might be breakthrus, (e.g. planar laser diode 

emisson), but… 

•  Very poor Disk Storage BW 
–  SSDs are just boosts, no exception to the  

laws of physics

25 



Can we make petaflops scale to exa 
in “non-capacity capability app”? 

•  Capability --- latency matters, strong scaling 
•   requiring 1~10KB 1us messages to be efficient  

computation loop less than 1 us. 
=> Can only tolerate 1/1000 fluctuation i.e. both loop and 
communicaiton will be 1ns, c.f. strong scaling code on a 
petaflops machine 
=> Even with 3-D stencils expect 1/30~1/100 i.e. 10-30ns 

#s
tr

on
g 

 
sc

al
in

g 
ap

ps
 

Peak Performance 

Are we being hypocritical 
just to get money? 



A Typical “Weak Scaling Capability App” 
- Capacity App in Disguise -  

Initialize; 

Loop until computation gets done { 

 MPI_AllScatter(); 
Do work within node for seconds, 
minutes, hours…; 
MPI_AllGather(); 

} 

Finalize; 

--- And is grossly inefficient compared to say 
simple workstealing parameter-sweep esp. if 
load is unbalanced 



28 

So the world will mostly go ensemble 
--- capability at core, capacity at large --- 

“How are we to judge sciences, in that using 100,000 
cores in a single MPI app has more scientific 

significance than 100,000 single-threaded app, as 
they both require system scalability in the design?” 

…… 

Barotropic S-Model 
Ensemble climate 

simulation 

QM/MM Molecular 
Simulation 

BTW, MW may need to scale better for “capacity” e.g. BQ systems 



DOE SC Applications Overview 
(following slides courtesy John Shalf @ LBL　NERSC) 

Sparse Matrix LU Factorization Multi-Discipline SuperLU 

Dense Matrix CMB Analysis Cosmology MADCAP 

Particle Molecular Dynamics Life Sciences PMEMD 

Structure Problem/Method Discipline NAME 

Fourier/Grid DFT Material Science PARATEC 

Particle in Cell Vlasov-Poisson Magnetic Fusion GTC 

2D/3D Lattice MHD  Plasma Physics LBMHD 

3D Grid General Relativity Astrophysics CACTUS 

3D Grid AGCM Climate Modeling FVCAM 



Latency Bound vs. Bandwidth Bound? 
•  How large does a message have to be in order to 

saturate a dedicated circuit on the interconnect?  
–  N1/2 from the early days of vector computing 
–  Bandwidth Delay Product in TCP 

3.4KB 2GB/s 1.7us RapidArray/IB4x Cray XD1 
2.8KB 500MB/s 5.7us Myrinet 2000 Myrinet Cluster 
8.4KB 1.5GB/s 5.6us NEC Custom NEC ES 

46KB 6.3GB/s 7.3us Cray Custom Cray X1 
2KB 1.9GB/s 1.1us Numalink-4 SGI Altix 

Bandwidth 
Delay Product 

Peak 
Bandwidth MPI Latency Technology System 

•  Bandwidth Bound if msg size > Bandwidth*Delay 
•  Latency Bound if msg size < Bandwidth*Delay 

–  Except if pipelined (unlikely with MPI due to 
overhead) 

–  W/HW DMA a few 100ns but not much more 
(Original slide courtesy John Shalf @ LBL)




Collective Buffer Sizes 
- demise of metacomputing - 

95% Latency Bound!!! 

⇒ Don’t need all that 
global NW bandwidth 
⇒ Great news for weak 
scaling code 
⇒ Bad news for strong 
scaling code 

(Original slide courtesy John Shalf @ LBL)




GPUs as Commodity Vector Engines---
True Rebirth of Vectors 

Unlike the conventional accelerators, 

GPUs have high memory bandwidth. 

Since latest high-end GPUs support  

double precision, GPUs also work 

as commodity vector processors. 

The target application area for GPUs is 

very wide. 

Restrictions: Limited non-
stream memory access, 
PCI-express overhead, etc. 

 How do we utilize them easily? 
Memory Access 

C
om

pu
ta

tio
n 

Cache-based 
CPUs 

Vector Processor 

Traditional 
Accelerators 

MatMul 

FFT 

N-body 



Dense Computing Example on 
GPUs


Fantastic but obvious speedups




The new JST-CREST “Ultra Low Power 
(ULP)-HPC” Project 2007-2012 

MRAM 
PRAM 
Flash 
etc. 

ULP-HPC 
SIMD-Vector 

(GPGPU, etc.) 

ULP-HPC 
Networks 

Modeled ULP-HPC 
Applications 

0 

Modeled ULP-HPC 
HW, Middleware, etc. 

0 

Optimal Point 
x10 Energy 
Efficiency 

Optimize 
Power/Perf 

Power Perf 

2016 TSUBAME 
becomes 1/1000 

Generalized Autotuning Scheme 



Microsoft TCI HPC-GPGPU Project 
(work w/MS Research) 

f(x)
f(x)
f(x)
f(x)
f(x)


f(y)
f(y)
f(y)
f(z)
f(z)


g(x)
g(x)
g(x)
g(y)
g(z)


h(a)
h(b)
i(x)
i(c)
f(m)
 f(v)


f(v)
GPGPU 
SIMD-Vector 
Acceleration 

f(x)
X86 Scalar 

Scalar 
Multi-Core f(x)


Coupled 
HPC Acceleration 

Advanced 
Bioinformatics/ 
Proteomics 

GPGPU-CPU 
Hybrid Massively Parallel 

 “Adaptive” Solvers + 
GPGPU FFT and other 
Acceleration Kernels 
-  Improving GPGPU  
Programmability w/  
Library/Languages 
e.g. MS Accelerator 

- High Dependability w/ 
large-scale GPGPU 

Cluster 
- Model-based GPGPU-
CPU Load Balancing 

Need x1000 
acceleration 
over standard PCs 



36 

1,000 x1,000  all-to-all docking  
fitness evaluation will take only  

   1-2 months (15 deg. pitch) 
with a 32-node HPC-GPGPU cluster (128 
GPGPUs). 
cf.  
   ~ 500 years with single CPU (sus. 1+GF) 
   ~ 2 years with 1-rack BlueGene/L 

P1  P2  P3  P4  P5  ….         P1000 

P1   
P2   
P3   
P4   
P5   

…   

P1000 

Fast PPI candidate 
screening with FFT 

All-to-all 3-D Protein Docking Challenge 

Blue Protein system 
CBRC, AIST 
(4 rack,  8192 nodes) 



37 

Protein 1 

Protein 2 

3‐D 
voxel 
data 

3‐D 
complex 
convolu/on 

3‐D 
voxel 
data rota/on 

(6 deg., 15 deg.) 

cluster 
analysis 

Docking Confidence level 

candidate 
docking sites 

CalculaJon for a single protein‐protein pair:　~= 200 Tera ops. 

Calcula/on Flow for 3‐D AA docking 

3‐D complex convoluJon   O(N3 log N) ,   typically N = 256 
                                  x　

Possible rotaJons  R = 54,000  (6 deg. pitch) 

200 Exa Ops for 
1000 x 1000 

Host 
CPUs 

NVIDIA 
CUDA 



Bandwidth Intensive 3D-FFT for GPUs 
@ Tokyo Tech. [Nukada et. al., SC08] 

Our 3-D FFT algorithm consists of the following 
two algorithms  

to maximize the memory bandwidth. 
(1) optimized 1-D FFTs for dimension X,  
(2) multi-row FFT for dimension Y & Z. 

The multi-row FFT computes multiple 1-D FFTs 
simultaneously.  

Used for vector machines which provide high 
memory bandwidth. 



Bandwidth Intensive Approach 

Our 3-D FFT algorithm consists of the 
following two algorithms  

to maximize the memory bandwidth. 
(1) optimized 1-D FFTs for dimension 

X,  
(2) multi-row FFT for dimension Y & Z. 

The multi-row FFT computes multiple 
1-D FFTs simultaneously.  

Adapted from vector algorithms, 
assuming high memory bandwidth. 

Input 
4 streams 

Output 
4 streams 

4-point FFT 

This algorithm accesses multiple streams, but 
each  of them is successive. 
Since each thread compute  independent set of 
small FFT, thousands of registers are required 
Solution: for 256-point FFT, use two- pass 16-
point FFT kernels. 



Comparison with CPUs 

GFLOPS 



Performance of DP 3-D FFT on 
CUDA and TSUBAME 

MPI version is used for computation with multiple nodes 

512 CPUs




Performance including Data 
Transfer 

The Worst Case: 

GPU computes only FFT, and CPU 
computes all the others. 

Ex) simply replacing CPU library by 
GPU 

Ex) data come from I/O devices  

We have to transfer data between 
host and device using PCI-Express 
bus.  

In the best case, the host CPU is used 
only to control GPUs. 

only support PCI-e 1.1 



Main Flow Chart  

Generate Grid 

Receptor Ligand 

Search Max Scores (Values) 

Generate Grid 

Rotate 

Read geometry data of atoms of 
Proteins from PDB, preprocess, and 
transfer both to the GPGPU card. 

Generate 3D Grid data on the card. 
For ligands rotate by 6 or 15 
degrees increments  

Conduct two forward transforms, 
one backward transform, and an 
element-wise multiplication. 

Find the best docking position with 
statistical clustering  

FWD 3D FFT FWD 3D FFT 

INV 3D FFT 

MUL 
3D Convolution using 3D FFT 

MAIN LOOP on GPGPU Card  
=> pack as much card in node as possible 



44 

•  32 compute nodes 
•  128 8800GTS GPGPUs 
•  one head node. 
•  Gigabit Ethernet network 
•  Three 40U rack cabinets. 
•  Windows Compute Cluster 

Server 2003 SP1, planned 
2008 migration 

•  Visual Studio 2005 SP1 
•  nVidia CUDA 2.x 



45 

Power (W) Peak (GFLOPS) 3D-FFT 
(GFLOPS) 

Docking 
(GFLOPS) 

Nodes per 
40 U rack 

Blue Gene/L 20 5.6 - 1.8 1024 

TSUBAME 1000 (est.) 76.8 (DP) 18.8 (DP) 26.7 (DP) 10 

8800 GTS *4 570 1664 256 207 10~13 

Single Node 

System Total 
# of nodes Power 

(kW) 
Peak 
(TFLOPS) 

Docking 
(TFLOPS) 

MFLOPS/W 

Blue Gene/L (Blue 
Protein @ AIST) 

4096 
(4racks) 

80 22.9 7.0 87.5 

TSUBAME 655 (~70 
racks) 

~700 50.3 (DP) 17.5 (DP) 25 

8800 GTS 32 (3racks) 18 53.2 6.5 361 

! Only CPUs for TSUBAME.  DP=double precision. 

BG/P vs. GTX280 would be even better for GPUs 



Accelerating CFD on GPUs 
(Prof. Takayuki Aoki, Tokyo Tech.) 

Safety 

Weather/
Environmental Civil Engineering 

Nuclear 
(Cooling) 

Animations Courtesy Prof. Takayuki Aoki @ Tokyo Tech. 



Rayleigh-Taylor Instability 
Heavy fluid lays on light fluid and 
unstable. Euler equation: 

88 GFLOPS using 
GTX280 

512 x 512 
×90 



Phase Separation 
Phase transition dynamics is described by the 
Phase Field Model. Cahn-Hilliard equation: 

H : free 
energy 

Discretization: 



49 

3-D Computation of Phase Separation 
Mixture of Oil and Water:  158 GFLOPS using GTX280 

256 x 256 x 256 Used register number = 46  
※ nvcc option –maxrregcount 32 
                        for G80, 92 

×160 



Real-time Tsunami Simulation 

Conserva/ve Form:  

Shallow-Water Eq. 

Early Warning System: 

Sensor Data 
Extrapolation 

Real-time 
CFD 

high 
accuracy 

Assuming 
hydrosta/c balance 
in the ver/cal 
direc/on,  

3D  2D equa/on 

Collaboration with ADPC (Asian 
Disaster Preparedness Center)  

50




Numerical Methods  
of Tsunami Simulation 

■ 2-dimensional Problem : Directional-Splitting 
                                                Fractional Method 

■ Point Value Comp. : Characteristic-based Method 
                                        using Multi-moment Interpolation 

■ Integral Value Comp. : Conservative Semi-Lagrangian 
                                                     CIP + IDO 

■ Run-up to dry area: thin water layer and 
                                       artificial viscosities 

51




52




GPU Performance 
Speed Comparison  

x‐direc/on : y‐direc/on = 10 : 7 

GPU  : CPU = 62 : 1 

GPU – GeForce GTX280 (sp = 240, clock 
1.3Ghz) 

CPU – Xeon 2.4GHz 6MB Cache Memory 

Current Speed‐up  



54 

World-Wide Real-Time 
Tsunami Simulator 



55 

Multi-GPU: Riken Himeno Benchmark 
(Prof. Takayuki Aoki and Akira Nukada, Tokyo Tech) 

Poisson Equation: 
  (Generalized coordinate) 

Discretized Form: 

 18 neighbor 
      point access 

RIKEN Himeno CFD Benchmark Himeno for CUDA 



56 

4 GPU node parallelization 
(should also scale well multi-node) 

64x64x128 

GPUs Host 

64x64x32 

64x64x32 

64x64x32 

64x64x32 

PCI 
Express Data 

exchange 

Data 
exchange 

Data 
exchange 

Open MP 
Parallel GeForce 8800 

Ultra x 4 



57 

4GPU Parallel Performance 
1 GPU  (no data transfer)  30.6 GFLOPS   
(0.269sec) 
2 GPU  (16kB transfer)  42.5 GFLOPS   
(0.193sec) 
4 GPU  (32kB transfer)  51.9 GFLOPS   
(0.158sec) 

Referen
ce 

1 GPU  (no data transfer)  29.4 GFLOPS   (2.328sec) 
2 GPU  (66kB transfer)  53.7 GFLOPS   (1.275sec) 
4 GPU  (131kB transfer)  83.6 GFLOPS   (0.819sec) 

S Model [65x65x129] 

M Model [129x129x257] 

1 GPU  (no data transfer)  ………. 
2 GPU  (262kB transfer)  ………. 
4 GPU  (524kB transfer)  93.6 GFLOPS   (5.974sec) 

L Model [257x257x512] 

0.976 GFLOPS (8.431sec) x53.1 acceleration 

C.f. NEC SX-8 6 CPU (96GF Peak) 38.3GFLOPS Size XL 



Multi-Node Himeno on TSUBAME 
(Joint work Tokyo Tech. and NEC)


 Himeno XL(1025x513x513) and XXL(2049x513x513) 

32GPUs 650GFlops 



14.5GFlops 4 GPUs (nVidia 8800 GTS) vs.  
0.54GFlops 4 Core CPU (Phenom 2.5Ghz, DDR2-800) 
Double Precision FP using mixed precision technique 
(Sparse Matrix collection from UFlorida (size 1,440 to 
1,585,478)  

Multi-GPU Parallel Sparse CG Solver 
[Cevahir et. Al. ICCS09] 

Mixed precision Arithmetic




Portfolio of Tokyo Tech. GPU Computing 
Base Technologies for HPC & eScience


•  TSUBAME 1.2 (680 Teslas) & 2.0 
•  Kernels（FFT, Dense/Sparse Matrix） 
•  Parallel Algorithms（Large FFT, LINPACK, CG) 
•  Task & Resource Mgmt (Heterogeneity, 

Scheduling, BQ Scheduling, etc.) 
•  Fault Tolerance（ECC, redundant computation, 

GPU checkpointing） 
•  Languages（OpenMP on GPU, Accelerator, MP） 
•  GPU Low Power computing (power modeling, 

measurement, optimization) 
GPU Leadership from research to deployment(!) 

60 



Software-Based ECC for GPUs　(N. Maruyama) 
Possible Collab. w/MSR Vivian Sewelsen and HPC Cluster  

Number of Bit-Flip Errors 

N
um

be
r o

f G
PU

s 

0 
10 
20 
30 
40 
50 
60 

0 10 20 30 40 50 60 

Our CUDA version 
memtest86+ 60 GPUs on 

Raccoon


User Area 

Code Area 

Write  
Read  

Global Memory GPU 

Code 
Gen. 

Data 

Code 

Error checking  

Write  
Read  

X50 exec. 
time over 
CPUs


Only 7% 
overhead 
w/ECC


Software-based ECC on GPUs

Read : Read ECC data and check

Write : Generate ECC and store alongside data


N body Problem


GPU computing 
reliabiliy

No ECCs on GPUs yet => Bit 
flip errors?

Large scale clusters will be 
quite problematic 



62 

Power Efficiency in 3-D FFD 

CUDA GPUs have four times 
higher power efficiency than CPU 
in high-performance FFT. 

RIVA128 is an old, low-power GPU, 

to measure pure power consumption 

of host system (CPU, chipset, memory).  

The interface is legacy PCI. 

GPU Computation Idle Power GFLOPS GFLOPS/W 

RIVA128 On CPU 126 W 140 W 10.3 0.074 

8800 GT On GPU 180 W 215 W 62.2 0.289 

8800 GTS On GPU 196 W 238 W 67.2 0.282 

8800 GTX On GPU 224 W 290 W 84.4 0.291 



63 

Himeno Size M Power 
Measurement 

Jacobi 
　* CPU 
　Av. Power 160W 
　Exec. Time：62.88s 
　* GPU 
　Av. Power：170W 
　Exec. Time：3.75s 
GPU/CPU 
　Power：106％

　Energy:1/15.8 
＝6.33％


For extreme memory intensive CFD app GPU uses 
only 6% of CPU energy 



“It is the Will” 
–  1. We can build an exascale 

system---with all its problems 
–  2. Capacity apps disguised as 

capability will result in 
significant loss of efficiency 

–  3. The entire machine can be 
more or less used for large jobs 
but will have room left over for 
capability 

–  4. One would need ecosystem 
and growth model to improve 
app to be more capability 
oriented as problem scales 

–  5. Next generation Cloud and SC 
centers will converge, with low 
cost HPC networking and 
commodity acceleration 



1TF 

10TF 

100TF 

1PF 

2002 2006 2008 2010 2012 2004 

Earth Simulator 
40TF (2002) 

10PF 

Japanese NLP 
>10PF(2012) 

US/EU 
Petascales 
(Peak) 
(2008) 

US NSF/DoE  
(2010) 

BlueGene/L 
360TF(2005) 

US >10P  
(2011~12) 

1.3TF 

Towards TSUBAME 2.0 

KEK 59TF 
BG/L+SR11100 

Titech 
Campus Grid 



66 

US >10P  
(2011~12?) 

Road to Exascale 

2012 

1TF 

10TF 

100TF 

1PF 

2002 2006 2008 2010 2004 

Earth Simulator 
40TF (2002) 

10PF 

1.3TF 
KEK 59TF 
BG/L+SR11100 

Titech 
Campus 
Grid 

100PF 

1ExF 

2016 2014 2018 2020 



67 

TSUBAME in Top500 Ranking 

•  Continuous improvement for 6 times 
•  The 2nd fastest heterogeneous supercomputer 

in the world (No.1 is RoadRunner) 

Jun 06 Nov 06 Jun 07 Nov 07 Jun 08 Nov 08 Jun09 

Rmax 
(Tflops) 

38.18 47.38 48.88 
[HPDC 
2008] 

56.43 67.70 77.48 ??? 

Rank 7 9 14 16 24 29 ??? 

Opteron 
CS 360 CS 648 

Xeon 
Tesla 



68 

IDC Servers and Cluster SC---
the differences (or are there?) 

•  The Same---the nodes 
–  Processors (x86) 

–  Memory (DDR DRAM) 
–  I/O (PCI-e) 

–  OS (Linux/Windows), MW 
•  Differences 

–  Network (IB vs GbE)  
(< 10% of machine cost vs. 10-25%) 

–  Parallel Storage 
–  Power Density 

–  Parallel SW Stack: (MPI, OpenMP, BQ, …)  
–  Operations as a SC 

•  Accelerators? 

IDC 
Servers 

TSUBAME 
SC 



69 

TSUBAME Network: ~1400 port 
Fat Tree, IB-RDMA & TCP-IP 

X4600 x 120nodes (240 ports) per switch 
=> 600 + 55 nodes, 1310 ports, 13.5Tbps 

IB 4x 
10Gbps 
x 2 

Voltair 
ISR9288  

IB 4x 
10Gbps 
x 24 

Bisection BW = 
2.88Tbps x 2 

IB 4x 
10Gbps 

X4500 x 60nodes (60 ports) 
=>60ports 600Gbps 

Single mode fiber for 
cross-floor connections 

External 
Ether 



Incompressible CFD 
Application 

■ Advection Term： 
 
High-accurate 
FDM   
                                           (Suitable for GPU) 

Incompressible Navior-Stokes 
Equation 

■ Diffusion Term： 
 
2nd order Center 
FDM (easy) ■ Velocity Divergence： 
Staggered FDM (easy) 

■ Poisson equation： 
Red & Black MG（hard）


■ Pressure Gradient： 
Staggered FDM（easy）


Poisson equation 



Types of Memory Access 
Continuous Access 
FDM (Finite Difference) 

Random (Indirect) Access 
FEM (Finite Element) 

Data Dependency 

A[i] = A[i-1] + A[i-2]*C; 

good


So-So
A[i] = A[IP[i]] + A[IP[i-1]]; 

Not Good




Poisson Equation solved by 
MG(Multi Grid), Red & Black method 

Point 
Jacobi 

■ Algorithm 
Acceleration 

SOR MG-SOR ×4 ～ 5 

×50? 

■ Hardware 
Acceleration : 

GPU (CUDA) 

×100 



Red & Black method 

F [ny]
[nx] 

FR [ny][nx/
2] 

FB [ny][nx/
2] 

Dependency on 
neighboring data 
Continuous data 
access 



Two-Stream Instability 
in Plasma Physics 

Vlasov-Poisson Equation: 

f : electron distribution function 
n : electron number density 



CIP Method for 2-dimensional Advection 
Equation 



120 GFLOPS 　using 8800GTS 

×130 



77 

Two-dimensional Burgers Equation 

GeForce 8800 GTS 
40 GFLOPS 

velocity u at the v-point 

1024×1024 

×45 



78 

Homogeneous Isotopic Turbulence 
Burgers equation 
Poisson equation 

Correction 

1024×1024 



Compressible CFD Application 
High-accurate numerical Scheme becomes 
very important. 



Numerical Scheme IDO-CF 
Y. Imai, T. Aoki and K. Takizawa, J. Comp. Phys., Vol. 227, Issue 4, 2263-2285 
(2008) 

Four matching 
conditions : 
Unknown 
coefficients : 



2-D Computation of Phase Separation 
Mixture of Oil and Water:  

114 GFLOPS using 
GTX280 512 x 512 

×120 



Thou Shalt Specialize or Not

•  HPC Architectures RIP… 

–  Custom CPUs: Too many to be told… 
–  Accelerators: Vector options on CM-5, Meiko-CS, Alliant 

FX, Grape… (RIP) 
–  Very small ecosystem---no scale of economy 
–  Arcane programming environment 
–  Quick catchup by the “killer micros” 
–  Not many code ported for fear of deprecation 

•  Specialized HPC Architectures Liveth(!)  
–  NEC SX, Fujitsu PrimeXXX, SciCortex 
–  Are they like birds evolved from Dinosaurs? 



83 

“Why HPC Architecture Must be 
Custom Built in the Exascal Era” 

2007-11-28 
Slides Coutesy of Hisa Ando 
(Former) Senieor Architect 

Fujitu Ltd.  

(Abridged and Translated by Satoshi Matsuoka) 



84 

Exaflop HPC Energy Consumption 

 In SC07，Ray Orbach “Exascale by 2016” 
 Energy Consumption at 90nm 

 FPU: ～５００ｐJ/DPFOP 
 (GRAPE-DR: 65W/256GFlops=250pJ/DP FOP) 

 General Purpose CPU： ２０ｎJ/Cycle 
 4FOP/Cycle => x10 power over FPU 

 1 Exa Flops power requirement 
 Circa 2006-7: 90nm technology: 500pJ x 1018 = 

500x106 W 
 Circa 2016- (conservatively) suppose 22nm 

technology 
 Gate capacitance 22/90 = x 0.24， Vcc 0.8V/1V = x 0.8 
 Power ∝ CV2 = 0.24 x 0.82 = x 0.15 
 1 ExaFlop FPU array： 0.15 x 500pJ x 1018 = 75MW(!) 



85 

Why Special Architecture for Exascale? 

 Total System Power ~= 1.5GW～2GW (!?) 
  Extrapolate to gen. purpose CPU: 75MWx10 = 750MW 
  Memory, power delivery loss, cooling, I/O and storage… incur 

additional x2~x3 overhead 
  > $100 million in Utility Bill(!) 

 Save Power, save power, and save power: 
  Objective: 1/30 power reduction 

 Energy reduction of FPUs---low power design 
 SIMD-parallel control of massive FMA FPUs 

+ Powerful scalar processor---beat Amdahl’s law 

 Claim (by Ando) such a processor cannot be general-
purpose （= for Commercial Apps）


 I.e., Exascale machine must be (made of) special-
purpose HPC architecture 

Tokyo Electric Co. 
Sodegaura PP 
3.6GW 



86 

Special Purpose Processor for Exascale 
circa 2016 

65nm technology 
AMD 4 Core Opteron 
      Chip 283mm2 

      Core 26mm2 

22nm technology 
  32 Cores 
      Chip 283mm2 

      Core 3.5mm2 

Server 
Processor 

Custom 
HPC 
processor 

１２８Fopx5GHz 
= 640GFlops 

8 Core (28mm2) 
＋2048FMA (128mm2) 
＋16MB L2$/LM (35mm2) 
＋I/O （60mm2) 

4096Fopx5GHz  
= 20TFlops 

Grape-DR 
90nm technology 
512FM+FA 

22nm technology 
25(FM＋FA)s/mm2 

L
2
$ 

I/
O 

22nm technology 
      Chip ~250mm2 

Suppose：

16FMA/mm2 



•  Equivalent to CACM 
•  “Acceleration Again” 

 Key to Supercomputing 

5 Articles, 4 from  
Tokyo Tech on GPUs 



Technology and Architectures for 
Future Large‐Scale Compu;ng 

Systems 

Rick Stevens 
Argonne Na;onal Laboratory 

The University of Chicago 



ASCR  High Performance and Leadership 
Compu;ng Facili;es 

•  NERSC 
–  104 teraflop Cray XT4 with approximately 9,600 dual 

core processors; will upgrade to approximately 360 
teraflops with quad core in Summer, 2008 

–  6.7 teraflop IBM Power 5 (Bassi) with 888 processors, 
3.5 terabytes aggregate memory 

–  3.1 teraflop LinuxNetworx Opteron cluster (Jacquard) 
with 712 processors, 2.1 terabytes aggregate 
memory 

•  LCF at Oak Ridge 
–  263 teraflop Cray XT4 (Jaguar) with 7,832 quad core 

2.1 GHz AMD Opteron processor nodes, 46 terabytes 
aggregate memory 

–  18.5 teraflop Cray X1E (Phoenix) with 1,024 mulL‐
streaming vector processors 

–  Delivery of 1 Petaflop Cray Baker in 2008 
•  Argonne LCF 

–  5.7 teraflop IBM Blue Gene/L (BGL) with 2,048 PPC 
processors 

–  100 teraflop IBM Blue Gene/P began opera;ons April 
1, 2008 

–  446 teraflop IBM Blue Gene/P upgrade accepted in 
March, 2008.   

TERATEC June 3, 2008  2 

U.S. Department of Energy 

Office of Science 



IBM Blue Gene/P – 556 TFs @ Argonne 
160K cores, 80 TB RAM, 10 PB disk 



Cray XT5 at ORNL > 1 Pflop/s in November 2008 

Jaguar Total  XT5 XT4 
Peak Performance 1,645 1,382 263 
AMD Opteron Cores 181,504 150,176 31,328 
System Memory (TB) 362 300 62 
Disk Bandwidth (GB/s) 284 240 44 
Disk Space (TB) 10,750 10,000 750 
Interconnect Bandwidth 
(TB/s) 

532 374 157 

The systems will be 
combined afer 

acceptance of the new 
XT5 upgrade.  Each 

system will be linked to 
the file system through 
4x‐DDR Infiniband 



Tradi;onal Sources of Performance 
Improvement are Flat‐Lining (2004) 

•  New Constraints 
–  15 years of exponential 

clock rate growth has ended 

•  Moore’s Law reinterpreted: 
–  How do we use all of those 

transistors to keep 
performance increasing at 
historical rates? 

–  Industry Response: #cores 
per chip doubles every 18 
months instead of clock 
frequency!  

Figure courtesy of Kunle Olukotun, Lance 
Hammond, Herb Suher, and Burton Smith 



Mul;core comes in a wide variety 
– Mul;ple parallel general‐purpose processors (GPPs) 
– Mul;ple applica;on‐specific processors (ASPs) 

“The Processor is the 
ne 

Transistor” [Rowen] 

Intel 4004 (1971): 
4-bit processor, 
2312 transistors, 

~100 KIPS,  
10 micron PMOS, 

11 mm2 chip  

Sun Niagara 
8 GPP cores (32 threads) 

Intel® 
XScale

™ 
 Core 
32K IC 
32K DC 

MEv2 
10 

MEv2 
11 

MEv2 
12 

MEv2 
15 

MEv2 
14 

MEv2 
13 

Rbuf 
64 @ 
128B 

Tbuf 
64 @ 
128B 
Hash 

48/64/1
28 

Scratch 
16KB 

QDR 
SRAM 

2 

QDR 
SRAM 

1 

RDRAM 
1 

RDRAM 
3 

RDRAM 
2 

G 
A 
S 
K 
E 
T 

PCI 

(64b) 
66 

MHz 

S 
P 
I 
4 
or 
C 
S 
I 
X 

Stripe 

E/D Q E/D Q 

QDR 
SRAM 

3 
E/D Q 

MEv2 
9 

MEv2 
16 

MEv2 
2 

MEv2 
3 

MEv2 
4 

MEv2 
7 

MEv2 
6 

MEv2 
5 

MEv2 
1 

MEv2 
8 

CSRs  
-Fast_wr 
-UART 
-Timers 
-GPIO 
-BootROM/
SlowPort 

QDR 
SRAM 

4 
E/D Q 

Intel Network Processor 
1 GPP Core 

16 ASPs (128 threads) 

IBM Cell 
1 GPP (2 threads) 

8 ASPs 

Picochip DSP 
1 GPP core 
248 ASPs 

Cisco CRS-1 
188 Tensilica GPPs 



What’s Next? 

Source: Jack Dongarra, ISC 2008 



Outline of the Situa;on 

•  Million core systems and beyond are on the horizon 
•  Today labs and universi;es have general purpose systems 

with 10k‐200K cores (BGL@ LLNL 200K, BGP@Argonne 
160K, XT5@ORNL 150K cores) 

•  By 2012 there will be more systems deployed in the 
200K‐1M core range 

•  By 2020 there will be systems with perhaps 100M cores 

•  Personal systems with > 1000 cores within 5 years (I have 
over > 150 64bit cores in my office now) plus 240 GPU cores 

•  Personal systems with requirement for 1M threads is not 
too far fetched (GPUs for example) 



E3 Advanced Architectures ‐ Findings 
•  Exascale systems are likely feasible by 2017±2  
•  10‐100 Million processing elements (mini‐cores) with chips as 

dense as 1,000 cores per socket, clock rates will grow slowly 
•  3D chip packaging likely 
•  Large‐scale op;cs based interconnects 
•  10‐100 PB of aggregate memory 
•  > 10,000’s of I/O channels to 10‐100 Exabytes of secondary 

storage, disk bandwidth to storage ra;os not op;mal for HPC 
use 

•  Hardware and sofware based fault management 
•  Simula;on and mul;ple point designs will be required to 

advance our understanding of the design space 
•  Achievable performance per wah will likely be the primary 

metric of progress 



Top Technical Challenges 

•  Power Consump;on  
–  Proc/mem, I/O, op;cal, memory, delivery  

•  Chip‐to‐Chip Interface Scaling  
–  pin/wire count ⇒ 3D packaging 

•  Package‐to‐Package Interfaces (op;cs?) 
–  Signaling rate, density, cost 

•  Fault Tolerance  
–  FIT rates and Fault Management 
–  Reliability of irregular logic, design prac;ce 

•  Cost Pressure in Op;cs and Memory 
–  CPUs will be smaller frac;on of cost 



Looking out to Exascale 
Concurrency will be Doubling every 18 months 



Systems Scaling Projec;ons 



ITRS Roadmap for Logic Devices 



Darpa 
Exascale 
Study 

Concluded that it will be a 
Major challenge to get to 
Sustained Exaops performance 
Levels by 2020 



Total System Concurrency 



Thread Level Concurrency 



Parallelism and Locality Trends 



Applica;ons Assump;ons 



Power Constrained Clock Rate  
Clock = Power_Density/ ( Capacitance_per_device * Transistor_Density * V2

dd) 



Gflops per Wah  
(0.1 ⇒ 100) 



Power and FPUs to Reach Exaops 



Interconnect Technology Roadmap 



Heat Removal Approaches 



High‐End Packaging Op;ons 



3D Packaging Examples 



Secondary Storage Projec;ons 
(Scratch at 25x , Archive at 200x) 



Disk Characteris;cs 





Aggressive Strawman 





Systems Scaling Projec;ons 



The Bohom Line 

•  Levels of concurrency (106 ⇒ 109) 
•  Clock rate of Core (1‐4 GHz ⇒ 1‐4 GHz) 
•  RAM per Core (1‐2GB now to 1‐4GB) 
•  Total Number of cores (200K ⇒ 100M) 
•  Number of cores per node (8 ⇒ 64‐512) 
•  Aggressive Fault Management in HW and SW 
•  I/O channels (>103 ⇒105) 
•  Power Consump;on (10MW ⇒ 40MW‐150MW) 
•  Programming Model (MPI ⇒ MPI + X)  



Parallel Programming Models:  
Twenty Years and Coun;ng 

•  In large‐scale scien;fic compu;ng today 
essen;ally all codes are message passing based.  
Addi;onally many will use some form of 
mul;threading on SMP or mul;core nodes. 

•  Mul;core is challenging programming models but 
there has not yet emerged a dominate model to 
augment message passing 

•  There is a need to iden;fy new hierarchical 
programming models that will be stable over long 
term and can support the concurrency doubling 
pressure 



Quasi Mainstream 
Programming Models 

•  C, Fortran, C++ and MPI 
•  OpenMP, pthreads 

•  (CUDA, RapidMind, Cn)  OpenCL 

•  PGAS (UPC, CAF, Titanium) 

•  HPCS Languages (Chapel, Fortress, X10) 
•  HPC Research Languages and Run;me 

•  HLL (Parallel Matlab, Grid Mathema;ca, etc.) 



Chip Count Trends 



M
em

be
r o

f t
he

 H
el

m
ho

ltz
 A

ss
oc

ia
tio

n 

Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       1 

Computational Science and  
HPC Software-Development  
in Europe 
Thomas Lippert / Bernd Mohr 
Forschungszentrum Jülich, JSC 
and Gauss Centre for Supercomputing e.V.  

1st Workshop of the International Exascale 
Software Project (IESP), Santa Fé, April 7-8, 2009 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       2 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       3 

Thanks to 
•  Jean-Yves Berthou (EDF) 
•  Michel Marechal (ESF, Lincei Initiative, CSEC) 
•  Achim Bachem and all friends from PRACE 
•  Catherine Riviere (GENCI, PRACE) 
•  Peter Michielse (PRACE WP6) 
•  Herbert Huber (PRACE-STRATOS) 
•  Wolfgang Nagel (Gauß Alliance) 
•  Stefan Heinzel (DEISA) 
•  Kimmo Koski (HET, COSI-HPC) 
•  Wanda Andreoni et al. (CECAM) 
•  Martyn Guest (Editor of HET/HPC-EUR–Scientific Case) 

 and many others 



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 

Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       4 

Science Fields & Drivers  
in Europe  
From 
-  HET Scientific Case 
-  PRACE Initiative 
-  Linceï Initiative Report 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       5 

HET: Scientific Case White Paper 
Area Application Science Challenges & Potential Outcomes  

Weather, 
Climatology 
and Earth 
Sciences 

Climate change Quantify uncertainties on the degree of warming and the likely impacts by increasing the capability and 
complexity of ‘whole earth system’ models that represent the scenarios for our future climate (IPCC). 

Oceanography Build the most efficient modelling and prediction systems to study, understand and predict ocean properties 
and variations at all scales, and develop economically relevant applications to inform policy 

Meteorology, Hydrology Predict weather and flood events with high socio-economic and environmental impact within a few days. 
Understand and predict the quality of air at the earth’s surface; development of advanced real-time 
forecasting systems for early enough warning and practical mitigation in the case of pollution crisis. 

Earth Sciences Challenges span a range of disciplines and have scientific and social implications, such as the mitigation of 
seismic hazards, treaty verification for nuclear weapons, and increased discovery of economically 
recoverable petroleum resources and monitoring of waste disposal. Increased computing capability will 
make it possible to address the issues of resolution, complexity, duration, confidence and certainty. 

Astrophysics, 
HEP and 
Plasma 
Physics 

Astrophysics Deal with systems and structures which span a large range of different length and time scales; almost always 
non-linear coupled systems differential equations have to be integrated, in 3 spatial dimensions and 
explicitly in time, with rather complex material functions as input. Grand challenges range from formation 
of stars and planets to questions concerning the evolution of the Universe as a whole. Evaluate the huge 
mount of data expected from future space experiments such as the European Planck Surveyor satellite.   

Element.  Part. Physics Quantum field theories like QCD (quantum chromodynamics) are the topic of intense theoretical and 
experimental research by a large and truly international community involving large European centers like 
GSI and CERN. This research promises a much deeper understanding of the standard model as well as 
nuclear forces, but is also to discover yet unknown physics beyond the standard model. 

Plasma physics The science and technology challenge raised by the construction of the magnetic confinement fusion reactor 
ITER calls for a major theory and modelling activity. Both the success of the experiment and its safety rely 
on such simulators. The quest to realize thermonuclear fusion by magnetically confining a high temperature 
plasma poses computationally most challenging problems of nonlinear physics. 

Materials 
Science, 
Chemistry 
and 
Nanoscience 

Understanding Complex 
Materials 

The determination of electronic and transport properties is central to many devices in the electronic industry 
and hence to progress in the understanding of technologically relevant materials. Simulations of nucleation, 
growth, self-assembly and polymerization for design and performance of many diverse materials e.g., 
rubbers, paints, fuels, detergents, functional organic materials, cosmetics and food. Multiscale descriptions 
of the mechanical properties of materials to determine the relation between process, conditions of use and 
composition e.g., in nuclear energy production. Such simulations are central to the prediction of the 
lifetime of high performance materials in energy technology. 

Understanding Complex 
Chemistry 

Catalysis is a major challenge in the chemistry of complex materials, with many applications in industrial 
chemistry. The knowledge of atmospheric chemistry is crucial for environmental prediction and protection 
(clean air). Improving the knowledge of chemical processing would improve the durability of chemicals. 
Supra molecular assemblies open new possibilities for the extraction of heavy elements from spent nuclear 
fuels. In biochemistry, a vast number of reactions in the human body are not understood in any detail. A key 
step for clean fuels of the future requires the realistic treatment of supported catalytic nanoparticles. 

Nanoscience The advance of faster information processing or the development of new generations of processors 
requires the shrinking of devices, which leads inevitably towards nanoelectronics. Moreover, many new 
devices, such as nanomotors can be envisioned, which will require simulation of mechanical properties at 
the nanolevel. Composite high performance materials in the fields e.g. adhesion and coatings will require an 
atomistic based description of nanorheology, nanofluidics and nanotribology.  



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       6 

Area Application Science Challenges & Potential Outcomes  

Life sciences 

Systems Biology The use of increasingly sophisticated models to represent the entire behaviour of cells, tissues, and organs, 
or to evaluate degradation routes predicting the final excretion product of any drug. In silico cell. 

Chromatine Dynamics The organization of DNA in nucleosomes largely modifies the accessibility of transcription factors 
recognition sites playing then a key role in the regulation of gene function. The understanding of 
nucleosome dynamics will be crucial to understand the mechanism of gene regulation. 

Large Scale Protein Dyn. The study of large conformational changes in proteins. Major challenges appear in the simulation of 
protein missfolding, unfolding and refolding (understanding of prion-originated pathologies).  

Protein association and 
aggregation 

One of the greatest challenges is the simulation of crowded “not in the cell” protein environments. To be 
able to represent “in silico” the formation of the different protein complexes associated with a signalling 
pathway opens the door to a better understanding of cellular function and to the generation of new drugs. 

Supramolecular Systems The correct representation of protein machines is still out of range of European groups using current 
simulation protocols and computers.  The challenge will be to analyze systematically how several of these 
machines work e.g., ribosome, topoisomerases, polymerases. 

Medicine Genome sequencing, massive genotyping studies are providing massive volumes of information e.g. the 
simulation of the determinants triggering the development of multigenic-based diseases and the  
prediction of secondary effects related to bad metabolism of drugs in certain segments of population. 

Engineering 

Helicopter Simulation 
The European helicopter industry has a strong tradition of innovation in technology and design. 
Computational Fluid Dynamics (CFD) based simulations of aerodynamics, aeroacoustics and coupling 
with dynamics of rotorcraft play a central role and will have to be improved further in the design loop. 

Biomedical Flows 
Biomedical fluid mechanics can improve healthcare in many areas, with intensive research efforts in the 
field of the human circulatory system, the artificial heart or heart valve prostheses, the respiratory system 
with nose flow and the upper and lower airways, and the human balance system.  

Gas Turbines & Internal 
Combustion Engines 

Scientific challenges in gas turbines or piston engines are numerous. First, a large range of physical scales 
should be considered from fast chemical reaction characteristics (reaction zone thicknesses of about tens 
of millimetres, 10-6 s), pressure wave propagation up to burner scales (tens of cm, 10-2 s) or system scales. 

Forest Fires The development of reliable numerical tools able to model and predict fire evolution is critically 
important in terms of safety and protection fire fighting and could help in real time disaster management.  

Green Aircraft ACARE 2020 provides the politically agreed targets for an acceptable maximum impact of air traffic on 
people and environment, while allowing the constantly increasing amount of air travel. The goals deal with 
a reduction of exhaust gas and noise. Air traffic will increase by a factor of 3, accidents are expected to go 
down by 80%. Passenger expense should drop (50%) and flights become largely weather independent.  
The “Green Aircraft” is the answer of the airframe as well as engine manufacturing industry.  

Virtual Power Plant Safe production of high quality and cost effective energy is one of the major concerns of Utilities. Several 
challenges must be faced, amongst which are extending the lifespan of power plants to 60 years, 
guaranteeing the optimum fuel use and better managing waste. 

HET: Scientific Case White Paper II 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       7 

PRACE: Support of Science Communities 
European Organisations and Research Communities 

EFDA The European Fusion Development Agreement foresees a huge demand for HPC including 
tier-0. It is  interested in cooperation with PRACE regarding benchmarking and code-
scaling and provides the HPC-related requirements for Fusion community. 

EMBL-EBI The Euro Bioinformatics Institute within the European Molecular Biology Laboratory 
foresees huge demands for HPC resources in the future and is interested in investigating 
access policies to European tier-0 systems for life scientists. 

ENES The European Network for Earth System Modeling has contributed to the scientific case for 
HPC in Europe and will continue to promote the involvement of the European climate 
modelling community in PACE. ENES involvement includes porting of applications on 
prototype systems of PACE and defining of facility requirements. 

ESA ESA is the European Space Agency. The Space and in particular Earth Observation 
communities have very demanding HPC applications. ESA is pleased to collaborate with 
PRACE on specific applications. 

ESF The European Science Foundation is interested to contribute to PRACE, in particular to 
peer-review process dissemination activities and computer technologies beyond 2010. 

MOLSIMU MOLSIMU, a COST action on Molecular Simulations to Nanoscale Experiments, is offering 
its support for PRACE by porting their major applications to the prototype systems 
installed by PACE  

Psi-k 
Network 

The Psi-k network is the European Umbrella Network for Electronic Structure Calculations.  
Several groups within Psi-k are interested to port their ab-initio codes like CPMD, VASP, 
SIESTA, CASTEP, ABINIT, and Wien 2k on the prototype systema of PRACE.  



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       8 

PRACE: Support of Research Infrastructures 

DEISA EU-
Project 

DEISA currently deploys and operates the 
European Supercomputing Grid infrastructure to 
enable capability computing across remote 
computing platforms and data repositories at a 
continental scale.  

HPC-Europa EU-
Project 

HPC-Europa is a pan-European Research 
Infrastructure on HPC providing HPC access and 
scientific support to researchers in challenging 
computational activities. 

HPC-Europa expresses its interest in cooperating 
in the areas of access technologies and 
integrated advanced computational services. 

OMII-Europe EU-
Project 

OMII-Europe is the interoperability project in 
Europe providing open standards based 
interoperability components on top of the four 
major Grid middleware systems in the world. 

EGI EU-
Project 
Prop. 

The consortium of EGI aims at establishing a 
sustainable Grid infrastructure in Europe, 
coordinating national Grid initiatives. 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       9 

Linceï Initiative (2007-2009) 

http://ccp2007.ulb.ac.be/FL-Lincei.pdf 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       10 

Linceï Initiative: Steering Committee 
Doctor Vassilis Pontikis, Chair, 
Commissariat à l'Énergie Atomique, Saclay , Gif‐sur‐Yvette, France 
Professor Carmen N. Afonso, PESC rapporteur, 
Consejo Superior de Investigaciones Cientifica, Instituto de Optica, Madrid, Spain 
Professor Isabel Ambar, LESC rapporteur, 
Directora Instituto de Oceanografia Faculdade de Ciências da Universidade de Lisboa 
Professor Kenneth Badcock, 
Dept. of Engineering, The University of Liverpool, Liverpool, United Kingdom 
Professor Giovanni Ciccotti, 
Dept. of Physics, Università "La Sapienza", Roma, Italy 
Professor Peter H. Dederichs, 
Institut für Festkörperforschung, Jülich Research Centre, Jülich, Germany 
Doctor Paul Durham, 
Daresbury Laboratory, Warrington, United Kingdom 
Professor Franco Antonio Gianturco, 
Dept. of Chemistry, Università "La Sapienza", Roma, Italy 
Professor Volker Heine, 
Cavendish Laboratory (TCM), Cambridge University, Cambridge, United Kingdom 
Professor Ralf Klessen, 
Institute für Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany 
Professor Peter Nielaba, 
Lehrstuhl für Theoretische Physik, Fachbereich Physik, Universität Konstanz, Konstanz, Germany 
Doctor Simone Meloni, Scientific Secretary, 
Consorzio per le Applicazioni del Supercalcolo per Università e Ricerca ‐ CASPUR, Roma, Italy 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       11 

Linceï Initiative: Six Fields Addressed 

Astrophysics  
  Institut für Theoretische Astrophysik, Heidelberg (DE), Dec. 1st‐2nd 2006 

Fluid Dynamics  
  Daresbury Lab., Warrington (UK), Nov. 29th‐30th 2006 

Meteorology and Climatology  
  Swiss Supercomputing Centre, Manno (CH), Jan. 27th 2007 

Life sciences  
  Chilworth Manor, Southampton (UK), Nov. 19th‐21st 2006 

Material Science and Nanotechnology  
  Jülich Research Centre, Jülich (DE), Nov. 13th‐14th 2006 

Quantum Molecular Sciences  
  Accademia dei Lincei, Rome, Nov. 25th‐26th 2006 

•  State of infrastructure for scientific computing 
•  Needs in relation to future challenges, in 10‐20 year timeframe 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       12 

Some EU Scientific and Engineering Codes 
(From Lincei Forward Look Report (for the ESF)) 

Name   Scienti+ic Area   Brief Description   Licensing  Users 

ABINIT  Condensed Matter   DFT+PW+Pseudopotentials   Free  ~1000 
ESPResSo   Condensed Matter   coarse grained off‐lattice   Free  ~20 groups 

VASP   Condensed Matter   DFT+PW+Pseudopotentials   Licensed  800 li 

CP2K   Condensed Matter   DFT‐(gausssian+PW)+classical   Free  ~100 

CPMD   Condensed Matter   DFT+PW+Pseudopotentials   Licensed, free acad.  >1000 

Wien2K   Condensed Matter   Full‐electrons Augmented PW   Licensed  ~1100 

Quantum Espresso  Condensed Matter   DFT+PW+Pseudopotentials   Free  ~700 
Code_Aster   Engineering   Mechanical and thermal analysis   Free  300 (EDF) 

         22k downl. 

Code_Saturne   Fluid Dynamics  Incompressible+expandable  Free  80 (EDF) 

     +heat transfer+combustion    + 25 groups 

OpenFOAM   Fluid Dynamics  Finite volume on unstructured grid  Free, fee for support  ~2000 

   +Structural Mechanics 
Salome   framework for multiphysics  Used in engineering  Free  50 (EDF) 

         + 21 groups 

COSMO‐Model  Climatology, Meteorology  Operational Weather forecasting  Special agreement  7 Centres 

     and scienti[ic research    80 groups 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       13 

Importance Hierarchy 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       14 

Comments from FL-Linceï-Report   

•  Current [application] software is very complex 

•  Typical size is 400000 lines of code and 2500 routines/classes  

•  Large number of variables pass through the code in obscure data flow 

•  Few strictly object oriented (OpenFOAM, C++, CP2K, FORTRAN95 

•  Will be confronted with a software sustainability crisis 

•  Will be very difficult to adapt most existing complex codes to the 

coming massively parallel computers 

•  Structure of many of the codes strongly dependent on the parallel 

programming paradigm adopted in the early stage of the development  

•  Current shift from hundreds to tens of thousands of CPUs will require a 

change in the parallelization scheme 

•  Very difficult to implement in such very complex community codes 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       15 

FL-Linceï-Report 

Findings 
  Bottleneck is the support to software, effort mainly focused on 

Hardware 
  Less support is given to the writing, maintenance and dissemination of 

sc. codes  
  Scientific computer programs do not comply with best practices in 

programming 
  Successful efforts in all the technical areas required to support scientific 

computing: hardware, system and application software 

Recommendations 
  National science funding agencies in Europe must undertake a 

coordinated and sustained effort in scientific software development 
  Set up a Computational Sciences Expert Committee (CSEC) attached 

to ESF which would speak for the whole community of computational 
sciences.  

  Its purpose would be to start setting up a durable plan for European 
cooperation in each of the fields of science using computers 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       16 

Example 1: MD for Radiation Hard Materials 

Ian J. Bush, Ilian T. Todorov, CCSRC Daresbury, UK 
DL-POLY3 classical molecular dynamics 

First time on more than 1000 processors 

Radiation damage in a fluoritized Zirconium pyrochlore 
100 keV recoil of one Uranium atom after alpha decay 

15 million particles, supercell very large 

Forces: short range, van der Waals, Coulomb 

Smooth particle-mesh Ewald algorithm  FFT 
Implementation on BGL 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       17 

Scaling DL_Poly3 

Long range Ewald  
scales with  
O(N log N) … 
But MD dominates 

Substantial improvements by performance analysis tool Scalasca 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       18 

Example 2: Engineering – Biomedical Flows  

Simulation of Blood Flow in a Ventricular Assist Device  
Marek Behr, RWTH Aachen 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       19 

Code + Analysis tools  large Improvements 
XNS CFD solver 

  3D space-time simulation of MicroMed 
DeBakey axial blood pump 

  4 million elements 
  Partitioning by Metis graph patitioning 

package  
  Incompressible Navier-Stokes Eq. 
  FEM, GMRES, 3 time steps, 4 

Newton-Raphson iterations 
Analysis by SCALASCA package  
(Bernd Mohr, Felixn Wolf) 

  Too many MPI_Sendrecv with zero-
byte transfers 

  Good speedup to 4096 processors 
Still: strong load imbalance in GMRES 

  process with highest rank overloaded 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       20 20 

After Improvements 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       21 

Example 3: Theoretical Particle Physics 
Fodor et al. 2008: Validation of Quantum Chromodynamics 
Among 10 SCIENCE-breakthroughs of  2008 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       22 

Code: Hybrid 
Monte Carlo with GMRES  
and BiCGStab Solver 

Improvements 
through low-level 
programming  



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 

Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       23 

HPC Software 
& Benchmark Codes  
Disclaimer: 

List of software is a selection and not comprehensive 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       24 

HPC Software Challenges 

•  Extreme scalability 
  Exascale: number of cores beyond any reasonable, 

manageable limit 
•  Extreme complexity 

  Machine architecture gets more complicated instead of 
becoming simpler (KISS!) 

•  Little to not existing fault-tolerance in existing base 
software 
  e.g. MPI, OpenMP, schedulers, … 

•  Rapid grows in system size /change in HW 
architecture 
  SW developers cannot keep pace 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       25 

EU HPC Software: Programming Models 

MPI 
  Open MPI European partners HLRS, INRIA, Univ. Jena, Univ. 

Chemnitz, TU-Dresden, BULL 
  MPICH-V fault tolerance, MPI Madeleine (INRIA) 
  HLRS, Bull, NEC, (ZIH, JSC) participating in MPI-3 

OpenMP 
  EU ARB members: EPCC, RWTH, (BSC?) 
  BSC Mercurium compiler framework 

Pragma-based task parallelism 
  SuperScalar (BSC) 

  Subject in future EU proposals (EU ITEA2 H4H, FP7 FET EXACT) 
  HPMM (INRIA/CAPS) 

Parallel Object-oriented  
  Kaapi (C++) + PROACTIVE (Java) (INRIA), PM2 (LaBRI, INRIA) 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       26 

EU HPC Software:  Numerical Applications 

Numerical Middleware 
  superLU (INRIA), MUMPS (ENSEEIHT) 
  Scilab (Digiteo) 

Benchmarks 
  DEISA 

  14 full applications 
   HPCC 

  PRACE  
  20 full applications 
  Various low-level 

  EPCC micro benchmarks 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       27 

Application Software Benchmarks: DEISA 

Astrophysics:     GADGET, RAMSES  

CFD and combustion:    Fenfloss  

Earth sciences and climate research:  ECHAM5, IFS, NEMO  

Life sciences and informatics:   NAMD, IQCS  

Materials science:     CPMD, 
      QuantumESPRESSO  

Plasma physics:     GENE, PEPC  

Quantum chromodynamics:   BQCD, SU3_AHiggs 

DEISA benchmark represents major EU HPC applications 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       28 

Application Software Benchmarks: PRACE  
(see White Paper by Peter Michielse) 

Application  Application area 

QCD  Particle physics 
VASP  Computational  

 chemistry, condensed 
 matter physics 

NAMD  Computational chemistry 
 life  sciences 

CPMD  Computational chemistry, 
 condensed matter physics 

Code_Saturne Computational fluid 
 dynamics 

GADGET  Astronomy and cosmology 
TORB  Plasma physics 
ECHAM5  Atmospheric modelling 
NEMO  Ocean modelling 

Application Application area 
(to be considered) 

AVBP  Computational fluid dynamics 
CP2K  Computational chemistry, 

 condensed matter physics 
GROMACS  Computational chemistry 
HELIUM  Computational physics 
SMMP  Life sciences 
TRIPOLI4  Computational engineering 
PEPC  Plasma physics 
RAMSES  Astronomy and cosmology 
CACTUS  Astronomy and cosmology 
NS3D  Computational fluid dynamics 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       29 

Porting Codes 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       30 

EU HPC Software: Tools I 

System / cluster tools 
  Benchmarking: JuBe (JSC) 
  Resource allocation: OAR (INRIA) 
  System monitoring: LLview (JSC) 
  Cluster middleware: ParaStation (ParaStation-Consortium: 

ParTec, JSC, Karlsruhe, Heidelberg, Wuppertal) 

Grid Middleware 
  UNICORE (UNICORE forum, JSC, …) 
  GLite (CERN, LHC) 
  dCache (DESY) 
  DIET: grid RPC system (INRIA, CNRS, LIP/ENS Lyon, …) 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       31 

EU HPC Software: Tools II 

Programming tools 
  Debugging: DDT (Allinea) 
  MPI debugging: Marmot (ZIH –TU-Dresden /  HLRS) 

Performance 
  OPT (Allinea) 
  Paraver/Dimemas (BSC) 
  KOJAK/Scalasca (JSC) 
  Vampir (ZIH-TU-Dresden) 
  Periscope (TU Munich) 
  SlowSpotter/ThreadSpotter (Acumem) 

European tool integration projects 
  EU ITEA2 ParMA project (17 partners, FR, DE, ES, UK) 
  German BMBF SILC 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       32 

Existing Working Collaborations 

•  MPI standardization and Open MPI project 
•  OpenMP standardization 
•  Global Grid Community 
•  Example: Performance tools community 

  Voluntary US participation in EU APART WG (1998-2004) 
  Common Dagstuhl seminars (2002, 2005, 2007, 2010) 
  CScADS workshops (2007, 2008, 2009) 
  Collaborating collaboration projects 

  POINT (UO, ICL, NCSA, PSC) 
  VI-HPS (RWTH, ZIH, JSC, ICL) 

  New: DOE ASCR funding for non-U.S. partners! 
  PRIMA (UO, JSC): 2009-2012 
  “PTP++” (IBM, LANL, ORNL, JSC, Monarch): 2009-2012  



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       33 

Collaboration and Funding 

Lessons learned 
  Collaboration projects need 

  Strong leadership + Funding 
  Examples of failures: PTOOLS, OSPAT, …. 

  Bottom-up, technology-driven, friendship approaches work 
much better than top-down, politically-driven, mandated ones 

  Top-down provides funding 
  Need combined approach: bottom-up meets top-down and 

long-term commitments of funding agencies 
Proposal 

  Local (US, EU, Asian) funding programs need to allow to 
fund additional global partners 

  New global funding for networking (coordination, 
dissemination, synchronization efforts) 



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       34 

Example EU  



         
Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       35 

Trace analysis SMG2000@64k 

Measured 
metrics 

System structure 
or topology 

Region 
tree 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       36 36 

Example EU  

ParaStation Cluster Middleware 

ParaStation V5: 

• Multi-core aware cluster operating and management software 

• Open source  GPL licensed 

• ParaStation Consortium: ParTec, Forschungszentrum Jülich,  

 Universities of Karlsruhe, Heidelberg, Wuppertal  

• Deamon based  

• MPI-2 

• Grid Monitor (full awareness of complete cluster status) 

•  IB, Ethernet, Myrinet, just everything 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       37 37 

ParaStation Research 
(Projects funded by Federal Ministry of Education & Research) 

D-Grid 2, (2007-2010) 

German Grid initiative 
(funded by BMBF) 

ISAR project (2008 – 2011) 
Integrated system and application analysis for massive parallel 
computer 

Members:  
Uni Munich, Leibniz Compute Center (LRZ),  
Compute Center Garching (Max-Planck), ParTec, IBM 

ee-Clust project (2008 – 2011) 
Energy efficient cluster computing 

Members:  
Uni Heidelberg, TU Dresden,  
Research Centre Julich, ParTec 

•  Goals  
•  Scalable cluster OS 
•  Fighting OS-jitter 



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 

Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       38 

Plans for Exascale Activities and 
Initiatives in Europe 

1. EESI (International HPC Software  Coordination and       
    Development) 
2. COSI-HPC Proposal (HPC-Software - Coordination)  
3. Lincei Initative (Comp. Science) 
4. CECAM (Comp. Science) 
5. PRACE (ESFRI-Infrastructure) 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       39 

Establishing the 

European Exascale  
Software Initiative  

Contribution by  

Jean-Yves Berthou, EDF R&D 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       40 

Context: International Exascale Software Project  

SC’08 (nov. 2008) : DOE/NSF/DOD launched the 
International Exascale Software Project (IESP)  

Plan to build an international partnership that joins together industry, the HPC 
community (CS and Apps), and production HPC facilities in a collective 
effort to design, coordinate, and integrate software for leadership-class 
machines. 

Specifically, engagement in the following activities should be started: 
• Build international collaborations in the areas of high-performance 
computing software and applications. 
• Development of open source systems software, I/O, data management, 
visualization, and libraries of all forms targeting tera/peta/exascale 
computing platforms, 
• Research and development of new programming models and tools 
addressing extreme scale, multicore, heterogeneity and performance, 
• Cooperation in large-scale systems deployments for attacking global 
challenges, 
• Joint programs in education and training for the next generation of 
computational scientists. 
• Vendor engagement to coordinate on how to deal with anticipated scale.” 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       41 

European Exascale Software Initiative (EESI) 

Main goals 

•  Building and promoting European position inside the IESP initiative 

•  Identifying Grand Challenge applications, from academia and 
industry, with a strong economical, societal and/or environmental 
impact that will benefit of Petaflop capacities in 2010 and Exaflops in 
2020 

•  Identify critical software issues for Peta-ExaScale systems 

•  Building a European/US/Japan program in education and training for 
the next generation of computational scientists 

•  Output : Proposition of a strategic research action agenda for Peta-
Exascale Software and Grand Challenge applications at the European 
level coordinated with US and Japanese agendas 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       42 

European Exascale Software Initiative (EESI) 
Preparatory phase Project Proposal – 12 months 

Establish a European position inside the IESP initiative 
o  Promote and represent the European position 
o  Influence on decisions and actions 
o  Synchronize European agenda with other international agenda 

Contribute to the International dialogs between US and Europe and 
Japan and Europe and be a bridge between some EU organizations 
including the European commission and IESP 

Identify main HPC European actors both at end users level and at 
academic level  

Define and implement the organization and governance rules of EESI 

Identify main European HPC existing or planned projects  

Built a first European and international vision of the on-coming HPC 
challenges and work to achieve 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       43 

European Exascale Software Initiative (EESI) 
Preparatory phase Project Proposal – 12 months 

Submitted  to ICT 2009.9.1 International cooperation a) Support to Information Society policy dialogues 
and strengthening of international cooperation 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       44 

European Exascale Software Initiative (EESI) 
Preparatory phase Project Proposal – 12 months 

Supporting partners 
US 
IESP, Executive Director, J. Dongarra 
U. Urbana-Champaign, Deputy Director for Research, B. Gropp 
U. Urbana-Champaign, Professor, M. Snir 
Japan 
Tokyo Institute of Technology, Professor & Director Research Infrastructures Division 
GSIC, Satoshi Matsuoka 
Europe 
PRACE, Current Chairman of the Initiative Management Board, Jane Nicholson 
European Science Fondation, the Physics and Engineering Sciences Unit, Science 
Officer, Dr Thibaut Lery 
European Network for Earth System modelling, Chairman of the Scientific Board, S. 
Joussaume 
TERATEC, Chairman, C. Saguez 
ORAP, Chairman of the Scientific Council, JC  André 
Daresbury Lab., Acting Director CS & E dpt., R. Blake 
CERFACS, Director, JC André 
Industry/Editor 
TOTAL, Scientific Director, JF Minster 
SNECMA, Vice President Engineering & Technology, P. Thouraud 
NAG, Chief Tech Officer/Vice President HPC Business, M. Dewar/A. Jones 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       45 

 Building a research agenda and directions for future 

•  Identifying Grand Challenge applications, from academia and 
industry, with a strong economical, societal and/or environmental 
impact that will benefit of Petaflop capacities in 2010 and Exaflop 
around 2020 

•  Identify critical software issues for Peta-ExaScale systems 

•  Building a EU/US/Japan program in education and training for the 
next generation of computational scientists 

•  Proposition of a strategic research action agenda for Peta-Exascale 
Software and Grand Challenge applications at the European level 
coordinated with US and Japan agendas 

European Exascale Software Initiative (EESI) 
Implementation phase (draft) 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       46 April 8, 2009 EDF R&D 46 
3 months 1 month 6 months 1 month 3 months 3 months 1 month 

T0 T0+3 T0+4 T0+10 T0+11 T0+14 T0+17 T0+18 

Agenda 

Workshop 

Working groups 

o  
 o   
o  

Workshop Workshop 

Input from EESI Preparatory Phase : identification of keyplayers (End user communities, 
techno. providers, …)   

European Exascale Software Initiative (EESI) 
Implementation phase – 18 months (draft working program) 

Phase 1: 
Grand 

challenges 
ID 

Phase 2: 
workshop 1 

Phase 3 : 
working group 

initial work 

Phase6: 
WG synthesis 

Phase7
: 

Public 
Results 

Phase 4: 
workshop 2 

Phase 5: 
Finalizing 
Working 
Groups 

Working groups 

o  
 o   
o  



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       47 

COSI-HPC  
(proposal, lead by CSC-Finland) 

•  The Coordination for Software Initiatives in HPC (COSI-HPC) project 
is designed to promote key elements in an innovation and service 
ecosystem around the future European Petascale computing research 
infrastructure (RI).  

•  Set of actions aimed at coordinating activities in the area of software 
engineering and software services for large-scale computing, 
targeting the planned European Petascale facilities as well as future 
Exascale systems. 

•  Coordination of existing and future research and industry initiatives 
such as PRACE, DEISA, PROSPECT, and STRATOS  

 Analysis of HPC software activities in Europe 

 Building up a software community for HPC 

 Address future software challenges 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       48 

Linceï Initiative 
Contribution by Michel Marechal 

A Forward Look has been set up by ESF Panel of 12 high level 
computa;onal scien;sts has produced a report    

h>p://ccp2007.ulb.ac.be/FL‐Lincei.pdf 

ESF: European Science 
Founda;on does coordinate 
Na;onal Research funding 
organiza;ons in Europe 

80 members in 30 countries 
h>p://www.esf.org 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       49 

 Recommendations (I) 

•  National science funding agencies in Europe undertake a coordinated 
and sustained effort in scientific software development, including 
documentation, updating, maintenance and dissemination.  

•  This necessarily implies the means for training and cooperation.  
•  Restructure and federate, within an European-scale infrastructure, 

existing and expanded activities on scientific software and other forms 
of cooperation and dissemination in Europe through European 
Computational Collaborations specific to each scientific area.  

•  This would be guided by active research scientists and deliver the 
infrastructural services to the working scientists. 

One such example:  

• CECAM upgrade  

•  (mul;node, mul;‐disciplines 

CECAM is organizing code developpers in 

condensed ma>er 

h>p://www.cecam.org/ 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       50 

•  Recommendations (II) 
•  To achieve those goals, it is proposed to set up a Computational 

Sciences Expert Committee (CSEC) attached to ESF which would 
speak for the whole community of computational sciences.  

•  Its purpose would be to start setting up a durable plan for European 
cooperation in each of the fields of science using computers.  

•  It would address the policy issues involved, and work with national and 
European organisations to optimize the development of scientific 
computing in Europe. 

ESF is now 
considering 
establishing CSEC 



Scientific software development: a new CECAM initiative 

On March 30-31, 09, the director (Wanda Andreoni) and vice-president (Paul 
Durham) of CECAM convened a meeting at CECAM Headquarters in Lausanne of a 
group of scientists with the aim of reflecting upon the possible role CECAM could 
play in enhancing European scientific software development and support 

  Alessandro Curioni (IBM Research Zurich)  
  Stefano de Gironcoli (SISSA, Trieste)  
  Mauro Ferrario (University of Modena)  
  Xavier Gonze (University of Louvain)  
  Christian Holm (University of Stuttgart)  
  Wim Klopper (University of Karlsruhe)  
  Mike Payne (University of Cambridge)  
  Bill Smith (Daresbury Laboratory)  
  Godehard Sutmann (Research Centre Jülich)  
  Doros Theodorou (University of Athens)  
  Other scientists will be invited to join the group.  

CECAM (Centre Europeen de  
Calcul Atomique et Moleculaire)  
is a European organization devoted 
to the promotion of fundamental 
research on advanced 
computational  
methods and to their application to 
important problems in frontier 
areas of science and technology  



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       52 

Thomas Lippert, PRACE Project Coordination@FZ-Jülich  

Towards the High-End HPC Service for 
European Science 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       53 

Computational science infrastructure in 
Europe The European Roadmap for 

Research Infrastructures is the 
first comprehensive definition 
at the European level 

Research Infrastructures are 
one of the crucial pillars of the 
European Research Area 

A European HPC service: 
  Horizontal 
  attractive for research  
   communities  
  supporting industrial  
   development 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       54 

ESFRI Vision for a European HPC service 
  Need European HPC-facilities at top  

 of an HPC provisioning pyramid 
–  Tier-0: 3-5 European Centres 
–  Tier-1: National Centres 
–  Tier-2: Regional/University Centres 

  Part of the Creation of a  
 European HPC ecosystem 

–  HPC service providers on all tiers 
–  Grid Infrastructures 
–  Scientific and industrial communities 
–  The European HPC industry 

tier-0 

tier-1 

tier-2 

   
Renewal every 2-3 years 

Construction cost 200 – 400 Mio. €   
Annual running cost 100 – 200 Mio.€ 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       55 

HET: The Scientific Case 
  Weather, Climatology, Earth Science 

–  degree of warming, scenarios for our future climate. 
–  understand and predict ocean properties and variations 
–  weather and flood events 

  Astrophysics, Elementary particle physics, Plasma physics 
–  systems, structures which span a large range of different length and time scales 
–  quantum field theories like QCD LHC, FAIR 
–  ITER 

  Material Science, Chemistry, Nanoscience 
–  understanding complex materials, complex chemistry, nanoscience 
–  the determination of electronic and transport properties 

  Life Science 
–  system biology, chromatin dynamics, large scale protein dynamics, protein  

association and aggregation, supramolecular systems, medicine 
  Engineering 

–  complex helicopter simulation, biomedical flows,  
gas turbines and internal combustion engines,  
forest fires, green aircraft 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       56 

PRACE – Initiative 

New Partners - since May 2008 
General Partners 

 Principal Partners 

General Partners 

tier 1 

tier 0 
GENC
I 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       57 



General 
Partners 

PRACE Initiative 

PRACE 
Project 

Further PRACE Activities  

BSC 

Genci 

EPSRC NCF 

GCS 

RIS 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       59 

  PRACE is horizontal ESFRI project 
–  Mission to serve the scientific communities at large 
–  Need to cooperate with communities 

  Software for the Multi-Petaflop/s age 
–  Only few of today's applications are scalable to hundred-thousand 

CPU-cores 
–  PRACE seeks to gain knowledge in Petascaling to educate and 

support its future users 
–  An additional European effort is needed – international 

cooperation should be sought for Exascale challenges 

  Exascale data services for scientific communities 
–  Support efforts to agree on community standards for storing, 

annotating and retrieving their data, provide reliable data services 

PRACE Project  



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       60 

•  Prepare the contracts to establish the PRACE 
permanent Research Infrastructure as a single 
Legal Entity in 2010 including governance, 
funding, procurement, and usage strategies. 

•  Perform the technical work to prepare operation of 
the Tier-0 systems in 2009/2010 including 
deployment and benchmarking of prototypes for 
Petaflop/s systems and porting, optimising, Peta-
scaling of applications 

PRACE Project 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       61 

WP6 Software enabling 
for Petaflop/s 
systems (RTD) 

Prepare key applications to use 
the future Petaflop/s systems 
efficiently; capture 
requirements for WP7 and WP8 
and create a benchmark suite. 

EPSRC 

WP7 Petaflop/s 
Systems for 
2009/2010 (RTD) 

Identify potential Petaflop/s 
systems for PACE that can be 
installed in 2009/10 with 
prototypes deployed by WP5. 
Prepare the procurement process 
including acceptance criteria. 

GENCI 

WP8 Future Petaflop/s 
computer 
technologies 
beyond 2010 
(RTD) 

Start a permanent process to 
identify technologies for future 
multi-Petaflop/s systems of the 
RI and work with hardware and 
software vendors to influence 
the direction they are taking. 
Establish PRACE as a leader in 
HPC technology. 

Gauss 
Centre 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       62 

•  Create an application benchmark suite 
•  Capture application requirements for 

Petascale systems 
•  Port, optimise and scale selected 

applications 
•  Evaluate application development 

environments of the prototypes 

WP6: Software Enabling for Petaflop/s 
Systems 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       63 

PRACE WP8: STRATOS 

•  STRATOS is a deliverable of PRACE WP8: 
Create sustained platform for technology watch 
and development for PRACE 

•  Hardware  
–  Identifying and developing components of future multi-

Petaflop/s hardware  

•  Software 
–  Plans for Exascale software development within STRATOS 



Thomas Lippert / Bernd Mohr              IESP, Santa Fé, April 7-8, 2009       64 

Areas of Contribution to IESP 

European Science and Engineering Communities 
  Coordination with science drivers 

  Identify application codes and enabling HPC 
software 

Performance Tools 
Programming Tools 
Benchmark Codes 
MPI, OpenMPI standardization 
Scalable Cluster OS 
Grid/Cloud-Integration-Middleware 



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



IBM Research 

© 2009 IBM Corporation Alan Gara 

Evolutionary Software Areas for Exascale: 

•  Extend current program models through single node threading of 
messaging. Eliminate “per task” scaling terms in messaging layer to 
allow for higher “flat scaling”. 

•  Allow for mixed programming models to coexist. We need a bridge 
to new programming models that is not an all or nothing proposition. 

•  Enhance job flow to enable many concurrent capability scale jobs. 
(similar to the emerging approach at LLNL) This is likely to be a 
common early usage model for Exascale. 

•  Open source can be a very good thing for vendors and end users 
but we need to find a way share the responsibility and …… risk.  

•  Educate young people in parallel programming.  



IBM Research 

© 2009 IBM Corporation Alan Gara 

•   Storage class memory is coming: Technology will offer 1000x less 
latency but there are many other dimensions to this. Need to think 
through the possible directions to use this technology.  

•  Systems are transitioning to being power optimized. Application 
developers are still focused on performance optimization regardless 
of power. In a world where there is a power budget, software should 
play a role in optimizing performance through optimization of Perf/
Watt. (with total power being a hard facility constraint) 

•  Reliability: This is not an issue of what will we do when systems can 
not be made reliable. This issue is making the best trade-offs 
between hardware, system software and fault tolerant applications. 

Revolutionary Software Areas for Exascale: 



IBM Research 

© 2009 IBM Corporation Alan Gara 

Actions we can take 

•   Value of storage class memory: Need to have the HPC community 
united in articulating the value proposition associated with storage 
class memory. The critical break points in terms of bandwidth, density, 
cost and latency need to be understood to help guide the technology 
development.  

•   Power : This is somewhat a mindset change. Applications will 
eventually need to think of their computing resource as a total energy 
budget and they need to optimize within this. Fortunately much of 
performance tuning also drives toward energy efficiency… but not 
always. Tools and reports that detail the energy usage need to be 
accessible to users. 

•  Reliability: The realistic adoption, cost and risk of fault tolerant 
algorithms must be assessed and these should be traded off against 
hardware cost and risk. The systems can not move in a direction that 
“might” be acceptable from a reliability perspective. This makes a 
software solution very difficult.  



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



April 7, 2009 EDF R&D 7 

Three important software areas where *evolution* is required 
to improve existing open source software for extreme scale  

1.1 compilers/performance analysis tools for achieving mono-processor high 
performance, specially with accelerators (Larrabe, GPU, Cell, …) 
Goal : more than 30% of the peak performance 

1.2 Efficient, “easy to use”, portable and fault tolerant implementation of Libraries, 
Languages/compilers for mixed parallelism : MPI/OpenMP/”cuda/Open CL like” 
languages 
Goal: one million cores (heterogeneous, hierarchical and massively parallel) 

1.3a Algorithm/solvers and data structures adapted to heterogeneous/hybrid, multilevel 
and hierarchical massively parallel machines. 
Example: Dealing with non-structured irregular meshes for CFD computation on GPU 
 Goal: 

⇒  No global communication involving the complete system(avoiding MPI_ALL-
REDUCE, MPI_BARRIER,… on 1 million threads) 
⇒  exhibiting different kind of  parallelism (MPP, SIMD, …) 
⇒  enabling fault tolerance techniques implementation 
⇒  enabling efficient IO (data restructuring?) 

1.3b Open Source scientific libraries sharing a single generic interface, targeting one 
million cores (heterogeneous & hierarchical) 
Target: PETSc, SuperLU, ScaLAPACK, HyPre, MUMPS, PaStiX, … 



April 7, 2009 EDF R&D 8 

2.1 Parallel visualization and remote/collaborative post-treatment tools  

2.2 Parallel meshing, automatic hexahedral meshing, mesh healing, CAD healing for 
meshing and dynamic mesh refinement, hierarchical meshes (AMR like) 
=> Dealing with x1010 cells mesh before 2015 (x1012  in 2020?) 

2.3 Unified multiphysic/multiscale Simulation Framework  and associated services, adapted 
to massively computing 
⇒  mutualizing within a single platform pre and post-processing, calculation distribution and 
supervision, code coupling tools etc. 
⇒  standardize integration of multiple solvers (“standard” for interoperability of scientific 
software components) 
⇒  standardize data exchange (common data model for mesh and fields) and associated 
services (mesh projection, data interpolation, ..) 

Three important software areas where *revolution* is 
required to achieve scaling 



April 7, 2009 EDF R&D 9 

How do we get it done to develop community-supported 
open source software to address these 6 areas, what is 
needed?  

Some issues related to Open Source 

 Developing Open Source software, some conditions that may help to succeed and to 
keep going: 

•  one active leader and the recognition by key players 
•  A roadmap and a validated business model (at least for the leader) 
•  An ecosystem of partners for the software development, diffusion and associated 
services (installation, deployment, maintenance, specific developments) 

Using Open Source software, some issues to be aware of: how they are supported, 
deployed, visibility of the roadmap, associated risks (as an example, moving from Qt3 to 
Qt4 cost 400 days of development to the SALOME project).  

Suggestion:  
•  Identification of existing HPC Open Source software (cf.P. Beckman list) 
•  Promotion of an international HPC source forge for Open Source software diffusion? 



April 7, 2009 EDF R&D 10 

How do we get it done to develop community-supported 
open source software to address these 6 areas, what is 
needed?  

Need for International Task Forces on: 
1.  Parallel visualization tool. The community should focus on a small number of tools. VISIT and Paraview seems good 

candidates 
2.   Remote and collaborative post-treatment tools 
3.   Meshing tools. Need for an international joint effort between academic, commercial companies and end users 
4.  Common data model and associated libraries.Providing an international standard model for mesh and fields exchange 

and services(localization, projection, interpolation, arithmetic operations, …) 
5.   Supervising and code coupling tool. Unifying the software developments often driven by end users communities (climate, 

energy, …) 
6.  Uncertainties Quantification. Uncertainty analysis framework, Uncertainties referential (methodologies and  tools, Open 

Turns) 
7.  Algorithm/solvers and data structures, solver interface 
8.  Fault tolerance. Need a joint  effort involving OS, compilers, middleware/libraries,  numerical solvers/algorithm 

researchers and engineer communities 

Research policy:  
•  Identifying existing projects and research actions, roadmaps, cost 

⇒  Need for a consolidated international roadmap for HPC software 
•  Identifying grand challenge applications as driving forces 

⇒  Need for an International End User Forum structured around large 
communities (Climate, Health, Energy, Transport, Defense, …) 

Identifying funding schemes: US/EU(or national)/Japan co-funding, single country funding with 
third parties participation? 



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



12 XMP project 

3 important software areas where *evolution* is required


  To improve existing open source software for extreme scale  
  I would propose “standard” development effort for making a steps for next 

evolution to exa-scale 

  3 areas 
   Programming language/interface for distributed memory 

  We should make “standard” for state-of-the-art programming languages 
  PGAS and remote memory interface 
  Global views such as Chapel and HPF 

  Fault tolerant model and APIs 
  Problems are in reality more than 10,000 cores (100TF) 
  Application people want some “standard” solutions in reality 
  e.g. MPI 3 effort is going on … 

  File I/O model for large scale systems 
  Data becomes more and more important. 
  We need “standard” model for I/O and file systems in hundreds thousands nodes 
  e.g. MPI IO, Grid distributed file system …  



13 XMP project 

3 important software areas where *revolution* is required  


  To achieve scaling … (for exa-scale) 
  I would propose software supports for platforms from “weak-scaling” to 

“strong scaling” 
  Exascale machine != embarrassingly parallel machine! 
  Complexity from arithmetic unit, cores, SMP nodes, network to systems. 

  3 area 
  Unified programming model for a high performance node such as multicore, 

many cores, accelerator (GPGPU, FPGA, …) 
  Data localities, scheduling, … 

  Programming model for compos-able and scalable software 
  Module programming in parallel software 
  High level programming lang. such as functional prog., dataflow prog., tele-scope lang. 
  For multi-physics simulations, … 

  Fault tolerant / dependability in exa-scale systems 
  Model, Cost, Programming, Algorithms, … 
  FT will still be important and hard problems.  



14 XMP project 

How do we get it done?


  We should promote standard development 
effort of APIs between several levels and 
components of existing software (for 
“evolution”) 
   For end-users, education, … 
   For development of higher-level software 

technologies 
  Improvement of technologies by defining 

clear APIs 
  e.g. MPI, OpenMP, … 

  We should encourage the exchange ideas 
(for “revolution”) 
  Diversity is important 

New problems are defined 
(from new hardware  
and demands) 

Many ideas are  
proposed 

Standard development 
activity 

Deployment for  
application end-users 

A software  
research/development 
 process model 

convergence 

divergence 



15 XMP project 

Proposal for “Parallel Programming Languages” area 

http://www.xcalablemp.org 

  Many parallel programming languages have been proposed, but … 
  Many people still use MPI …  

  OpenMP is now “standard” for programming multi-cores 
  What about distributed memory programming? 

  NOTE: Restrict us parallel extension of 
existing languages (C/F95) for end-users. 
  NOT HPCS languages and Java-

based. 

   How about PGAS (UPC and CAF)? 
  Local view parallel programming 
  Already standard? 

  Global view parallel programming 
  We should learn from HPF history 
  Locality, efficient communication … 
  Any way to Combine to local view 

programming? 



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



Where is evolution required? 
 MPI 

  It’s portable 
  It’s ubiquitous 
  It isn’t going away  

 Thread Packages 
  Stable, portable, general user-level 
  Enable easier implementation of OpenMP 
  Allow oversubscription of HW threads 

 Operating System 
  Extremely lightweight with global functionality (memory management, 

communication, etc.) 
  Heavily multithreaded locally for latency tolerance 

April 09 Slide 17  



Where is revolution required? 
 Software to enable reliable systems built with unreliable parts 

  Infrastructure to enable application resiliency 
  Programming Models 
  System Software 
  APIs 

 Finding and Expressing parallelism 
  User perspective (how to code it) 
  Compiler perspective (how to render what the user has expressed) 
  Make extremely fine-grain, massive, µthreading practical and effective 
  Exploit heterogeneous concurrency (computation, communication, I/O) 

 Programming Tools 
  Intelligently collect data 
  Provide space efficient format for data storage 
  Collapse, reduce, filter data 

April 09 Slide 18  



How do we get it done? 

 Define the overall architecture 
  Can we converge on a common architecture? 
  Establish well-defined interfaces between SW layers 
  Dedicated architects throughout the effort 

 Establish a community for key projects 
  Dedicated maintainers  
  Research + Industrial partnerships with funding for both 
  User community participation 

 Avoid “Design by Committee” 
  HPF, Ada are examples to avoid 
  Respected leaders make the tough calls 

April 09 Slide 19  



How do we get it done? 
 Focus on the full SW life-cycle, not just the initial development 

  Test and integration 
  Maintenance 
  Management of the rate of change 

 Provide a common exascale test and integration platform 
  All components tested at scale on a reference platform 
  Strong focus on: 

  Mainline testing 
  Error-path testing 
  Edge-condition/interface testing 

 Resolve Differentiation Needs vs. Commonality Needs 
  Hardware has been commoditizing over time 
  Can common SW provide opportunities for vendor differentiation? 

April 09 Slide 20  



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



22 

Context for ExaScale Software Study (in progress) 
  Characteristics of Extreme Scale systems: 

  Massive multi-core (~ 1000 cores/chip) 
  Performance driven by parallelism, constrained by energy 
  Three system classes --- Exascale Data Center, Petascale Departmental, Terascale 

Embedded 
  Key Software Challenges: 

  Concurrency 
  Energy 
  Resilience 

  Software stack: 
  Application frameworks & Tools 
  Programming models and languages 
  Libraries 
  Compilers 
  Runtimes for scheduling, memory management, communication, performance monitoring, 

power management, resilience, storage (including metadata access) 
  Operating & Storage System – persistence support 

 Extreme Scale software need long-term research 
that goes beyond industry efforts in cloud computing 
and manycore accelerators 
 Software-hardware co-design will be critical to the 
success of future Exascale systems 



23 

Three Software areas where Evolution is Necessary 

1.   Performance Analysis Tools 
  Extensions for multithreaded code 
  Extensions for calling contexts 
  Progress under way in SciDAC centers such as CScADS & PERI 

2.   Node Compilers 
  Adjust and adapt to proliferation of new multicore processors 
  Extend auto-tuning techniques with online & offline learning 
  DARPA AACE program will provide a major boost to this area 

3.   MPI + Dynamic Parallelism 
  MPI Communicators are founded on fixed process structures 
  Process structures will need to change dynamically to address 

needs of emerging HPC applications (adaptive/unstructured grids, 
coupled models) and architectures (manycore) 



24 

Three Software areas where Revolution is Required 

1.   Fine-grained Asynchronous Parallelism 
  Weak scaling and bulk-synchronous parallelism will not deliver billion-way 

concurrency needed in Exascale systems 
  Instead require unified abstractions of asynchrony and concurrency for multi-

core & cluster parallelism 
  Subsumes threads, shared memory, message-passing, active messages, … 

2.   Locality Models 
  Data movement will be major contributor to energy consumption in Exascale 

systems 
  Need locality models that enable programmer, compiler, and runtime to 

manage data movements across multiple levels of memory hierarchy 
3.   Software-Hardware co-design for Exascale systems 

  IESP effort should identify software interfaces that are critical bottlenecks, 
and drive vendors to provide hardware support for software-hardware co-
design of these interfaces  

  Examples to follow 



25 

Example Opportunities for Software-Hardware Co-Design 
  Dynamic parallelism with fine-grained tasks (async, spawn, …) 

  Hardware support for scheduling data structures 
  Distribution and co-location of tasks and data (places, locales, …) 

  Hardware support for virtual-to-physical translation and inter-place data transfers 
  Collective and point-to-point synchronization with dynamic parallelism 

(barriers, phasers, …) 
  Hardware support for intra-node & inter-node synchronization and communication 

  Producer-consumer parallelism (single-assignment vars, futures, …) 
  Hardware support for full-empty bits 

  Isolation and mutual exclusion 
  Transactions, fine-grained locks 

  Data parallelism 
  Vectors, SIMD, SIMT 



26 

Candidate items for Software-Hardware Interface 
  Memory hierarchy configurations 

  Cache sizes & geometries, hardware vs. software cache coherence 
  Register file sizes and data widths 

  Memory access patterns 
  Address ranges that should bypass cache 
  Address ranges that require hardware coherence 
  Address ranges for which coherence will be managed by software 
  Address ranges with values that are guaranteed to be read-only (immutable) for certain application 

phases 

  Network bandwidth partitioning for different forms of data movement and 
communication 
  PGAS, RDMA, Message passing, Stream processing, … 

  Other network reconfigurability parameters 
  Topology, Packet size, … 

  Power management 
  Frequency scaling, Voltage scaling, … 

  Performance profiling 
  Lightweight profiling, Identification of events to be counted and sampled, … 

  Resilience 
  Identification of threads with lower resilience requirements e.g., for which software can perform error 

detection and recovery 



27 

From Powerpoint to Action 
  Directed research needed for all 6 topics (and more)  

  Revolutionary areas --- let a thousand flowers bloom 
  Users will vote with their feet (and noses) 

  Evolutionary areas --- opportunities for consolidation starting with performance tools 
  Application drivers 

  Application stakeholders should contribute sample applications and/or SSCA’s --- 
requires effort, but will pay great dividends 

  Platform drivers 
  Platform stakeholders should contribute to development, testing and integration for their 

platform --- requires effort, but will pay great dividends 
  Coordination 

  Follow best practices of successful open source projects --- open development, 
continuous integration, continuous testing, customer focus, community involvement, 
meritocratic leadership, … 

  Open source participation in selected areas can be strategic to vendors too 
  For example, see IBM Systems Journal special issue on Open Source Software, Volume 44, 

Number 2, June 2005 for open source experiences by a range of IBM project 
  Software-hardware co-design – don’t let software play second fiddle to hardware! 



Software Barriers for HPC 

Moderator 
 Pete Beckman 

Presenters 
 Al Gara 
 Jean-Yves Berthou 
 Mitsuhisa Sato 
 Peggy Williams 
 Vivek Sarkar 
 Ann Trefethen 



UK Roadmap  ac+vity 
Leveraging work in the US and Europe together with UK specific workshops and 
discussions groups have lead to barriers for so@ware development that fall into 
five themes 

1.  Cultural Issues  
•  some people won’t share...  

2.  Applica+ons and Algorithms  
•  Need to bring applica+on and algorithm development closer 
•  Need new algorithms for new architectures 

3.  So@ware Challenges 
•  Engineering, portability, programming models, ..... 

4.  Sustainability 
•  Need beLer models for sustainability not only for UK efforts but those that we 

depend on! 
5.  Knowledge base 

•  It would be good to know who is doing what and where 
•  We need to train more people with this cross cuQng set of skills. 

http://www.oerc.ox.ac.uk/research/hpc-na




Evolution x 3 

  Communication libraries 
  Cleverer 

  Numerical and visualisation algorithms and libraries and
 tools {need both evolution and revolution} 

  Integration of systems of models across scales and the
 like are increasingly important – need to evolve support
 for this – error propagation.  

  Best practice software engineering.... 



Revolution x 3 

  Portability 
  Architecture dependent code-generation 
  Dynamic adaptation    
  Check out on one platform check in on another 

  Programmability 
  Develop systems that let us drive the machine with the hood

 down – better abstractions 
  Dependability 

  On this scale things will fail – but it shouldn’t mean they’re
 broken  

  Validation 
  Garbage generated in milliseconds is still garbage 

  What can we learn from our formal methods colleagues? 



Playing together 

  Collaborative development of a roadmap for exascale software –
 several such already underway at the national level 

  We need better coordination at the international programme level
 including mechanisms for collaboratively funded research and
 development 

  Integration of applications, numerical and system software – silos of
 activity will not achieve our aims – US is better at than UK at this. 

   Better models for sustainability  
  Community support? 
  Industry take-up  
  Need to ensure exascale efforts are not for the few  

  Shared knowledge base required.  



Playing together 

  Success stories include BLAS, LAPACK, MPI, GPNL (what is that library
 called), PetSC 
  Good requirements capture, careful design, well engineered, well

 supported, used by many 
  Support models: 

  Community support with funding agency investments  
  Vendor supported due to user requirements (eg MPI) 
  Industry support through direct licensing (library that Rolls Royce using),

 through integration into products, Matlab, NAG, ....  
  Failures 

  Too many to mention – badly designed and/or engineered, no industry
 leverage.. Etc..  

  Created for a single audience or application area (CCPs) 
  Support model has relied on continuing investment from research

 councils (much grid software) 
  Tied to a particular architecture (CMSSL) 



Playing together 

  Ongoing activity – apace development site
 http://apace.myexperiment.org/ 



Science Drivers, Current HPC Software 
Development, and Platform Deployment 

Plans for the USA 

 Horst Simon 
Lawrence Berkeley National Laboratory and UC Berkeley 

IESP Workshop, Santa Fe, NM 
April 7, 2009 



Acknowledgements 

   This presentation is a collection of 
slides contributed by Pete Beckman, 
Bill Gropp, Matt Leininger, Paul 
Messina, Abani Patra,  Rob 
Pennington, Mark Seager, Ed Seidel, 
Rick Stevens, Michael Strayer, 
TOP500 team, Thomas Zacharia … 
and probably many others. 



Overview 

•  State of HPC in the US 

•  Application Drivers 

•  Platforms Plans 

•  Software Development 



Countries / System Share 



Con1nents 



Countries 



Roadrunner Breaks the Pflop/s Barrier 

•  1,026 Tflop/s on 
LINPACK reported  
on June 9, 2008 

•  6,948 dual core 
Opteron + 12,960  
cell BE 

•  80 TByte of memory 
•  IBM built, installed  

at LANL 



Cray XT5 at ORNL -- 1 Pflop/s in 
November 2008 

Jaguar Total  XT5 XT4 
Peak Performance 1,645 1,382 263 
AMD Opteron Cores 181,504 150,17

6 
31,328 

System Memory (TB) 362 300 62 
Disk Bandwidth (GB/s) 284 240 44 
Disk Space (TB) 10,750 10,000 750 
Interconnect Bandwidth 
(TB/s) 

532 374 157 

The systems will be 
combined after 

acceptance of the new 
XT5 upgrade.  Each 

system will be linked to 
the file system through 

4x-DDR Infiniband 



NITRD Agency Budgets 
(FY09 Request) 



Annual HPC Investment in the US 
(FY09) 

•  High End Computing Infrastructure 
and Applications  $1,142 M 

•  High End Computing R&D $492 M 



32nd List: The TOP10 
Rank Site Manufacturer Computer Country Cores Rmax 

[Tflops] 
Power 
[MW] 

1 DOE/NNSA/LANL IBM Roadrunner - BladeCenter 
QS22/LS21 USA 129600 1105.0 2.48 

2 Oak Ridge National 
Laboratory Cray Inc. Jaguar - Cray XT5 QC 2.3 

GHz USA 150152 1059.0 6.95 

3 NASA/Ames Research 
Center/NAS SGI Pleiades - SGI Altix ICE 

8200EX USA 51200 487.0 2.09 

4 DOE/NNSA/LLNL IBM eServer Blue Gene Solution USA 212992 478.2 2.32 

5 Argonne National 
Laboratory IBM Blue Gene/P Solution USA 163840 450.3 1.26 

6 
Texas Advanced 
Computing Center/
Univ. of Texas 

Sun Ranger - SunBlade x6420 USA 62976 433.2 2.0 

7 NERSC/LBNL Cray Inc. Franklin - Cray XT4 USA 38642 266.3 1.15 

8 Oak Ridge National 
Laboratory Cray Inc. Jaguar - Cray XT4 USA 30976 205.0 1.58 

9 NNSA/Sandia National 
Laboratories Cray Inc. Red Storm - XT3/4 USA 38208 204.2 2.5 

10 Shanghai 
Supercomputer Center Dawning Dawning 5000A, Windows 

HPC 2008 China 30720 180.6 



Focus of this Presentation 

•  DOE – SC 
•  DOE – NNSA 
•  NSF 



Overview 

•  State of HPC in the US 

•  Application Drivers 

•  Platforms Plans 

•  Software Development 



Preparing for Extreme Scale 
Computing 



Break Out Groups 
(applications) 

B1.  Improve our understanding of complex biogeochemical (C, N, P, etc.) cycles 
that underpin global ecosystems functions and control the sustainability of 
life on Earth. 

B2.  Develop and optimize new pathways for renewable energy production and 
development of long-term secure nuclear energy sources, through 
computational nanoscience and physics-based engineering models. 

B3.  Enhance our understanding of the roles and functions carried out by microbial 
life on Earth, and adapt these capabilities for human use, through 
bioinformatics and computational biology.  

B6.  Develop integrated modeling environments that couple the wealth of 
observational data and complex models to economic, energy, and resource 
models that incorporate the human dynamic into large-scale global change 
analysis. 

B9.  Develop a “cosmic simulator” capability that integrates increasingly complex 
astrophysical measurements with simulations of the growth and evolution of 
structure in the universe, linking the known laws of microphysics to the macro 
world. Develop large-scale, special-purpose computing devices and innovative 
algorithm development to achieve this goal. 

B10.  Manufacturing 



Break Out Groups 
(technology) 

B4.  Develop tools and methods to protect the distributed information 
technology infrastructure: ensuring network security, preventing 
disruption of our communications infrastructure, and defending 
distributed systems against attacks. 

B5.  Drive innovation at the frontiers of computer architecture and information 
technology, preparing the way for ubiquitous adoption of parallel 
computing, power-efficient systems, and the software and architectures 
needed for a decade of increased capabilities. Accelerate the 
development of special-purpose devices that have the potential to 
change the simulation paradigm for certain science disciplines. 

B7.  Advance mathematical and algorithmic foundations to support scientific 
computing in emerging disciplines such as molecular self- assembly, 
systems biology, behavior of complex systems, agent-based modeling 
and evolutionary and adaptive computing. 

B8.  Integrate large, complex, and possibly distributed software systems with 
components derived from multiple applications domains and with 
distributed data gathering and analysis tools. 



Scientific Challenge Workshop Series 
(2008 – 2009) 

•  Climate, Nov. 2008 
•  Astrophysics, HEP, Experimental Particle Physics, 

HE Theoretical Physics, Dec. 2008 
•  Nuclear Physics, Jan. 2009 
•  Fusion Energy, March 2009 
•  Nuclear Energy, May 2009 
•  Combustion, Nanoscience, Chemistry, August 2009 
•  Biology, Sept. 2009 
•  NNSA and SC Mission, Sept/Oct. 2009 



Scientific Challenge Workshop Series 
(2008 – 2009) 

•  Series of workshops organized as follow up by DOE-SC 
(Paul Messina): 
–  To identify grand challenge scientific problems in [research 

area] that can exploit computing at extreme scales to bring 
about dramatic progress toward their resolution. 

–  The goals of the workshops are to 
•  identify grand challenge scientific problems […] that could 

be aided by computing at the extreme scale over the next 
decade; 

•  identify associated specifics of how and why new high 
performance computing capability will address issues at 
the frontiers of […]; and 

•  provide a forum for exchange of ideas among application 
scientists, computer scientists, and applied 
mathematicians to maximize the use of extreme scale 
computing for enabling advances and discovery in […]. 



Priority Research Direction 

Scientific and computational challenges


What will you do to address the challenges?
Brief overview of the underlying scientific and 
computational challenges


What new scientific discoveries will result?


What new methods and techniques will �
be developed?


How  will this impact key open issues in 
SCIENCE DOMAIN? 


What’s the timescale in which that impact may 
be felt?


Summary of research direction


Potential scientific impact
 Potential impact on SCIENCE DOMAIN




PRDs for Climate Model Development  
and Integrated Assessment 

(from Warren Washington’s presentation to BERAC) 

•  How do the carbon, methane, and nitrogen 
cycles interact with climate change? 

•  How will local and regional water, ice, and 
clouds change with global warming? 

•  How will the distribution of weather events, 
particularly extreme events, that determine 
regional climate change with global warming?  

•  What are the future sea level and ocean 
circulation changes?  



PRDs for Algorithms 
and Computational Environment 

(from Washington’s presentation to BERAC) 

•  Develop numerical algorithms to efficiently use 
upcoming petascale and exascale architectures   

•  Form international consortium for parallel input/
output, metadata, analysis, and modeling tools 
for regional and decadal multimodel ensembles 

•  Develop multicore and deep memory languages 
to support parallel software infrastructure 

•  Train scientists in the use of high-performance 
computers. 



December 10, 2008


Cosmic Structure Formation Probes of the Dark Universe 

Scientific and computational challenges


Develop precise predictions of structure formation 
from the Hubble Volume to the scale of the Solar 
System


Develop spatially and temporally adaptive codes, 
algorithms, and workflows for simulations and data on 
extreme-scale architectures.


Determine the equation of state of dark energy and 
distinguish between dark energy and modifications of 
General Relativity 


Measure the masses and interactions of dark matter 


Measure the sum of the neutrino masses 


Probe the fields responsible for primordial fluctuations


Revolutionize High Energy Physics by discovering and 
measuring physics beyond the standard model 
inaccessible to accelerators.


10 years


Summary of research direction


Potential scientific impact
 Potential impact on High Energy Physics


Understand cosmic structure to enable the use the 
universe as a probe of fundamental physics


Perform cosmological hydrodynamical simulations 
with the dynamic range necessary to interpret future 
experiments




•  Identify and support development of low-level 
modules and libraries, isolating architectural 
complexity (e.g., MPI, FFT) 

•  Identify and support development of open-
source community application codes, but not 
to the exclusion of other promising efforts 

•  Promote  development of data models and 
language for interoperable data analysis 
(observation  <=> simulation) 

The Software Dimension 
Consensus view of Astrophysics 

Simulation and Data Panels 



Selected PRDs identified by NP 
workshop 

•  Physics of extreme neutron-rich nuclei 
and matter 

•  Microscopic description of nuclear 
fission 

•  Early universe 
•  Stellar evolution 
•  Stellar explosions and their remnants 



25 

PetaApps Solicitation:NSF 07-559, 
08-592 

  Applications ranged over, climate change, earthquake 
dynamics and structural response, nanoscale transistor 
models, supernovae simulations, high Reynolds number 
turbulent flows, quantum chromodynamics … 



26 

PetaApps Solicitation:NSF 07-559, 
08-592 

Solicitation sought proposals that 
  develop the future simulation, optimization and 

analysis tools that can use emerging petascale 
computing to advance the frontiers of scientific 
and engineering research;  

  have a high likelihood of enabling future 
transformative research;  

  133 distinct project proposals received; 
  18 awards ~$26M (50% funding from OCI, 

50% from CISE, ENG, MPS) 
  ~$30M investment planned for FY09-10 



NNSA Advanced Simulation and  
Computing (ASC) Strategy Goals 

•  Address national security 
simulations needs; 

•  Establish a validated predictive 
capability for key physical 
phenomena; 

•  Quantify and aggregate 
uncertainties in simulation 
tools; 

•  Provide mission-responsive 
computational environments. 



Overview 

•  State of HPC in the US 

•  Application Drivers 

•  Platforms Plans 

•  Software Development 



29


Oak Ridge’s Cray XT5  
Breaks the Petaflop Barrier  

Jaguar Total  XT5 XT4 
Peak Performance 1,645 1,382 263 
AMD Opteron Cores 181,504 150,176 31,328 
System Memory (TB) 362 300 62 
Disk Bandwidth (GB/s) 284 240 44 
Disk Space (TB) 10,750 10,000 750 
Interconnect Bandwidth (TB/s) 532 374 157 



ASCAC March 3, 2009

30

Argonne’s IBM Blue Gene/P – 556 TFs 



31


National Energy Research Scientific 
Computing Center (NERSC) 

•  Located at Lawrence 
Berkeley National Lab 
–  Cray XT4 Franklin 

upgraded to 350 Tflop/s 
–  Data facility with up to 

50PBytes capacity  

•  NERSC-6 Project 
–  RFP issued in 

September 2008 
–  Installation 2009 

Franklin




ESnet 
40 Gbps Core 

Leader in Networks for Science 
–  OSCARS 
–  PerfSONAR 
–  DanteInternet2CanarieESnet 



33


ASCR  
Facilities Strategy 

•  Providing the Tools – High-End Computing 
–  High-Performance Production Computing - 

National Energy Research Scientific 
Computing Center (NERSC) at Lawrence 
Berkeley National Laboratory 

•  Delivers high-end capacity computing to 
entire DOE SC research community 

–  Leadership-Class Computing – Leadership 
Computing Centers at Argonne National 
Laboratory and Oak Ridge National 
Laboratory  

•  Delivers highest computational capability 
to national and international researchers 
through peer-reviewed Innovative and 
Novel Computational Impact on Theory 
and Computation (INCITE) program (80% 
of resources) 

•  Investing in the Future - Research and 
Evaluation Prototypes  

•  Linking it all together – Energy Sciences 
Network (ESnet) 



NSF’s Strategy for High-end 
Computing 

FY’07 FY’11 FY’10 FY’09 FY’08 

Sc
ie

nc
e 

an
d 

E
ng

in
ee

ri
ng

 C
ap

ab
ili

ty
 

(lo
ga

rit
hm

ic
 sc

al
e)

 

Track 1 System 

Track 2 Systems 

UIUC/NCSA (≥1 PF sustained) 

TACC (500+TF) 

UT/ORNL (~1PF) 

Track 2d 
PSC (?) ? 

Leading University HPC Centers Track 3 Systems 



NSF’s Track 2 Computing 
Systems 

TACC UT-ORNL PSC 
System Attribute Ranger Kraken ? 
Status Installed Installed 
Vendor Sun Cray 
Processor AMD Intel 
Peak Performance (TF) 504 ~1000 
Number Cores/Chip 4 ? 
Number Processor Cores 62,976 ~80,000 
Amount Memory (TB) 123 ~100 
Amount Disk Storage (TB) 194 
External Bandwidth (Gbps) 10 



Blue Waters Computing 
System at NCSA 

System Attribute Abe Blue Waters 
Vendor Dell IBM 
Processor Intel Xeon 5300 IBM Power7 
Peak Performance (PF) 0.090 
Sustained Performance (PF) 0.005 ≥1 
Number Cores/Chip 4 multicore 
Number Processor Cores 9,600 >200,000 
Amount Memory (TB) 14.4 >800 
Amount Disk Storage (TB) 100 >10,000 
Amount of Archival Storage 
(PB) 

5 >500 

External Bandwidth (Gbps) 40 >100 





Sequoia Strategy 

 Two major deliverables 
• Petascale Scaling “Dawn” Platform in 2009 
• Petascale “Sequoia” Platform in 2011 

 Lessons learned from previous capability and capacity 
procurements 
•  Leverage best-of-breed for platform, file system, SAN and storage 
• Major Sequoia procurement is for long term platform partnership 
• Three R&D partnerships to incentivize bidders to stretch goals 
• Risk reduction built into overall strategy from day-one 

 Drive procurement with single peak mandatory 
• Target Peak+Sustained on marquee benchmarks 
• Timescale, budget, technical details as target requirements 
•  Include TCO factors such as power 

38




To Minimize Risk, Dawn Deployment Extends the Existing 
Purple and BG/L Integrated Simulation Environment 

 ASC Dawn is the initial delivery 
system for Sequoia 

 Code development platform and 
scaling for Sequoia 

 0.5 petaFLOP/s peak for ASC 
production usage 

 Target production 2009-2014 
 Dawn Component Scaling 

• Memory B:F = 0.3 
• Mem BW B:F = 1.0 
•  Link BW B:F = 2.0 
• Min Bisect B:F = 0.001 
• SAN GB/s:PF/s = 384 
• F is peak FLOP/s 

39




Sequoia Target Architecture in Integrated Simulation 
Environment Enables a Diverse Production Workload 

 Diverse usage models drive 
platform and simulation 
environment requirements 
•  Will be 2D ultra-res and 3D high-res 

Quantification of Uncertainty engine 
•  3D Science capability for known 

unknowns and unknown unknowns 
 Peak of 14 petaFLOP/s with option 

for 20 petaFLOP/s 
 Target production 2011-2016 
 Sequoia Component Scaling 

•  Memory B:F = 0.08 
•  Mem BW B:F = 0.2 
•  Link BW B:F = 0.1 
•  Min Bisect B:F = 0.03 
•  SAN BW GB/:PF/s = 25.6 
•  F is peak FLOP/s 

40




Overview 

•  State of HPC in the US 

•  Application Drivers 

•  Platforms Plans 

•  Software Development 



42


Delivering the Software Foundation 



Blue Waters Computing System 
Software Issues (collaboration w. IBM) 

•  System software 
–  Scalable, jitter-free OS (AIX or Linux) 
–  Integrated System Console 

•  Software development environment and tools 
–  Programming 

•  New models: MPI/OpenMP, UPC, CAF, GSM 
•  Efficient compilers: C/C++, Fortran, UPC, CAF 
•  Scalable debugger 
•  Optimized libraries 
•  Frameworks (e.g., Cactus) 

–  Performance tools 
–  Workflow management 

•  Reliability 
–  Virtualization 

Integrated via Eclipse 



Code Development Tools


Sequoia Distributed Software Stack Targets Familiar 
Environment for Easy Applications Port 

C/C++/Fortran

Compilers, Python


LW
K

, L
in

ux
 

O
pt

im
iz

ed
 M

at
h 

Li
bs

 

APPLICATION 

IP 

UDP TCP 

SOCKETS 
Lustre Client 

Clib/F03 runtime 

MPI2 

Interconnect Interface


User 
Space 

Kernel 
Space 

ADI 

Parallel Math Libs 

External Network


LNet 

OpenMP, Threads, SE/TM 

Function Shipped

syscalls


SL
U

R
M

/M
oa

b

R

A
S,

 C
on

tr
ol

 S
ys

te
m



C
od

e 
D

ev
 T

oo
ls 

In
fr

as
tr

uc
tu

re



44




Consistent Software Development Tools for Livermore Model 
from Desktop and Linux Clusters to Sequoia 

Math Libs 

Open Source* Seamless Environment 
Desktop             Clusters            Petascale 

Gnu build tools 

IDEs (Eclipse), GUIs 

Static Analysis Tools 

Runtime Tools Compilers 
C/C++/Fortran, Python 

Code Steering Emulators (for 
 unique HW features) 

Programming Models 

MPI2-- 
OpenMP PThreads SE/TM 

*Vendor, ISV components 
are negotiable


45




Observation #1 

 There is no coherent Petascale 
software plan across different 
platforms and different agencies 



Performance Development Projec1on 

0.1 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

1000000000 

10000000000 

1E+11 
19

94
 

19
96

 

19
98

 

20
00

 

20
02

 

20
04

 

20
06

 

20
08

 

20
10

 

20
12

 

20
14

 

20
16

 

20
18

 

20
20

 

1 EFlop/s 

100 PFlop/s 

10 PFlop/s 

1 PFlop/s 

100 TFlop/s 

10 TFlop/s 

1 TFlop/s 

100 GFlop/s 

10 GFlop/s 

1 GFlop/s 

100 MFlop/s 

12.64  TFlop/s 

SUM 

N=500 

N=1 

1.1  PFlop/s 

16.9  PFlop/s 



48 

Petaflops to Exaflops 
1995 “Building a computer 10 times 

larger than all the networked 
computing capability in the USA” 

2007 “range of applications that would 
be materially transformed by the 
availability of exascale systems” 

www.er.doe.gov/ASCR/ProgramDocuments/TownHall.pdf 



From Peter 
Kogge, DARPA 
Exascale Study 

DARPA Exascale Study: 
We won’t reach Exaflops with this approach 



•  Exascale computer architectures necessitate radical changes to the software 
used to operate them and the science applications.  The change is as disruptive 
as the shift from vector to distributed memory supercomputers 15 years ago. 

•  Message passing coupled with sequential programming  
languages will be inadequate for architectures based on  
many-core chips.  

•  Present code development, correctness, and performance  
analysis tools can’t scale up to millions of threads. 

•  Checkpointing will be inadequate for fault tolerance at the  
exascale.  

•  Fundamental changes are necessary to manage and extract  
knowledge from the tsunami of data created by exascale  
applications. 

“Effective use of exascale systems will require fundamental changes in 
how we develop and validate simulation codes for these systems and 
how we manage and extract knowledge from the massive amount of data 
produced.” 

Exascale Townhall: Software – Findings  



Improve scientists’ and administrators’ productivity 
•  Creation of development and formal verification tools 

integrated with exascale programming models  

Improve the robustness and reliability of the system  
and the applications.  

•  New fault tolerance paradigms will need to be developed 
and integrated into both existing and new applications  

Integrate knowledge discovery into the  
entire software life-cycle  

•  Application development tools, runtime steering,  
 post-analysis, and visualization 

Develop new approaches to handling the entire data  
life-cycle of exascale simulations  

•  Seamlessly integration into the scientist's workflow  
•  Automatically capture provenance 
•  Develop effective formats for storing scientific data  

Exascale Townhall: Software - Challenges 



Observation #2 

•  Software environment evolved 
naturally from Terascale to Petascale 
– same system architecture 
– only ~10X increase in parallelism 

•  Software environment must change 
fundamentally in the transition from 
Petascale to Exascale 
– different node architecture 
– massive parallelism (~1000X increase) 



Two important questions 
about IESP 

•  Evolution or revolution? 
•  Program or project? 

… to be discussed at the reception 



Robert F. Lucas Page 1 3/16/2009 

Robert F. Lucas 
Computational Sciences Division 

Information  Sciences Institute 
University of Southern California 

rflucas@isi.edu 
 

Musings on the Path Forward to Exascale 
 
In the hey-day of supercomputing, when Cray Research was the darling of Wall Street, 
scientists and engineers in both the public sector, Universities and National Laboratories, 
as well as those in industry used the same computer systems.  Sometimes, they used the 
same codes, such as NASTRAN, which was initially developed by NASA GSFC and 
later distributed World-wide by independent software vendors (ISVs), like today’s MSC 
Software.   In other fields, such as nuclear weapons design, for which there is no 
commercial market, government-funded scientists could still leverage the same rich 
software ecosystem of operating systems, compilers, numerical libraries, and debuggers 
as was available to their colleagues in industry. 
 
The advent of distributed memory, message-passing systems dramatically changed the 
above status quo.  The codes that consumed the most supercomputer cycle time were 
often highly specialized to the Cray architecture, and it was not practical, if even feasible 
to port them.  In Labs and academe, a new generation of capability codes was developed, 
often from scratch, i.e., designed form the beginning to exploit the new systems.  This 
also required the development of a new software ecosystem with numerical libraries, 
debuggers, etc.  Passing the burden of orchestrating data distribution and communication 
to the user (i.e., MPI) at least allowed most us to continue to use standard languages and 
compilers on individual processing nodes. 
 
While they were much slower to do so, industrial users have now also adopted distributed 
memory systems.  More and more of today’s mainstream commercial software exploits 
thread level and even message-passing concurrency, though scaling of these codes is 
usually quite limited.  Thus, an automaker with thousands of CPUs will not launch a 
handful of large capability computations, designed to explore some novel design, but 
rather will launch a large ensemble of modest jobs (~32 processors), each evaluating a 
small perturbation in their design space. 
 
The divergence of public and industrial use of supercomputers had a deleterious impact 
for all involved.  The market for high end systems stopped growing, and many system 
vendors left the market.  Many users found that they could lower the cost of computation 
over the course of the last decade, but could not increase the scale and fidelity of those 
same computations [ref. Vince Scarafino, Ford Motor Company]. 
 
As we look forward to Exascale, there are reasons to believe that we will face a 
transformation similar to that experienced in the early 1990s, when distributed memory 
stopped being a curiosity, and went mainstream.  The rate at which users and their tools 
must expose additional concurrency is actually increasing, and by the dawn of the 



Robert F. Lucas Page 2 3/16/2009 

Exscale era could exceed 109.  Meanwhile, the ratio of Bytes to Flops could drop by 
orders of magnitude as DRAM sees the end of its Moore’s Law growth earlier than logic 
circuits.  This in turn will almost certainly lead to a new memory hierarchy as technology 
like Flash fills the void.  Heterogeneous systems like RoadRunner may become prevalent.   
 
An obvious question that arises is how do we learn from our past, and manage this next 
transformation so that it is not as disruptive as the last one?  The thesis of this white paper 
is that we need to do so in multiple ways.  First, we must evolve our systems and 
software, whenever possible, in a manner that is predictable by users and developers.  
There is more value in application software today than there is computing systems.  
There are applications in use today that are forty or more years old (e.g., NASTRAN), 
and these applications can be expected to grow over the course of the next decade.  The 
developers of these codes must be provided with a path to the future that allows them to 
incrementally add new features and anticipate changes in computing systems.  Note, the 
transition from scalar to vector circa 1980 was evolutionary for most developers. 
 
Secondly, we must remember that computer systems exist to solve problems for their 
human users.  Thus Exascale systems must be co-designed with the applications that they 
will ultimately run.  Building message passing systems was expedient for the system 
architects, punting to application developers the hard problems of distributing and 
coordinating the computation.  As the level of concurrency approaches 109, this will no 
longer be feasible.  We will not be able to tolerate unnecessary overheads in 
communication and synchronization, lest Amdahl fractions preclude users from making 
practical use of such systems.  This author believes we should start an Exascale system 
program with the scientific and engineering challenges it will be expected to solve.  In 
such a design, we must consider existing software to be an important boundary condition. 
 
Finally, there is concern that the reliability of systems will begin to decline as we 
approach Exascale.  The scale of the systems and the number of components involved is 
increasing.  Worse, as VLSI geometries continue to shrink, the long-term reliability of 
integrated circuits will decrease and they may become increasing vulnerable to transient 
failures.  Unfortunately, in mainstream science and engineering, the programming model 
has always been that the system is reliable, and simple measures like checkpoint/restart 
would be adequate for the rare exceptions.  I firmly believe that every attempt must be 
made by computer hardware and system software to continue to isolate software 
developers and end users from any reduction in component reliability.  Otherwise, we 
will poison the ecosystem and can expect to see fewer and fewer users of capability 
systems. 
 
.   
 
 



 1 

BSC vision Towards Exascale 
 

Jesús Labarta, Eduard Ayguade and Mateo Valero, 
Barcelona Supercomputing Center – Centro Nacional de Supercomputación 

(BSC–CNS) and  Universitat Politècnica de Catalunya 
Nexus II Building, C. Jordi Girona 29, 08034–Barcelona, Spain. 

{ jesus.labarta, eduard.ayguade, mateo.valero}@bsc.es. 
 
 
What is scalability? We need to reach a view of our systems, where looking at them from 
different distances still lets us have a self similar view, like looking at the earth form the 
moon, a satellite, a plane, the top a mountain or standing on the ground. We need unified 
views of our computing systems, where granularity is the main difference between the 
levels we may focus at. 
 
The current experience represents a single snapshot of different techniques at various 
granularity levels. We use dataflow ideas in out of order processor design, decoupling 
between logical and physical address space at the virtual memory level, synchronous 
algorithms at cluster level, … . We should look at all good ideas, developments and 
practices form the past and apply them in a broad scalable way, where granularity is the 
only difference between levels. 
 
Power, variance, resource (energy budget, processing power, storage, and 
communication) sharing and management, and global complexity are important 
challenges.  Memory structure is a key issue, seen both form the point of view of the 
model offered to the programmer and the actual hardware structure and support 
mechanisms. Overlap between communication and computation and in general better 
tolerance to latency is important to avoid the over dimensioning of communication 
infrastructures that current practice seems to favor.  
 
Facing these challenges, asynchronism and decoupling different conceptual levels is the 
key to tackle a universe huge in scale and characterized by variance. We consider that the 
programming model is Alexander’s sword to break the Gordian knot of multicore and 
exascale systems. A proper programming model is the key interface that will allow the 
separation at a coarse granularity level between the concerns of users and those of system 
designers in the same way ISAs did allow such separation and progress in the past. The 
only issue is that we still have for forge this sword and we will require strong interaction 
of all levels to do it.   
 
We need programming models that help decouple the way programs are written and 
executed. At the programmer interface, we should be able to write ideas left to right, top 
to bottom in a clean and concise way. Runtime should be able to execute them out of 
order (right to left, top to bottom,…) in the way that the utilization of the resources and 
thus global efficiency is optimized. 
 



 2 

Ideally a single programming model with hierarchical capabilities should cover the whole 
dynamic range from the single node to the exascale system. It is nevertheless foreseeable 
that mixed approaches will be used in the near future, with a different model being used 
for the cluster, node and accelerator/device level. In this situation, an issue that will have 
strong impact on the programmability of our systems and the final performance is the 
“compatibility” between the models at the different levels. Different models 
have/promote different parallelization and synchronization structures. Very often in the 
past, mixed models gave discouraging results due to a mismatch between the 
parallelization structure at the coarse and fine grain level. Considering that properly 
parallelizing an application (and we are really facing Amdahl’s law) is a global issue, 
both programming model designers and application writers need to put special care in 
ensuring that the interactions between the fine and coarse level result in positive 
interference. 
 
We consider that a clean specification of what are the inputs/outputs/accesses of a 
computational block (task model) is a proper boundary between a programmer who has a 
good knowledge of the algorithmic interactions and the execution engine. The runtime 
should be responsible of the scheduling issues: progressing as fast as possible along the 
critical path; knowing which functional units (cores) are more appropriate for each task; 
deciding where to issue task to maximize locality and minimize bandwidth requirements. 
Mechanisms for the programmer to provide hints and additional information to the 
runtime will be useful, but not a requirement. 
 
We need to decouple memory as a logical address space to name objects from memory 
as container to keep the values. Matching objects to the actual containers available should 
be handled dynamically by the run time, in a much more flexible than what is today done. 
We are used to a single level of such mapping being handled by hardware (caches,…) 
and we will need to consider a hierarchical approach, where at coarse levels of 
granularity this functionality is handled by the runtime.  
 
Many of these ideas come from dataflow, yes, and they should be extensively used in our 
execution engines. We do need syntactical ways to provide a smooth transition form 
current practices to facilitate the adoption of such techniques by the huge community of 
programmers who are scientist, but not computer scientist. 
 
At the application level we do need to restructure our codes to clearly reflect the actual 
access patterns. Many current applications have accesses to key global structures deeply 
buried into the call tree. This is not only bad for the future exascaling of the code, it is 
also bad for today’s maintenance and development of new functionalities. We envisage 
that such application cleaning process will have to be undertaken by application 
developers in their way to exascaling. This will have to be done while including in the 
code the asynchrony and means to determine dependences between computations. What 
would be important is to ensure that this is an only once effort, leading to applications 
that can survive for some decades and can be upgraded and rapidly ported to the 
foreseeable explosion of hardware platforms. This should be feasible in a portable, 



 3 

modular and incremental way, possibly tuning some low level task description to 
specific accelerator hardware but leaving the program structure and code unmodified.  
 
At the application level it will also be important to work on new algorithms that are 
more asynchronous in nature. It is hard to imagine programs with tens of millions of 
threads synchronizing globally at fine granularity that will run efficiently and insensitive 
to variance or noise. It will be necessary to study where the balance stands in terms of 
computational complexity of an algorithm and the level of asynchronism that it has. 
 
Load balancing is a key issue to achieve performance at high scale, which is frequently 
underestimated. We tend to believe that our applications are more balanced than they 
really are if their actual execution is measured in fine detail. Very often in current 
practice we blame the communication subsystem when the real cause of the problems 
comes from load imbalances or serializations. MPI, like a perfect gas, fills whatever 
space you give it. We should look more at what and how we compute and a bit less at 
how much time we spend in MPI. Dynamic load balancing techniques will have to be 
used to solve the issue, irrespective of whether it is caused by the application itself, or 
originates from variance in the devices or system software or from the shared usage of 
resources. In the same way that having to continuously use force to enforce power is not 
having real power these dynamic techniques should be always there, but only enforced 
when needed. 
 
Malleablility of applications is a feature that will be a requirement mostly arising as a 
requirement of shared utilization of systems and the attempts to optimize the global 
throughput of systems and quality of service/SLAs. Malleability, as the ability of an 
application to change its parallel structure (change resources used) is a feature that will 
have to be enabled/facilitated by programming models, although application developers 
will have to follow a few methodological guidelines. The same techniques developed for 
load balancing above will be needed in the runtime to achieve malleability. The only 
difference is that in this case, the decisions will have to be coordinated with the OS 
schedulers at the different levels (kernel threads, processes, jobs). 
 
Fault Tolerance will certainly be a relevant issue as it will not be possible to ensure 
functional operations of all the components of a system for the execution time of 
applications. The failures may happen at different granularity levels (individual 
functional units or cores, whole address spaces…) Techniques to tolerate these faults will 
be needed. Depending on the granularity may be implemented in software or hardware 
support may be required. Task based programming models as advocated above in 
conjunction with transactional memory functionalities seem to provide a fair basis to 
approach the issue. Faults if properly handled, recovered and isolated will result in 
dynamic availability of resources, thus linking back with the load balance issue described 
above. 
 
Understanding the performance of our programs will be of great importance. We have 
the feeling that performance tools and analysis practices are a bit in their infancy. Today 
we essentially measure some aspects of system performance and report very global 



 4 

aggregates that generally convey little information about the details, and unfortunately, it 
is in the details where a lot of the performance of these systems will be gained or lost. 
There is a need (and potential) for much more statistical processing of our data, use of 
analysis techniques from other areas (i.e. signal processing, clustering) more extensive 
use of models in order to actually provide insight to the analyst. 
 
At BSC we have been working on the StarSs programming model, which we believe 
addresses in a clean way many of the above stated considerations. Initial implementations 
of the run time for SMP, Cell, GPUs are available. It can be integrated with other models 
at large cluster scale (i.e. MPI) and still propagate to such an outer level many of the 
benefits of the dataflow execution. Also further implementations of the basic model at 
coarser granularity levels are being explored. We do believe that ideas from the model 
can on one side guide and on the other highly benefit form architectural support, 
especially in the memory subsystem design area. We are also involved in performance 
tools, job scheduling, applications… We would like to contribute with our vision and 
ongoing efforts to this holistic Exascale initiative. 
  
 
 



Software Challenges for Extreme Scale Computing: Going from 
Petascale to Exascale Systems 

Michael A. Heroux, Sandia National Laboratories 
 

1. Introduction 
Preparing applications for a transition from petascale to exascale systems will 
require a very large investment in several areas of software research and 
development.  The introduction of manycore nodes, the abundance of parallelism, 
an increase in system faults (including soft errors) and a complicated, multi‐
component software environment are some of the most challenging issues we face.  
In this paper we address four topics we believe to be most the challenging issues 
and therefore the greatest opportunities for making effective next‐generation 
scalable applications. 
 

2. Parallel Programming Transformation 
The first and foremost barrier to optimal use of extreme scale computers is the 
required transformation of parallel programming strategies.  There is mounting 
evidence that optimal parallel applications for scalable manycore computer systems 
will rely on MPI for inter‐node parallelism, but will need to introduce large‐volume 
functional parallelism and SIMD vectorization.   Vectorization is the job of the 
compiler, with a little help from the programmer via pragmas and directives. The 
real issue is that presently there is no obvious parallel programming model for 
implementing the middle layer of parallelism.  Current standards such as OpenMP, 
Pthreads and UPC are not designed for manycore nodes.  CUDA, RapidMind and 
related products target manycore but are proprietary.  OpenCL is an emerging 
standard but is not really a user‐oriented interface, and will likely not provide 
optimal performance (e.g., in comparison to CUDA on GPUs).   
 
However, even without an emerging programming model for manycore, there is a 
vast amount of work required to prepare existing applications for manycore nodes.  
Two major tasks are (i) reducing bandwidth requirements as much as possible, 
primarily by introducing the use of mixed precision, storing data in 32‐bit arrays 
wherever possible, and (ii) rewriting low‐level kernels as stateless functions with 
large enough granularity to keep a SIMD core busy, and small enough that there is a 
large volume of simultaneous function calls to execute.  
 
Application developers can immediately begin refactoring software in anticipation 
of manycore nodes, but a manycore programming model will need to emerge in the 
near future. 
 



3. Beyond the Forward Problem 
In many areas of science and engineering, solving a single problem with given input 
conditions, the forward problem, is sufficiently challenging, and higher forward 
problem fidelity is the highest priority for scalable computing.  However, as the 
fidelity of the forward problem becomes sufficiently good, it becomes possible and 
imperative to study parameter sensitivities, quantify uncertainties and 
automatically compute an optimal solution over a range of parameter values. 
 
All of these advanced modeling and simulation techniques quickly increase problem 
size and parallelism—often by orders of magnitude—and large problems can easily 
exceed the computing capacity of our largest systems.  The simplest of these 
approaches are “black box” in nature and do not require a true peta/exascale system 
(instead requiring a cluster of tera/petascale systems).  However, more advanced 
methods (often called embedded methods) rely on a tightly coupled aggregation of 
forward problems and require a true peta/exascale system.  The challenge with 
embedded methods is that they require the transformation of an application into a 
“subroutine” because embedded methods need to call the forward solve as a 
function.  Most applications were not designed with this mindset, so this 
transformation will be challenging. 
 

4.  A Fault‐resilient Application Environment 
If hardware fault predictions are accurate, exascale systems will have very high fault 
rates and will in fact be in a constant state of decay.  “All nodes up and running,” our 
current sense of a well‐functioning scalable system, will not be feasible.  Instead we 
will always have a portion of the machine that is dead, a portion that is dying and 
perhaps producing faulty results, another that is coming back to life and a final, 
hopefully large, portion that is computing fast and accurate results. 
 
Our current hardware and software environments are not well prepared for this 
kind of “stable” system.  In fact, the only reliable, portable resilience mechanism we 
have is checkpoint‐restart.  Although there have been many research efforts in fault 
tolerance, much of this work has been focused on a single layer in the hardware and 
software stack, without sufficient consideration of the whole set of requirements.  
One of the biggest needs we have in resilient computing research is an increased 
effort to include the full vertical scope of the software and hardware stack into our 
design discussions.  Furthermore we need a full‐featured environment to probe the 
system, make decisions based on system state and recover from system faults, both 
hard and soft.  Without a dramatic improvement in this environment, we face the 
very real risk that application developers will reject exascale systems in favor of 
smaller, more reliable systems that provide a better overall throughput. 
 
Regardless of how unreliable a system is, from an application developer’s 
perspective there has to be some way to perform reliable computations.  This does 
not mean that every computation must be reliable, but that certain, perhaps higher 
cost, computations and their input and resulting data are highly reliable.  Without 



this kind of capability, it becomes extremely difficult to provide any kind of 
verifiable result.  An application needs the ability to declare certain ranges of data as 
highly reliable.  Furthermore, it needs to know that certain computations have 
completed correctly or, if not, have the ability to react to faulty or interrupted 
computations.  If the runtime environment can provide these two features, we can 
develop algorithms that will be reliable on exascale systems. 
 

5.  Hierarchical Software Engineering and Development 
The CSE software community, by most accounts, has been slow to adopt formal 
software engineering practices.  Although a lot of high quality software has been 
developed without formal practices, the demands of collaborative development, 
multi‐code environments and large collective teams require more attention to the 
benefits that formal practices can provide. 
   
Typically, single‐physics CSE application and library software efforts naturally 
involve a small team of researchers who work closely with each other on a daily 
basis.  However, advanced CSE projects require a coordinated effort of dozens or 
more researchers who, although contributing to a larger effort, continue to work in 
small teams on their portion of the project.  The Trilinos project, as one example of a 
“project of projects,” has used a kind of “federalist” approach to addressing these 
competing realities.  We have formally defined a “package” to be a collection of 
related functionality developed by a small team with certain rights and 
responsibilities in the larger Trilinos framework.   
 
This basic approach has enabled a great deal of local autonomy in decision‐making, 
allowing us to tolerate and appreciate a variety software research and development 
styles, and team cultures.  We can handle modest redundancy in software 
functionality and adapt to change in many ways.  At the same time, this approach 
also provides a global interaction that promotes a variety of desirable outcomes: (i) 
cross‐fertilization of ideas, techniques and tools across package teams, (ii) adoption 
of “best practices” from one package across other packages, (iii) fostering of trust 
among disparate groups (iv) software modularity that is naturally enforce by 
package and team boundaries and (v) well‐defined interfaces between packages for 
interoperability. 
 
One important factor that improves the effectiveness of the Trilinos architecture is 
the constant focus on improving software engineering practices and processes.  The 
philosophy we promote is that we spend time on improving software engineering so 
that we can spend less time on software development and maintenance and more 
time on science and engineering.  This emphasis has two major impacts on our 
efforts: (i) better software engineering in the project makes for better software so 
that package teams are willing to use each other’s software and (ii) discussions of 
incompatibilities in practices and processes across packages can focus on the goal of 
determining best practices and not decay into expressions of personal preference 
that can be contentious and counter‐productive. 



 
The net result of this approach to software research and development is a large and 
growing collection of inter‐related tools where Trilinos as a whole has an identity 
but, even more importantly, each package has its own identity within its community 
of interest.  It is worth noting that this kind of approach is also operative within the 
TOPS‐2 SciDAC project.  The climate community uses the CCSM in a similar way, but 
we are unfamiliar with its internal dynamics. 
 
We believe an international effort to coordinate the efforts of many groups can 
benefit from the kind of model the Trilinos project is using.  This type of approach 
will allow individual teams to simultaneously continue with their current efforts, 
practices and culture while at the same time start contributing to a larger whole. 
 

6. Conclusion 
There are many challenges facing application development in the transition from 
petascale to exascale.  We believe the four issues above have the highest priority 
and, if addressed, will greatly improve exascale computing capabilities.  



 Software and Exascale Computing 
Bill Camp 

Intel Corporation 
 

Disclaimer: The views expressed herein are solely those of the author as a member of the 
scientific community and do not claim to represent those of Intel Corporation in any way. 

 
There is really only one software issue facing us in developing a robust exascale computational 
economy: scalability. Because of scalability concerns, virtually none of today’s applications is 
ready for exa-ops performance. We have increased system-level computing power about a factor 
of 1000 every decade for several decades now; and we have had to grow systems to do so. 
Since Moore’s Law is increasing device capability at less than half that amount per decade, we 
have inexorably invested more money in ever larger systems. In 1997, the largest systems in the 
world achieved terascale performance with fewer than 10,000 processors; and none of them were 
multi-core. In 2007, the largest systems in the world achieved petascale performance but had 
more than 10 times as many processors in doing so. We anticipate that exascale systems will 
have around a million processors and that those processors will be MPPs themselves—having 
O(1000) cores. Thus an exa-ops system will have around a billion virtual or real cores. 
 
 
Scalability faces us in numerous disguises: 

Scalability of 
1. programmability, debug-ability, and optimization 
2. interpretability 
3. reliability 
4. performance 
5. the energy cost of software 

 
Programmability, debug-ability, and optimization: 
 
I have little to say about programmability except to note that there is no single magic-bullet 
solution to this issue. As noted above, for reasons finding their roots in the physics of CMOS 
semiconductors, any exascale application in the 2018—20 timeframe will involve O(109) threads. 
No human being can program, debug or optimize directly this many threads. At the same time, no 
new programming paradigms are credible at this point: it looks like we will use a combination of 
distributed memory methods (gets & puts, message passing, and incoherent global-address 
space methods) across the ensemble of processors possibly combined with shared memory 
methods on-processor. High-level languages may allow us to express that parallelism more 
effectively—or they may continue to just get in the way of successful parallelism. On the positive 
side of the ledger, I am convinced that for data-parallel applications, we can use the same kind of 
automation that has proven successful in areas like geometry and meshing: in data parallel 
applications, create primitives and extend, replicate, map them onto complex graphical 
representations to cover the domain of interest. In task-parallel applications, we can use self-
similar and hierachical approaches familiar from statistical physics: utilize self-organization 
combined with automated hierarchy of control to manage complex work queues. 
 
Interpretability: 
 
I have even less to say about interpretability. We are already facing a gap between our ability to 
generate data and our ability to make sense out of it. Just as terascale applications led ultimately 
to petabytes of data and petascale applications are starting to generate exabytes of data, 
exascale applications will generate yoddabytes of data. We will struggle to make interpretation of 
that much data easy or even doable. Visualization is an obvious but less than desirable and 
incomplete solution. The human visual cortex can deal with about a gigabyte at a time. So, we will 
have O(1012) times as much data as we can visualize effectively in a single image. And that 
assumes that we find a way to deal with the storage and computing problems implied by such an 



approach. Effective interpretation of such data sets will require advances in cognitive software to 
turn data into information and information into knowledge and knowledge into insight. 
 
Reliability: 
 
This is an area that properly speaking spans the worlds of hardware and software. Until now, we 
have separated software reliability from hardware reliability. The former has been the domain of 
software architecture, software engineering, and mathematics; while the latter has been an 
integral (some would say not integral enough) part of system architecture and design. At the 
exascale we can no longer afford that separation. Hardware designers are struggling with how to 
make systems a thousand times more reliable per bit-operation to keep us at the same level we 
are at in today’s best systems. This is compounded by the fact that energy concerns are driving 
us inevitably to sub-threshold logic. At the same time, the only reason to do exascale computing 
is to address ever more complex issues. This will require ever more complex software. Software 
complexity is the number one cause of unreliability in computation today—well exceeding even 
hardware’s worst efforts! So, we can anticipate that without a radical change in how we handle 
software resiliency and reliability, we are going to be worse off—much worse off than we are 
today.  One idea is that we build a much higher level of local check-pointing capability into our 
software and hardware systems. For example, using raided non-volatile memory, we could 
checkpoint state very often by moving copies of needed application state to nearest neighbor 
nodes in the system several times a minute perhaps several times a second. Since non-volatile 
memory is only drawing power when it is in use, this would have minimal energy implications. 
Dynamically, we can pretty effectively protect correctness of state but correctness of logic poses 
special challenges. State can be protected at about a 10% energy overhead. Logic correctness 
requires more invasive approaches with some degree of redundancy that could well exceed the 
10% overheads that we have learned to tolerate for state—current R&D focuses on residue 
checking and redundant multi-threading. However, these have significant energy overheads; and, 
due to the energy issues discussed below, we are going to be more limited than we should like in 
protecting logic paths. This will require some degree of cooperation between software and 
hardware—perhaps identifying at compile time certain critical regions which need stronger 
correctness guarantees. In any case a serious problem that I believe must be overcome is posed 
by the brittleness of today’s algorithms and applications. We are already generating terabytes to 
petabytes of new state per second. At exascale we will be generating exabytes of state each 
second; and a single wrong bit can vitiate the entire calculation. For many scientific calculations 
we should be able to gracefully tolerate amny kinds of bit errors, indeed the loss of many kinds of 
local resources. For example, in simulating materials, loss of a processor should not cause 
inherent failure of the simulation. Think of real materials that are full of defects and faults. We 
know that we will get for most macroscopic and many microscopic properties the same result for 
quite different distributions of those defects. Why should we not be able to take advantage of that 
in our simulations? 
 
Performance: 
 
To a large extent, performance is bounded by the product of the effective speed of the local 
processor and the communications efficiency of the interconnect fabric. The speed of the 
processor is largely determined by the ability to issue and retire instructions which in turn is 
governed by pipeline efficiency and memory system overhead, latency, and bandwidth. Normally, 
we are used to thinking that communications efficiency is dominant at scale; and that probably 
remains true. However, due to energy concerns, the efficiency of the processor itself bears 
special watching: we clearly cannot afford the powerful out-of-order cores supporting both 
prefetch and speculative execution that characterize today’s processors.  
 
From a software point of view, scalability is limited by load imbalance, algorithmic serial 
complexity and parallel efficiency, communications overhead due to the communications 
hardware, but also overhead due to the communications software architecture and 
implementation. One should not dismiss the effect of the programming paradigm and its hardware 



implementation. If we insist on a cache-coherent shared memory programming environment, we 
should understand the cost of implementing such an environment in terms of coherency traffic, 
synchronization overhead, and memory sub-system conflicts.  
 
Load imbalance will arise from vagaries of the applications but also will occur due to loss of self-
synchronization caused by the run-time system, the resource manager, and the operating 
system. Communications overhead must be diminished by aggressive overlap of communications 
and computation. At 1 billion threads, if we wish to achieve significant parallel efficiency, we need 
to keep serial fraction and communications overhead extremely small. If we assume that 
communications overhead is negligible, Amdahl’s Law tells us that the serial fraction must be 
much less than 10-9. For many weak-scaling problems this may well be achievable. To make sure 
that communications overhead is also negligible, we must have  α .  ωco be much less than unity, 
where α  is the ratio of computational speed to communications speed and ωco is the ratio of non-
overlapped communications workload in bytes to computational workload in flops. α  is 
determined by the architecture and is limited by cost and especially by physics. ωco is determined 
by the computational problem, the code architecture and the algorithmic approach. Unfortunately, 
physics will prevent us from achieving the kind of balance we wish for in α . We are left to 
compensate for that in software. 
 
 
 
 
William J. Camp, Ph.D. 
Chief Supercomputing Architect  
Supercomputing Architecture and Planning 
Intel Corporation 
505 301 5598 
william.j.camp@intel.com 
 
 



White Paper – Application Analysis and Porting in the PRACE Project – April 2009 

Peter Michielse – NCF – The Netherlands 
IESP Workshop, April 7-8, 2009, Santa Fe, NM, USA 
 2009 PRACE Consortium Partners. 

1 

Application Analysis and Porting in the PRACE Project 
 
Peter Michielse 
Netherlands National Computing Facilities Foundation (NCF) 
The Netherlands 
Email: michielse@nwo.nl 

1 Introduction 

PRACE, the Partnership for Advanced Computing in Europe1, aims to set up a European HPC 
ecosystem to facilitate scientific research, with sustainable access to Tier-0 HPC systems, including 
system management and extensive application support. In order to become successful PRACE will 
need to understand (among others) the software requirements for future Petaflop/s systems. PRACE 
has identified the key scientific and technical categories of applications, through a survey of most 
major European HPC systems and the applications that exploit these, carried out in early 2008. Final 
goals in this part of the PRACE project are the construction of a benchmark suite, to be used both 
within the current PRACE project and beyond, when actual Tier-0 systems will be purchased. Other 
goals include insight in the optimisation and scalability issues with the selected applications, and 
applicability of synthetic benchmarks and performance analysis tools. 

2 Methodology within PRACE 

Each benchmark application will be worked on under the responsibility of a so-called Benchmark 
Code Owner (BCO). The BCO is a person who in most cases belongs to the staff of one of the PRACE 
partners. The BCO will steer the actual porting, petascaling and optimisation, such that the benchmark 
code will run on each of the designated hardware architectures for the underlying application. This 
includes the scheduling of work among the contributing PRACE partners to the benchmark code, and 
communication with the application owners on all aspects of the application: source code, dataset, 
output, run scripts, etc. In particular, actual results will first be communicated to the application 
owner, and through the public status of the deliverable report also to hardware or software vendors, 
and the rest of the HPC community. 

As said, the BCO and his or her coworkers are not only responsible for porting the code to the actual 
platforms, but also for optimisation and scaling efforts. At this point in time in the PRACE project, 
porting has been done, and initial proposals and estimates of effort with respect to optimisation and 
scalability have been formulated by the BCOs. 

3 Application Porting to Prototypes 

PRACE conducted several surveys among both users of the top national HPC facilities in the PRACE 
countries, as well as among system administrators of these facilities, in order to establish a 
representative set of application areas and individual applications. These cover currently the most 
relevant usage of the national systems in Europe. As a result a list of core applications and a list of 
possible extensions was created. These are contained in tables 1 and 2. As many applications as 
possible of the core list should be worked upon in the PRACE project, both to serve in a benchmark 
suite and to investigate optimisation and scalability aspects. 

                                                 
1 PRACE has been funded in part by the European Community under INFRA-2007-2.2.2.1 - 
Preparatory phase for 'Computer and Data Treatment' research infrastructures in the 2006 ESFRI 
Roadmap under Grant No INFSO-RI-211528. Website: www.prace-project.eu. 



White Paper – Application Analysis and Porting in the PRACE Project – April 2009 

Peter Michielse – NCF – The Netherlands 
IESP Workshop, April 7-8, 2009, Santa Fe, NM, USA 
 2009 PRACE Consortium Partners. 

2 

 
Application name Application area 
  
QCD Particle physics 
VASP Computational chemistry, condensed matter physics 
NAMD Computational chemistry, life sciences 
CPMD Computational chemistry, condensed matter physics 
Code_Saturne Computational fluid dynamics 
GADGET Astronomy and cosmology 
TORB Plasma physics 
ECHAM5 Atmospheric modelling 
NEMO Ocean modelling 
Table 1: The proposed list of core applications. 
 

Application name Application area 
  
AVBP Computational fluid dynamics 
CP2K Computational chemistry, condensed matter physics 
GROMACS Computational chemistry 
HELIUM Computational physics 
SMMP Life sciences 
TRIPOLI4 Computational engineering 
PEPC Plasma physics 
RAMSES Astronomy and cosmology 
CACTUS Astronomy and cosmology 
NS3D Computational fluid dynamics 
Table 2: Possible extensions to the core list of applications. 
 
Another consideration has been the actual choice of promising architectures, to be assessed in the 
PRACE project. For the work on applications, this set of architectures (which are production or near-
production systems) has been identified by PRACE in May 2008, and deployed as prototype systems 
to different partner sites (see table 3). Also, for each of the applications, we have selected BCOs who 
combine knowledge of the particular application, expertise with certain hardware platforms and access 
to prototype architectures. For most applications, both from the core list as well from the extended list, 
this has been successful. Contributors to a benchmark code typically qualify if they satisfy at least one, 
and preferably two or even three of these aspects. 

 

Architecture type Actual system Location 

   

MPP-BG IBM BlueGene/P FZJ, Germany 

MPP-Cray Cray XT5 CSC, Finland 

SMP-FatNode-pwr6 IBM p575 Power6 NCF/SARA, Netherlands 

SMP-ThinNode-x86 Bull – Intel Xeon/Nehalem cluster FZJ, Germany and CEA, France 

SMP-ThinNode+Vector NEC SX-9 + x86 … HLRS, Germany 

SMP-FatNode+Cell IBM Power6 with Cell BSC, Spain 

Table 3: Actual prototype architectures in PRACE. 
 



White Paper – Application Analysis and Porting in the PRACE Project – April 2009 

Peter Michielse – NCF – The Netherlands 
IESP Workshop, April 7-8, 2009, Santa Fe, NM, USA 
 2009 PRACE Consortium Partners. 

3 

Table 4 shows that all applications from the core list are usable as benchmark codes, on at least 3 
target prototype architectures, complemented with 3 applications from the non-core list: CP2K, 
GROMACS and NS3D. These are the first 12 rows of table 4. SMMP, RAMSES and CACTUS have 
disappeared from the extended list, as it turned out to be that there was no PRACE partner that could 
volunteer as BCO. Instead, GPAW (computational chemistry), ALYA (computational mechanics and 
fluid dynamics), SIESTA (computational chemistry, molecular dynamics) and BSIT (computational 
geophysics) have joined the application set, mainly to make sure that enough coverage of the SMP-
FatNode+Cell platform could be guaranteed. An additional advantage of this is that two other 
application areas are introduced: computational mechanics and computational geophysics. Each BCO 
and its contributors have started the work on the benchmark codes and hardware architectures.  

Table 4 also shows the current porting status of the applications to the prototype architectures. Green 
colors denote successful porting, yellow means that porting is in progress, and orange means that 
porting has not started yet or stopped for the moment because of practical reasons (mostly lack of 
human resources to do the work). 
 

Table 4: Summary on porting efforts for benchmark codes and prototype architectures. 
 

4 Scalability expectations 

Apart from porting efforts to the prototype architectures, initial insight in the potential for scaling to 
petascale systems (and single-CPU optimization) has been obtained. Table 52 contains the scalability 
potential of each of the benchmark codes, including an estimate on the amount of effort in person 
months (PM). We have defined scalability to be in the range none via low, medium to high and have 
assumed one core to deliver a minimum of 10 GFlop/s peak performance. The color codes mean: 

None (red): No speed-up above 2500 cores; 
Low (orange): Speed-up obtained up to 5000 cores; 
Medium (yellow): Speed-up obtained up to 10000 cores; 
High (green): Speed-up obtained for more than 100000 cores. 

                                                 
2 Not all cells in table 5  have been filled yet, as initial analysis after porting is currently work in progress. 



White Paper – Application Analysis and Porting in the PRACE Project – April 2009 

Peter Michielse – NCF – The Netherlands 
IESP Workshop, April 7-8, 2009, Santa Fe, NM, USA 
 2009 PRACE Consortium Partners. 

4 

Speed-up at a certain number of cores is defined as still improving execution time when comparing the 
execution time on that number of cores to the execution time on half the number of cores. 

From table 5, the following initial observations can be made: 

• Within the set of computational chemistry codes (VASP, NAMD, CPMD, CP2K, GROMACS, 
GPAW) the potential varies from low to high. At first sight, this may seem surprising, as they all 
cover broadly  the same application area, although individual codes may use different approaches. 
It will make sense to investigate how low scaling codes may benefit from algorithms and 
implementations used in highly scalable codes; 

• The amount of effort estimated to improve scalability to medium or high seems to be reasonable: 
on average around 4 to 5 person months. This will be carried forward in remaining PRACE work. 

 
Table 5: Expected scalability potential and estimated effort for benchmark codes. 
 

5 Future Work in PRACE, Relation to IESP and Acknowledgements 

As has been mentioned before, porting the applications to the target prototype architectures is work-in-
progress. Already a significant part of the sparse matrix has been filled. This work will continue to 
complete the sparse matrix on applications and prototype architectures. 
 
Another aspect is the fact that already ported applications will enter the stadium of petascaling and 
optimisation. BCOs will remain responsible for the coordination of optimisation and petascaling 
aspects. 
 
With respect to the future final benchmark suite for PRACE, there is the issue of usage and licensing 
of the application codes. This will need to be resolved with the code developers. 
 
With respect to IESP, it seems to make sense to exchange experience and progress on many of the 
applications, since these are used globally and possibly already improved by US and/or Japanese 
efforts. Further, alignment of the efforts in PRACE on application scalability with efforts in the USA 
and Japan, maybe including software developers and hardware vendors, is important. 
 
This white paper is based on the PRACE project’s deliverable “Report on available Performance 
Analysis and Benchmark Tools, Representative Benchmark”, dated November 28, 2008. Many people 
from the project partners have contributed to this public document. 



INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009 1

The Application Perspective
- Seeking Productivity and Performance -

David Barkai

Abstract—In this note we propose two projects: (1) Creating a hierarchical programming model from current models, and (2) Extracting
application primitives from the ”13 dwarfs”. The first topic addresses the need for a unified and manageable framework for very large
scale concurrent execution. This is the productivity part - less complexity will drive better mapping of algorithms to architecture; which
will also contributes to better performance. The second topic focuses mostly on the processor and the node with the aim of laying the
groundwork for software and silicon optimized kernels. While it is understood that applications primitives are outside the scope of IESP,
the motivation for introducing it here is that it is a companion issue and that increasing the efficiency of each processor provides high
return for science - at all levels of system size.

Index Terms—programming model, manycore, multicore, clusters, applications, HPC, application primitives

✦

1 SETTING THE STAGE

WHILE the ”moonshot” goal in front of us is prepar-
ing for systems with peak exaflops, we must not

lose sight of the fact the all this is done so science can
accomplish more through computations. To this end it
is best to take the application perspective, and look for
ways to help the scientist or application developer get
more out of a given very large system. In this note we
suggest to take on the two ”P’s” - Productivity and
Performance (leaving out the third ”P” - for Power;
though with higher efficiency, another way of saying
’performance’, a given computation gets done as fast on
a smaller system - and consumes less power).

There is a fortunate synergy now between the need
to address programmability on petascale and exascale
systems and these three drivers that are now central to
the future of high-performance computing (HPC):

• Almost universal adoption of clusters as a ’standard’
architecture.

• Manycore processor chips in our future.
• Emergence of heterogeneous computing on or near

the processor chip.

The synergy derives from the fact that a standard model
that fits the above also suggests a hierarchical view of the
system; a view that offers hope for a more manageable
approach to dealing with the very high level of concur-
rency, of order 107

− 108, required for a full use of an
exascale system in circa 2018.

The ideas presented here are also influenced by the
work commonly recognized now as the ”view from
Berkeley” [1], both with regard to extracting a cohesive
programming model and in providing a framework for

• David Barkai is with Intel Corporation, HPC division of the Digital
Enterprise Group, Hillsboro, Oregon 97124
email: david.barkai@intel.com

Revised April 17, 2009

addressing performance through a set of application
primitives.

2 THE CASE FOR A CONSISTENT AND LAY-
ERED MODEL

THE advent of multicore in all of our platforms
presents an opportunity, and motivation, to take a

fresh look at our programming model. Looking ahead
we have a 3-layer architecture from the user’s per-
spective: the chip - with multiple cores, caches, and,
potentially, attached accelerators; the node - multiple
processor chips sharing memory; and the system of
nodes governed by its distributed memory.

Today we have, essentially, two approaches to par-
allelizing applications: one for shared-memory systems
(OpenMP, for example), the other for distributed mem-
ory systems (where MPI is the most popular tool). Mul-
ticore on the chip adds another layer, but also impacts
the application’s choice of algorithm in that the way to
increase the performance from one generation to the next
is only through finer parallelism as the number of cores
on the chip increases, whence preference for algorithms
that scale better.

The time is right for a community-wide initiative
that will include the application writers, the software
providers, and the hardware vendors, with the goal to
define a programming model that will be integrated,
consistent, and seamless across the three architectural
layers, scalable from the node to the petascale and
beyond, and allow for application driven expression of
concurrency that will extend to dataflow and multitask-
ing, as well as parallel computations.

The discussion is framed with a strong emphasis on
the application’s perspective, as we believe this will
lead the application designer taking more responsibility
to map the implementation to the system, resulting in
higher productivity, and allowing the system and tools



INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009 2

software to do a better job in mapping the hardware. In
short, we will be closer to a desired balanced between
scientists’ productivity and a reasonable performance
relative to theoretical peak.

The desired programming model should comprehend
partitioning details at a finer level than just assigning
processes and threads to cores. It should allow visibility
to on-chip or socket-attached interactions. The conver-
gence to a single architecture makes it a good time for the
HPC community to take a fresh look at the programming
model when designing new implementations of numer-
ical and data-intensive applications. A typical cluster is
made up of high-volume off-the-shelf components for
processors, memory, boards, interconnect, storage, file
systems, etc. This is not central to the discussion here,
but for the fact that it provides greater motivation for a
’standard’ programming model.

There are two other challenges that large system users
have been struggling with and that have not been re-
solved yet:

• Scaling of applications effectively as they increase
in complexity, use higher resolution with larger
datasets, and run on an ever-increasing number of
processors and cores is, so far, a rare occurrence.

• Productivity - both in terms of the programmer’s
time, and in terms of output from the compute
system is still a panacea.

A holistic, integrated and consistent programming
model, constructed and presented from the application
writer’s perspective might help us move forward with
regard to the two challenges above.

3 WHAT MIGHT THE MODEL LOOK LIKE

THIS is an abbreviated version of a longer discussion,
and, therefore, statements may seem too blunt. My

apologies to the reader.
Discussions of programming models almost always

turns to languages for expressing parallelism and tools to
support parallel programming. We are skeptical that any
new language will gain a wide acceptance, and believe
the best course of action is to build on the tools that
current applications are most invested in. That would
be MPI used by Fortran and C/C++.

The need for hierarchical model, to better map the
application to the underlying architecture and for better
manageability of concurrency, led to various experimen-
tations in ”hybrid” implementations - combining MPI
with OpenMP or other shared memory schemes. These
met with varying degrees of success (see [2], [3], [4], [5]).
It is stipulated that the use of OpenMP would not have
been required if we had ’layered-MPI’ to define such
a hierarchy to help manage the decomposition of the
application.

A layered model is also necessary in order to have any
hope of managing the level of concurrency that will be
in the 100’s of millions in the future exascale system.

44

 


 

 

 

 


 


IOH
memory CPU CPU

CPU CPU
IOH

memory

memory

memory

Fig. 1. Hierarchical view of the model

That said, we propose considering a hierarchical
model (conceptually drawn in Figure 1), that can be built
upon the following guiding principles:

• Do no harm. The expression of parallelism ac-
cording to a new or modified model should not
invalidate the huge investment put into existing
codes. This principle forces us to look at extensions
to, or evolution of, MPI. Given the much lesser use
of shared memory models it seems more natural to
build an integrated model from MPI.

• Balance productivity and performance - as ex-
pressed by the Berkeley team [1]. For productivity
the model is to present the application view, be
expressed in terms comprehended by a high level
language and in terms relevant to the scientist and
engineer. Let the compiler system (see below) deal
with the details - which also vary from one system
to another. And for performance’s sake give the
programmer the tools to associate computations
with data, and to specify flow and communication
patterns.

• The application writer knows best about how the
application works and there will be no automatic
parallelization any time soon. This has two impor-
tant implications: (1) The programming model has
to have ’hooks’ into all the architectural layers and
components. (2) The application writer can do a
better job partitioning the data and computation
than the compiler or middleware. Let the tools be
there to offer the help the system software will need.

• Integrated, layered model. It would have a set of
one or more MPI ranks per node, each may be split
into a set of MPI processes, preferably optimized for
shared memory, and allowing for each of those to
further split into a set of ’fibers’ to be executed on
the same socket. It is this last, lowest, layer that can
be used to interact with special-function units or an
attached accelerator.

• Extensible. For large systems it may well be useful
to allow for some kind of system-level partitioning,
in addition to the layers described above. This will
divide the highest level into regions of MPI envi-
ronments working in tandem.



INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009 3

• Coherency. The implementation of the model has
to be adaptable to various degrees and regimes of
coherency. These may be dictated by the system in
use, or be a choice to be managed by the user.

• Robust runtime compiler system. When the system
is a cluster, compilers and runtime libraries that are
local-node-aware are not optimum. A complement
to any program such as the one outlined here has to
drive a considerably more runtime-robust compiler
system. A system that will pick up the allocated
resources (the cluster or a part of it) and execute to
it. This may include, for example, MPI operations
that might be presented as directives or pragmas.
This will allow skipping them when the job runs
within a single node.

The benefits of the vision expressed above are fairly
obvious: Common and comprehensive basis for appli-
cations design. Potential, and expected, higher perfor-
mance due to the integration of the support for dis-
tributed, shared, and on-chip operations.

The next two sections deal with aspects of perfor-
mance at the node level, likely to be dealt with in other
forums.

4 APPLICATION PRIMITIVES - KEY TO PER-
FORMANCE

THE topic raised here is not specific to exascale sys-
tems, but very relevant to scaling and delivered

performance for real applications. We will have proces-
sor chips with billions of transistors, and looking out
towards the 2018 timeframe we can ask how best to use
them.

The model we propose to follow is that of signal and
image processing. Compact application primitives were
identified such that great performance improvement was
achieved with a combination of special function silicon
and libraries. Despite the greater complexity, diversity,
and dependence on bandwidth and latency of data
access, can such methods not be applied to HPC?

At the very least, this is worth investigating. A starting
point can be the first seven of the ”13 dwarfs” taxonomy
defined in the ”View from Berkeley” [1], as they are
the ones corresponding to numerical simulations. To
remind the reader, these seven are dense and sparse
linear algebra, spectral and N-body methods, structured
and unstructured grids, and Monte Carlo. The problem
is that the broad brush definition of the application
categories is not actionable as it stands. To be able to
act on the taxonomy it would be most useful to identify:

1) The algorithms that are the most important (sparse
or N-body, for example, may employ a number of
different algorithms and methods).

2) The relative weight of the category/algorithm
within the general (high end?) scientific workload.

Setting aside the tasks above, for now, we can assess
the problem with another source. The NAS Parallel
Benchmarks (NPB) [6] are composed of several common

computational procedures. They are sure to feature in
several of 13-dwarfs categories. A nice feature of NPB
is that it reports the MOPS (millions of operations per
second) score, which for the numerical tests we discuss
here is, essentially, the rate of floating point calcula-
tions. This allows us to measure the ”efficiency” of the
benchmarks compared to the ideal case where all data
access can be hidden or overlapped. To make a point
five are chosen: Multigrid (MG), Conjugate Gradient
(CG), FT (FFT), LU (Lower-Upper decomposition), and
BT (Block Tridiagonal). These were run, using the NPB
3.3 version, on 8 cores (a 2-socket node) of Intel’s recently
launched microprocessor, which has far superior mem-
ory bandwidth compared to previous generations of x86
architecture. Even with these very competitive times the
calculated efficiency, listed below, ranges from just over
4% to under 20%, averaging less than 12%.

MG CG FT LU BT
11.1% 4.5% 11.8% 12.5% 19.3%

These findings are not a great revelation to the HPC
community, but it gives us an idea of where to start
looking for improvements. We must not overlook the
fact that the performance efficiencies given above, due to
data access and communication between processes, are
prior to any effects of the network. These measurement
were done on a single (shared-memory) node.

5 CAN WE DO BETTER? - SAMPLE IDEAS

OF course, the easy answer is to say ”increase mem-
ory bandwidth and cache size and lower latency”,

when the code is data access bound (as is true for
most codes), and ”give us more floating point func-
tional units” when the code is compute-bound, as is
for dense matrix operations, for example. The latter
is relatively easy, but not particularly impactful. The
former is hard. We suggest, instead, to go back to
the image/signal/graphics processing analogy and look
for ways to optimize kernels, or what we might call
”numerical operators” - though we don’t forget the
real challenge is in data access. Here are some partial,
tentative, and somewhat random ideas.

Consider the computations derived from a stencil rep-
resentation after discretization. Figure 2 shows a simple
6-point stencil.

To compute a given grid point we need a set of values
which are not consecutive in memory. A cache line is
loaded for one or two useful values. But if we computed
along the index that is stored consecutively (say, the ”i”
index) then all the values brought in with the cacheline
will be needed for computing the following grid points.
The programmer or the compiler can direct the order
of stepping through the grid. But there is no guarantee
that the needed cachelines will not be replaced. Will it
make sense to define a ”stencil operator” as a macro
instruction, allowing for parametrized number of stencil



INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009 4

11

 









Fig. 2. A simple 3D stencil

points, and setting aside a buffer where these loaded
’vectors’ can be kept? - this will result with a streaming
of, say, 8 or 16 sets of computations before the buffer will
have to be re-loaded. This is not necessarily practical, but
illustrates how software and hardware can collaborate to
provide higher performance for a useful and common
sequence of operations.

Conjugate Gradient scores very low on efficiency
mostly due to repeated passes through all the data
with relatively small amount of computations done at
each such pass. Here there might be a simple pro-
gramming/algorithmic remedy. ”Unroll” each iteration
to perform 2 or 4 iterations through simple substitutions.
We have done so in the past when the array did not fit in
memory. We can do it now because the processors got
so much faster. It is expected that this procedure will
increase the efficiency by 2-4 times. Can a compiler be
taught to unroll a loop in this iterative manner?

FFT performance is dominated by long distance com-
munications, clearly noticeable even within a node (see
FT above). The communication patterns are well struc-
tured and deterministic, though. Are there look-ahead
ideas that, with some specially reserved buffer space, can
reduce the shuffling of data, thus dramatically improve
performance?

These are just sample random thoughts. A more struc-
tured approach is needed to provide cost-benefit analysis
of where to place our efforts. An example of drilling in
from the applications, to the common kernels, and to
potential hardware support is the question of how best
to approach the need of Gather/Scatter for HPC in a
cache-based architecture.

Clearly, this short note does not do justice to the topic.
More work is needed.

6 CONCLUSION: PROPOSED ACTIONS

THE desired outcome of this discussion note is to
get the community at large to engage in creating

a cluster-based holistic, integrated, backward compat-
ible, application-based programming model. Whether
the ideas and directions suggested here are followed
is far less important than the getting together of all
stakeholders to address the need for such ”standard”
programming model.

This is a call to the community - applications writers,
software providers, and hardware vendors - to come

together to define and implement a 3-layer (cluster, node,
chip) programming model that:

• Extend MPI to allow layered, hierarchical, frame-
work to express parallelism on a very large cluster.
A single specification that defines the convention for
the integrated model, and possibly adds directives
that, for example, allow compilers to generate the
calls to MPI routines.

• Adds mechanism for expressing interactions among
cores within the processor chip. Allow extensibility
to attached accelerators (OpenCL?).

The goals above are broad and directional in nature. A
possible start can be to test the approach outlined here
using a (crude?) prototype of the model on a couple of
simple applications that span a cluster.

Just as important is setting goals for achieving higher
performance out of each of the nodes that make up the
total system. This, too, requires the HPC community to
work with the Industry to -

• First, define and prioritize encapsulated computa-
tional kernels.

• Second, work jointly to come up with creative ways
to combine software techniques, hardware capabil-
ities, and architectural features that will enable a
significantly higher efficiency of scientific codes.

The ideas presented here are far from even a proof of
concept. Their intent is to encourage the community to
create a more complete and more consistent framework
for coding on our future HPC systems.

ACKNOWLEDGMENT
The author wishes to acknowledge and thank several
Intel Corporation colleagues for helpful discussions and
constructive feedback: Henry Gabb, Tim Mattson, An-
drey Naraikin, and Rob van der Wijngaart.

REFERENCES
[1] K. Asanovic et. al., The Landscape of Parallel Computing Research: A

View from Berkeley, University of California at Berkeley, Technical
Report No. UCB/EECS-2006-183, 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html

[2] Y. He, C. Ding, ”Hybrid OpenMP and MPI Programming and
Tuning”, Lawrence Berkeley National Laboratory, 2004.

[3] M. Su, I. El-Kady, D. A. Bader, S-Y. Lin, ”A Novel FDTD
Application Featuring OpenMP-MPI Hybrid Parallelism”, Uni-
versity of New Mexico and Sandia National Laboratory, 2004.
http://ieeexplore.ieee.org/ielx5/9250/29349/01327945.pdf

[4] E. Lusk, A. Chan, ”Early Experiments with the OpenMP/MPI
Hybrid Programming Model”, Argonne National Laboratory and
University of Chicago, 2006.

[5] H. Gabb, ”Hybrid Parallelism: where’s the benefit?”, LCI Confer-
ence on High Performance Clustered Computing, 2008. [contact
henry.gabb@intel.com ]

[6] NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html



1 
 

EDF White Paper 
IESP Workshop, 6-8 of April 2009, Santa Fe, NM-USA 
 
JY Berthou and JF Hamelin and Etienne de Rocquigny 
EDF R&D, 1, Av du Général de Gaulle, BP 408, 92141 Clamart Cedex, France 
E-mail: jy.berthou@edf.fr, jean-francois.hamelin@edf.fr, etienne.derocquigny@edf.fr 
 
As an industrial user with very high stakes in the operation and maintenance of complex systems like 
nuclear power plants, EDF has been engaged into simulation for many years. We have decided to 
design our own codes in order to capitalize precious knowledge on our fleet of nuclear reactors, and 
shorten the time to put this knowledge at work for the many engineering challenges that we have to 
meet.  Software in the millions of lines have been written and explain why we feel very much 
concerned by the future requirements for Exaflops machines. We have already established the value of 
running our codes on 100 Tflops / 30 000 cores computers which yield a much better understanding of 
operating margins and in turn allow for a better optimisation of our power plants, increased safety and 
performance, lower environmental impact and costs and extended lifetime of assets. We have also 
recognized that some of our key industrial processes like waterflow within our nuclear cores or 
production optimisation under uncertain future are still out of reach of Petaflop grade technology and 
will require major changes in the way we write, validate, run and use simulation codes.  
 
We therefore feel that Exaflops software should not only be thought as a way of tackling daunting 
research problems but should also take into account  the sometimes equally daunting requirements that 
stem from an industrial usage perspective: this includes both the capacity to model very complex, 
possibly coupled phenomena over extended spatial and time scales,  mixed with capacities  like 
uncertainty quantification or data assimilation that are key to industrial acceptance. Our contribution to 
this IESP workshop is not that of software specialists but of fairly  active users already engaged in the 
evolution of existing software for Petaflop/100 k cores machines. We will contribute the issues and 
problems that we are already facing at this first level, and that must find solutions for the future. We 
do feel that, whatever the hard changes that will probably have to be made on various software 
aspects, the group should not loose sight that continuity paths have also to be found in order to make 
those big changes acceptable and profitable to many. The context of simulation at EDF is detailed in 
[Hame]. 
 
[Hame] “Jean-François Hamelin and Jean-Yves Berthou, Getting ready for petaflop capacities and 
beyond: a utility perspective, 2008 J. Phys.: Conf. Ser. 125 012001, July 2008” 
 

1 Major software barriers as seen by an industrial user of HPC and propositions for 
an international collaboration 

 
One of the major difficulty will be to manage massively parallel systems, composed of approximately 
millions of heterogeneous cores that will appear at the end of this decade. The challenge is particularly 
severe for multi-physics, multi-scale simulation platforms that will have to combine massively parallel 
software components developed independently from each others. Another difficult issue is to deal with 
legacy codes, which are constantly evolving and have to stay in the forefront of their disciplines. This 
will require new compilers, libraries, middleware, programming environments, languages, as well as 
new numerical methods, code architectures, mesh generation tool, visualization tool: 
 
We identified below what we think are priority research themes that could benefit of an international 
collaboration.  
 
1.1 Programming massively parallel computers 
 
Possible joint efforts: 



2 
 

• Languages/compilers/performance analysis tools for achieving mono-processor high 
performance, specially with accelerators (Larrabe, GPU, Cell, …) 
Goal : achieve more than 30% of the peak performance 
 

• Efficient, “easy to use”, portable and fault tolerant implementation of 
Libraries/Languages/compilers for mixed parallelism : MPI/OpenMP/”cuda like” language 
Goal: one million cores (heterogeneous, hierarchical and massively parallel) 
 

• Algorithm/solvers and data structures adapted to heterogeneous/hybrid, multilevel and 
hierarchical massively parallel machines. 

Example: dealing with non-structured irregular meshes for CFD computation on GPU 
Goals: 
o No global communication involving the complete system(avoiding MPI_ALL-REDUCE, 

MPI_BARRIER,… on 1 million of  threads) 
o exhibiting different type of  parallelism (MPP, SIMD, …) 
o enabling fault tolerance techniques implementation 
o enabling efficient IO (data restructuring?) 

 
1.2 A single generic interface for High Performance Solvers 
 
Possible joint efforts. Defining and developing a single generic interface for High Performance 
Solvers 
 
Computational scientists have developed over the past 20 years numerous[Dong] scientific libraries 
and solvers (direct, iterative and eigenvalue), ScaLAPACK, PETSc, HyPre, TRILINOS to cite some 
of them, which all have their own  interface. This multiplicity of interfaces makes difficult and costly 
their integration and maintenance in end-user Scientific Application. It also makes tricky for a given 
community to test them and find the most appropriate for a given purpose. Both solver and code 
developers would greatly benefit of a single generic interface for High Performance Solvers. 
Moreover, coming with interfaces to freely available libraries, the sources of the codes are available. 
This is of great importance for industrial software stability in time. In order to be compatible with the 
external libraries, the necessary periodic efforts are only done once by the Interface’s development 
team and not many times by each client software using, for example, PETSc or HyPre separately.  
 
A similar project called Numerical Platon[NP] is developed by the French Atomic Energy 
Commission (CEA) . It provides an interface to a set of parallel linear equation solvers for high-
performance computers that may be used in industrial software written in various programming 
languages (C, C++, FORTRAN, Python…). This tool was developed as part of considerable efforts by 
the CEA Nuclear Energy Division in the past years to promote massively parallel software and on-
shelf parallel tools (public and in-house solvers, essentially PETSc, SuperLU and HyPre) to help 
develop new generation simulation codes.  
 
Moreover, at EDF R&D, collaborations are currently underway to improve the direct solvers 
MUMPS[Mump] and PaStiX[Past] (Out-of-core, parallelization of the analyse step, null space basis 
computing) and their hybrid overlays (A2S2 and HIPS). These sparse parallel solvers are natural 
candidates to join such a product. 
 
[Dong] J.Dongarra. Freely available software for linear algebra on the web (sept 2006). 
http://www.netlib.org/utk/people/JackDongarra/la-sw.html. 
[Mump] Mumps’ web page. http://www.mumps.enseeiht/fr. 
[NP] B.Secher, M.Belliard & C.Calvin. Numerical Platon: a unified linear equation solver interface 
by CEA for solving open foe scientific applications. Nuclear Enginneering and design, vol. 239-1, 
pp87-95 (2009). 
[Past] PaStiX’s web page. http://pastix.gforge.inria.fr/files/README-txt.html. 



3 
 

 
1.3 Stochastic HPC computing for uncertainty and risk quantification 
Numerical modeling of increasing complexity are developing in order to better characterize the 
underlying factors : multi-physics, multi-scale or complex portfolios all imply increasing computing 
power. Probabilistic quantification of the associated risks and uncertainties amounts to an additional 
technological challenge as one needs to multiply at a large scale these already-costly unit simulations 
in a framework that becomes stochastic. This also alters the way the computer power is invested in the 
sense that massive distribution becomes necessary;  to best value decision-support computing power, 
one needs to re-work the compromise between the sophistication of best-estimate models and meshes 
and the stochastic exploration. On this rapidly evolving domain, two kinds of challenges may be 
highlighted: those related to the development of stochastic methods, and those related the associated 
computer science implications. 
 
Probabilistic quantification of the risks and uncertainties affecting a best-estimate model has generated 
a whole domain of applied science, linking probabilistic, numerical analysis as well as physics and 
decision-theory [Rocq]. Beyond the traditional Monte-Carlo sampling whose history is closely linked 
to that of computing itself with Von Neumann’s ENIAC pioneering applications, a number of 
uncertainty propagation and probabilistic simulation algorithms have been developed, such as 
accelerated sampling (importance sampling, particulate methods etc.), reliability techniques (FORM-
SORM etc.), stochastic developments (e.g. chaos polynomials) and response surface techniques, yet 
still wanting for further development particularly regarding the challenges of low probability estimates 
for irregular response or high input dimension for sensitivity analysis/importance ranking or high-
volatility time series. 
 
Beyond uncertainty propagation or risk computation, even tougher challenges come with the need for 
inverse probabilistic techniques as the observable data to calibrate model variability generally comes 
on parameters different the model inputs, so that the identification of the extent of uncertainty 
affecting its input parameters requires the use of inverse techniques coupled with stochastic 
simulation. Closely related is the need for a general coupling between stochastic optimization and 
simulation in order to strike robust design or operational management strategies, with challenging 
mathematical implications that are only partially solved under existing Expectation-Maximization or 
stochastic dynamic programming algorithms (typically limited to close to Gaussian/linear behavior). 
Bayesian settings are also bound to develop to better incorporate expert knowledge in a solid decision-
theory foundation. 
 
Beyond the development of the methods itself there are key implications on the way HPC is structured 
and used: challenges involves striking an advanced compromise between parallel & distributed 
stochastic computing. While standard Monte-Carlo sampling leads to straightforward massive 
distribution as the runs are all fully independent, the other kinds of stochastic computing algorithms do 
need back-and-forth links between the various runs involved in exploring the stochastic space. For 
instance, past developments of uncertainty propagation such as adaptive importance sampling schemes 
have been designed with very limited link to the issue of computer implementation, ending up with 
purely-sequential formulations that fail to fully optimize the avenues offered by distributed computing 
to minimise the overall computing time. Adding the fact that parallel computing may be necessary to 
run a single simulation of complex underlying best-estimate models, optimizing the overall stochastic 
program becomes an insufficiently-researched domain. 
 
[Rocq] de Rocquigny E., Devictor N., Tarantola ed. (2008), Uncertainty in industrial practice – A 
guide to Quantitative Uncertainty Management, John Wiley & Sons  



4 
 

 
1.4 Unified Simulation Framework and associated services 
 
Advancing individual solvers performance is not enough to bring high performance simulation to the 
end-user. Each community needs a much broader set of tools in order to conduct industrial studies:  
CAD, mesh generation, data setting tools, computational scheme editing aids, visualization, etc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the early 2000  EDF, together with CEA and other industrial and academic partners,  started the 
development of an integrated toolbox Salome www.platform-salome.org [Ribe,Berg], with the 
following aims: 

- reduce the cost of complex simulation platforms  by mutualizing a set of common tools:  pre 
and post-processing, calculation distribution and supervision etc. 

- boost performance through easy integration of multiple solvers  for muti-physics studies (via a 
common data model). 

 
If Salome has been proved to be well adapted for sequential and moderately parallel simulations it has 
to evolve in order to support massively parallel computing.  
 
Possible joint efforts. Building a Unified Simulation Framework and associated services adapted to 
massively parallel simulation:  
• Common data model : designing a common data model and associated libraries for mesh and field 

exchange adapted to massively parallel computing would enable interoperability and the coupling 
of independent parallel scientific softwares. High level operations on simulation data, such as 
mesh projection, data interpolation,  could be implemented on top of this model. 

 
• Meshing. In 2007 it took to the EDF CFD team several months to produce the 108 cells mesh for 

the simulation of part of a fuel assembly with the CFD code Saturne, compare to “only”  1 month 
of calculation needed on 8000 BG/L processors. Generating x1010 cells mesh as targeted in 2015, 
requires future meshing tools to provide parallel meshing, automatic hexahedral meshing, mesh 
healing, CAD healing for meshing and dynamic mesh refinement.  
As an example are future works identified by a CFD Saturne code: 

• Re-evaluate if tetrahedra are really that bad 
• Our extended neighborhood gradient reconstruction scheme should reduce impact of non-

orthogonality 
• Having mesh refinement algorithms would help, even if we don't do AMR right away 
• Some octree-based techniques lead to fully hexahedral meshes: 

o · conforming using stencils and smoothing 

Study 
manager 

VISU MESH 
CAD 

 Data model & setting Integration 

C
O
D
E 

C
O
D
E 

Supervision/Code Coupling 

Figure 10.  The Salome platform,  www.platform-salome.org 



5 
 

o  non-conforming with hanging nodes, using building-cube type method (also used 
by several codes, such as the Gerris Flow solver), combined with cut cells or 
immersed boundary 

o · At first, re-meshing on a low-quality, easily generated background would avoid 
issues with CAD interpretation and allow to easily define the local cell target size 

• • Using hierachical techniques would also make multi-resolution visualization possible 
o · We have been luckier with visualization than with meshing, but tools and 

formats have their limits 
 
• Parallel visualisation tools. Considering the volume of data that will be produced by Petaflop and 

Exaflop computers, end users are needed adapted  parallel visualisation tools and specific clusters 
to post-treat their simulation results. The international scientific community would benefit in 
focusing their research efforts  in few software. VISIT and Paraview seem two good candidates. 
 

• Remote and collaborative post-treatment:  the sheer volume of data produced by 
Petaflopic/Exaflopic calculations, storage and network limitations, and multi-sites teams make it 
necessary to further advance R&D on remote and collaborative multi-user visualisation, parallel 
and distributed file systems. 

 
• Supervising and code coupling tool, coupling schemes :  EDF and CEA have engaged in 2006 the 

development of YACS, a new generation of supervisor, intended to handle parallel multi-physics 
coupling scheme through a portable parallel extension to CORBA named PACO++[13] developed 
by INRIA. Similar works are handle in US, based on different middlewares. Implementing tightly 
coupled scheme, involving scientific applications developed by separated teams  with such generic 
tools is a particularly difficult challenge. A joint collaboration on code coupling tool architecture 
principle, middleware for massively parallel coupled simulations seems indispensable. 

 
The coupling using an external tool such as YACS  is as less intrusive in the legacy codes as 
possible. On the other hand, we share the advanced coupling algorithms for all multi-physic 
simulation in a dedicated algorithmic box in the SALOME platform. From an algorithmic point of 
view, the existing couplings are mainly explicit and semi-implicit (fixed point algorithm). Current 
work are performed to implement Newton-like algorithms. 
 

[Ribe]  Ribes A and Caremoli C 2007 SALOME platform component model for numerical simulation 
COMPSAC july, Beijing, China 
[Berg]  Bergeaud V and Tajchman M 2007 Application of the SALOME software architecture to 
nuclear reactor research SCS Spring Simulation Multiconference on High Performance Computing 
Symposium,  Norfolk, USA 
 



The Biggest Need: A New Model of Computation 

Thomas Sterling 
Louisiana State University 

March 30, 2009 
 

HPC is experiencing a phase change driven by technology advancements and constraints. For 
the first time in more than a decade conventional software practices for programming and 
managing system resources are no longer sufficient to address the challenges for achieving the 
high end scalability for a wide range of applications. Further, past strategies for system 
hardware architecture no longer utilize the emerging technologies to their fullest. Both are 
reflected by the emergence of heterogeneous multicore components and the systems that use 
them. Power is restricting clock rate, design complexity has been exhausted as a path of future 
performance gains, and within a decade parallelism on the order of billion-way concurrency will 
be required. Historically, major disparities between enabling technologies and the methods of 
their use have driven computing through an evolutionary event of punctuated equilibrium 
requiring simultaneous changes in architecture, programming models, and system software to 
achieve a new balance for efficiency and continued progress in performance gain. Sequential, 
vector, SIMD-array, systolic, dataflow, multithreaded, and most recently communicating 
sequential processes represent distinct phases in HPC, each a different model of computation. 
Currently, a new such model is required to redress the challenges imposed by the need for 
multicore.  

A model of computation is not a programming model, architecture, operating system, or some 
form of virtual machine. Instead it is a strategy or discipline that specifies referents, their 
interrelationships, and the actions that can be performed on them. In so doing, a model of 
computation governs the semantics of state objects, function, parallel flow control, and 
distributed interactions. While it provides an image of an entire parallel computer, not just any 
single core, it leaves unbound policies of implementation technology, structure, and 
mechanisms. Yet, it influences the decisions for co-design of programming languages, 
compilers, runtime software, operating system, and even hardware architecture.  

The goal of a new model of parallel computation for future Exascale computing is to serve as a 
discipline to govern future scalable system architecture, programming methods, and runtime 
techniques as semiconductor technology proceeds to nanoscale feature size. Such a new 
model has to innately hide latency both system wide and to main memory. It has to exploit 
parallelism in a diversity of forms and granularity. To this end it has to provide a framework for 
efficient fine grain synchronization and scheduling, enabling optimized runtime adaptive 
resource management and task scheduling for dynamic load balancing. Perhaps for the first 
time, the model of computation must extend farther to support full virtualization for fault 
tolerance and power management.  

Then what would a new model of computation look like, even as it replaces the venerable 
message-passing model? While no definitive specification can be given without substantial 



research in collaboration with the international community, there are a number of attributes that 
may prove imperative if it is to serve computing down to the nanoscale and up to the Exascale 
within the next decade. Perhaps most fundamental is to replace static processes assigned one 
on one to fixed processor cores with a new relationship between tasks and computing 
resources. One possibility is the basic work-queue model where each physical resource acts as 
a server to process a stream of task specifiers that work on relatively local program state. 
Instead of waiting for some remote access, the resource terminates the current task and begins 
a new one. Thus, the work-queue model decouples virtual tasks from physical processing 
resources to significantly increase resource utilization, at least in cases with sufficient 
parallelism. Complementing the work-queue model is the need to adopt a message-driven 
model, replacing conventional message passing. Message-driven computation allows work to 
be moved to the data when this is optimal, rather than always requiring that data be constantly 
moved to a fixed location of work. This is particularly well suited to dynamic graph problems 
such as adaptive mesh refinement and informatics. Such algorithms are heavily reliant on meta-
data to describe the data structures. Extremes in parallelism will be required with future systems 
and meta-data used with message-driven computing may expose a diversity of parallelism 
forms and sizes, at least in comparison with conventional global barrier based techniques. 
Instead asynchronous methods need to be incorporated in the global flow control for adaptive 
management of resources. The elimination of global barriers allowing more flexible flow control 
such as data flow methods can be achieved with the powerful futures construct. To harness 
hundreds of millions of cores in to a single system requires a model capable of unifying all 
components and this requires a single system-wide name space. PGAS has been pursued and 
serves well for some problems. But when dynamic migration of first class objects is required; 
something more is needed so that data objects can move in physical space without changing 
their virtual names. Such an active global address space still excludes full cache consistency 
but enables lightweight access to remote data without overly constraining the distribution of that 
data. The parallel flow control state at the global level must be more flexible than simply the 
state of fixed allocation SPMD processes. A more powerful means of parallel control state 
based on the distributions of “continuations” is needed to decouple flow control from fixed 
physical resources allowing migration of control such as when traversing a dynamic directed 
graph. A new model will support a self-aware property that adjust system configuration and 
application rollback for fault tolerance and active power management. 

The development of a new model of computation will free future application programming from 
the deadly embrace of MPI + Clusters/MPPs where no progress can be made because each is 
required to serve the other. It will permit a new co-design cycle of all levels of the system 
software and hardware delivering new programming models that will greatly simplify the 
programmer responsibility, dramatically improve efficiency, and exploit orders of magnitude 
more parallelism intrinsic to at least some algorithms.  



NSF IESP Whitepaper 

Abani Patra, Rob Pennington, Ed Seidel 

Office of Cyberinfrastructure 

National Science Foundation 

 

Within  the  context  of  the  “NSF’s  Vision  for  Cyberinfrastructure  for  21st  Century 
Discovery” document, NSF  is developing a comprehensive program  for  supporting 
the  national  cyberinfrastructure  (CI)  for  science  and  engineering,  including major 
HPC facilities, grids, networks, software, data, and virtual organizations.  NSF clearly 
cannot  do  this  alone,  and  therefore  must  pursue  global  partnerships  with  other 
organizations and agencies. 
NSF reaches deeply into every campus in the US, covers all the sciences and 
engineering areas, and in terms of cyberinfrastructure which includes HPC, is very 
broad.   NSF researchers will clearly benefit from a stronger software program, 
improved support for complex applications and strengthened integration with 
campuses.  Students and postdocs will benefit from training in software engineering, 
use of advanced CI, and socio‐technical activities that are critical to success in many 
complex research activities. 
 The computational community is already dealing with several major challenges at 
petascale, including new hardware using manycore, massive scaling, system 
software, file systems, applications software, debuggers, applications development, 
programming environments, machine rooms, cooling and power costs.   

Exascale challenges will drive innovation in many CI related areas. Developments in 
cyberinfrastructure to support scientific and engineering research will need to be 
integrated across the following major topics: 

• Software: A major software grand challenge program responsive to emerging 
architectures  needs to be developed, involving national and international 
efforts.   

• Applications:  NSF funded researchers have strength and breadth in the 
community that will use exascale facilities.  New research challenges will 
further broaden the application coverage. 

• Hardware: R&D activities in hardware design that are responsive to the most 
challenging application needs. 

Questions for consideration: 
The  NSF  cyberinfrastructure  vision  document  provides  the  current  high  level 
framework for cyberinstructure strategy.  The requirements for cyberinfrastructure 
are  evolving  rapidly  and,  as  a  result,  new  questions  arise  in  planning  for  future 
cyberinfrastructure.    As  part  of  the  process  of  understanding  these  requirements, 
we  welcome  discussion  and  input  on  a  wide  range  of  questions  including  the 
following. 

• How will present & emerging applications use exascale systems? 



• What are the new applications that are emerging or  likely  to emerge  in  the 
coming decade?   

o Are they new application domains, new modeling modalities, multimodal 
modeling, dynamic/on‐line integration computation and measurements? 

o How  will  technology  advances  drive  the  advancement  of  applications 
capabilities (technology‐push)? 

• How can NSF best stimulate development of exascale software applications? 
• How can application needs drive  the design of hardware platforms,  system 

software, and applications software development environments? 
• How  will  new  architectures  aid  or  impede  successful  reformulation  of 

problems for parallel solution approaches? 
• How  can  useful  software  that  has  been  developed  as  part  of  the  exascale 

effort be sustained beyond the development period? 
• What  systems  software  will  be  required?  Distributed  systems  support, 

programming environments, runtime support, data‐management user tools? 
• In what ways will  fault  tolerance need to be considered by the applications 

developers?   By the system software developers? 
• What  application  support  environments  will  be  needed?  Application 

packages,  numeric  and  non‐numeric  library  packages,  problem‐solving 
environments? 

• How  can  NSF  aid  seamless  portability  of  applications  across  different 
hardware and software platforms as they all evolve? 

• How can NSF aid or catalyze developments that make it possible to provide 
the same user experience and where possible use  the same tools,  including 
compilers,  debuggers  and  performance  tools,  on  system  scales  all  the way 
down to the typical researcher’s laptop or desktop? 

• How can the community of science and engineering researchers who will use 
exascale systems be best supported in a rapidly changing environment?  

• How  feasible  is  the  development  of  generally  applicable  software  that will 
enable efficient translation of problems to programs?   What priority should 
be given to pursuing this approach? 

• What  education  and  training  actions  should  be  considered  to  prepare 
researchers, students and educators for future cyberinfrastructure? 



A Proposal for a Capability Centers Consortium 

Bill Gropp & Marc Snir 

NCSA. University of Illinois at Urbana-Champaign 

22/03/2009 

Introduction 

Our proposal is motivated by the following observations: 

A. Most, if not all of the users of the top NSF Supercomputing centers are using resources at more 
than one center; in particular, smaller systems and regional centers will be used for developing 
codes for the larger capability systems – in particular, Blue Waters. Users will be greatly 
advantaged if the various platforms they use have compatible application development 
environments and execution environments: same interfaces, languages, libraries and tools, and 
similar procedures. 

B. No vendor provides a complete solution to the needs of the HPC community; any large platform 
will deploy a variety of libraries and tools that were developed by national labs or academic 
researchers. The development, porting, tuning, and maintenance of such software packages 
require collaborations with a variety of partners. 

C. The desire for compatibility across platforms often lead application teams to seek the “lowest 
common denominator” – to use only basic languages, libraries and tools that are guaranteed to 
be available and well supported on all platforms. New approaches with the potential to increase 
the productivity of the application programmers are not adopted because of this well known 
vicious circle: application programmers are reluctant to use software that is not well-supported 
on most platforms; and platform providers are reluctant to support software that is not used by 
a large number of applications.  

Our goal is to create mechanisms that  

• Facilitate the sharing of expertise and information about user needs, system operation and HPC 
software among the top supercomputing centers. 

• Facilitate the sharing of expertise and information about the use of large HPC systems among 
the users of top supercomputing platforms.  

• Facilitate collaborations between these centers. 



Proposal for a Capability Centers Consortium V7 

2 

• Encourage the deployment of common software on all major HPC platforms used by scientists; 
in particular, encourage the deployment of new languages, libraries and tools. 

This initiative is synergistic with other extant initiatives: 

• XD: Our proposed initiative is (a) focused at the very high-end of the performance pyramid; 
and (b) is not aimed, like XD, at developing a specific s/w infrastructure, but at sharing 
information and collaborating in the deployment of any s/w that has can be common to 
many capability platforms. 

• Exascale s/w initiative: Our proposal is aimed at creating strong interactions between the 
current, petascale centers. Such interactions are essential in providing a transition from new 
research products to actual deployment and utilization on available systems. Our initiative 
will provide a receptive environment for the technologies emerging from excascale s/w 
research. 

• PRACE: PRACE provides a common meeting point for the top HPC centers in the EU. Our 
initiative can have a similar role in the US and can establish a strong collaboration with 
PRACE. 

Potential Activities 

Information Sharing 
Information sharing can occur through 

• Periodic phone conferences 

• Periodic workshops, possibly focused on topics of common interest, such as parallel file systems 

• Shared social networking tools (wiki, discussion groups, mailing lists, etc.) 

Different mechanisms may be used for different groups – with an emphasis on regular interactions for 
the centers and on social networking tools for the users. 

Information Aggregation 
Shared information can be made more useful by collecting it in a common format and aggregating it. 
Possible examples include 

• An inventory of used open source software (Pete Beckman, ANL has started this activity) 

• An integrated directory of people: a list of contacts at the various centers for various subjects. 

• An integrated directory of documentation and educational materials 



3 

• Aggregated statistics on system utilization, types of applications run, etc.: centers will agree to a 
core of consistent metrics 

• Aggregated customer surveys: centers will agree to a core of common questions in their surveys, 
so as to enable aggregation of the results 

• Aggregated bug reports: for vendor/platform related bugs, this will probably need to be done on 
a per platform basis and possibly kept confidential; for open source software, the information 
should be public. Centers will need to agree to consistent ontologies. 

Collaborations 
Collaborations can reduce duplicate work, and increase efficiencies in the various centers. Such 
collaborations may include 

• Shared development of tools (e.g., application performance tools or system monitoring tools). 
The development is likely to occur in one place, but early interaction with other potential users 
will increase the odds that tools are portable and satisfy the needs of a broader community 

• Shared testing: the development of good regression test suites is expensive; the sharing of 
general test suites, as well as tests focused on specific issues (such as OS jitter) can greatly 
benefit the centers 

• Collaboration in the deployment of new software 

• Collaborations in the evaluation of various tools and environments 

• Collaborations in the development of education material and user guides 

Standardization 
Different centers have platforms form different vendors, with different software environments and 
different users; extensive homogenization of these environments is neither possible nor desirable. On 
the other hand, the differences between platforms are often spurious. Discussions between the centers 
could lead to agreements on a minimum common s/w stack for petascale/exascale platforms, either 
through support for the same tools and libraries, or through the provision of compatible profiles. 

Issues 

Funding  

The consortium will need core funding for meetings and for support activities. It will be important that 
activities at the centers be funded from a budget managed by the consortium, to ensure that 
commitments are met. 



Proposal for a Capability Centers Consortium V7 

4 

Organization 

The consortium needs a management model that ensures that decisions can be reached in a timely 
manner, while providing buy-in from the involved centers. This would probably involve a small executive 
committee coupled with a board representing all participating groups. 

Technical Issues  

1. Do we specify a particular version or range of versions (at least as a default)?  What do we do if 
some version has a security hole and needs a quick fix (what is our contract with our users about 
stability of the choices)?   

2. Do we specify a base version and allow extensions? If so, how do we make the base strong 
enough so that many/most users can and will choose to stay within that base level?  Should 
there be more than one?  E.g., there could be a standards-compliant level (POSIX) and an 
enhanced level (GNU+POSIX). Since the software stack will continue to evolve quite rapidly, easy 
composability – the ability to add components developed by other groups -- might be more 
important than a standard core. To achieve this, it may be more important to specify standard 
interfaces for extensions – rather than detailed core functionality. 

3. How do we track changes and evolution of software/standards? Should we have a shared 
repository (containing version information, header files, if appropriate, and source files, if 
appropriate). 

4. How do we test compliance (more gently, how can sites quickly assess whether their 
environment conforms to the spec)? 

5. How do we make sure that users adopt?  What is the process for user buy-in?  How do we 
assess success in getting users to work within the base set(s)? Good social networking tools that 
facilitate the sharing of experience by users may be an important component of the solution to 
this problem. 

Inventory 
 

We list below software components that are relevant to the proposed consortium and issues raised by 
those components: 

1. Compilers, linkers 

a. Primarily provided by vendors or GNU 



5 

b. Key issue is which languages (and which versions) are available – E.g., Fortran 2003, C99, 
etc.  This could be a significant problem, as some vendors are slow to conform to 
current standards. 

c. Issues for users are often prosaic ones such as common command line arguments, 
particularly for include and library paths. 

d. A major issue is extensions to the languages – GCC implements many extensions that 
are often exploited in user code. Can we standardize on these extensions or on GCC? 

e. Linking is also a problem – AIX has a very different approach to shared and dynamic 
libraries than most other Unix implementations (Mac OS/X also has a different -- though 
less so -- view).   

f. A key approach should be to specify interfaces, not particular products (e.g., MPI 2.2, 
not MPICH2 or OpenMPI). 

2. Build tools (make, configure, etc.) 

a. Make in various forms is provided by the vendor and by GNU. 

b. Configure dominates, but there are other tools such as cmake.  Configure doesn’t 
handle cross compilation environments well and most autoconf scripts (e.g., user 
programs in configure’s language) are not correct with respect to cross-compilation – 
this may be a significant issue for some HPC platforms. 

c. Again, we have the problem of extensive GNU extensions to make – can we standardize 
on a subset, standardize on GNU tools everywhere, or something else. 

3. Debuggers 

a. Primarily provided by vendors or GNU. 

b. Far less standardization; few truly parallel systems (such as Totalview); the consortium 
must avoid picking a solution here.   

c. An example of a place where we may want to specify a base level but allow (and even 
encourage) sites to innovate here.   

4. Performance tools 

a. Low level tools/APIs such as PAPI. 



Proposal for a Capability Centers Consortium V7 

6 

i. It would be good to standardize on (something like) PAPI, or provide a per-node 
(instead of per-process) version that could be used as a kernel module instead 
of as a source code patch.   

b. Command line, single thread or single process tools (e.g., gprof).  Eliminate variations in 
output format, input commands, etc. 

c. Parallel performance tools 

i. Aggregate tools (mpiP, fpmpi) 

ii. Trace-based tools (Tau, VAMPIR -- now Intel Trace Analyzer, Jumpshot, Scalasca, 
...) 

d. Extension of the above tools to OpenMP, UPC, CAF, … 

5. Visualization and Data Analytics 

a. Another example where a base set + site-specific extensions is necessary. 

6. Parallel File Systems.  Are full POSIX semantics (which can impact both performance and stability 
of the file system) required for all files?  There are efforts to define more scalable POSIX APIs for 
file system metadata (e.g., to more efficiently handle directories with tens of thousands of files); 
what role can the consortium play in developing these enhancements?  Can we provide better 
tests and diagnostics to ensure that parallel file systems provide efficient support for user 
parallel I/O needs?  

7. IDEs 

a. Can we standardize on an IDE, such as Eclipse?  How do we handle versions (there is a 
lack of stability with many of these tools)? 

b. Standard plugins, for 

i. Each language 

ii. Each parallel programming model/extension (e.g., MPI + C++, OpenMP + 
Fortran, MPI + OpenMP + C) 

iii. Debuggers 

iv. Job control (mpiexec, batch job submission, job status) 

v. Performance debugging/analysis 



7 

vi. Remote use 

8. Parallelism 

a. Which versions of MPI and OpenMP?  

b. UPC and CAF.  Which versions of these? 

c. Interoperability of models – e.g., can you mix MPI and UPC routines in the same 
program? 

d. Parallel I/O 

i. Are POSIX semantics supported?   

ii. Are consistent semantics supported (e.g., PVFS, but not NFS v3) 

iii. Do we encourage single file per job instead of one file / core (with all of the 
support tools)?  Are there common tools for managing collections of files? 

9. Running codes 

a. Standardize on mpiexec (part of MPI since MPI 2.0). 

b. Standardize on OpenMP environment variables. 

c. Standardize on basic batch commands (see the DOE SciDAC project on system software 
that created a component-based framework for job management into which 3rd party 
components could be included). 

10. Libraries 

a. Standard, stable libraries (e.g., BLAS, ScaLAPACK,  LAPACK) 

i. These should be in a standard place and be optimized for performance. 

ii. Need a way to define this list in concert with users. 

b. Libraries from research groups (e.g., PETSc , SPRNG, WSMP, FFTW) 

i. These libraries are not stable; they change over time (though slowly, because 
they have a user community). 

ii. These cannot be tuned independently from their development group – a 
collaboration process will be required to both harden the code (portability, 
error reporting, coverage testing) and tuning for different platforms. 



Proposal for a Capability Centers Consortium V7 

8 

iii. User support (bug reports) and training could be standardized; “level 1” support 
could be provided by each site. 

11. Frameworks from research groups (e.g., Cactus) 

a. Same issues as libraries from research groups – all work must be done collaboratively. 

12. Software environments 

a. Standard set of scripting languages (which versions?). 

b. Common way to select software versions (e.g., module, softenv). 

c. Predefined personalities (e.g., a GNU personality for AIX). 

13. Batch schedulers and resource managers 

a. Standard interfaces for workflow engines. 

b. Minimal common functionality. 

14. Monitoring and error handling 

a. Interchangeable event descriptors (a definition of a minimal amount of information 
contained in an event descriptor). 



Slouching Towards Exascale 
 

Ewing Lusk 
Mathematics and Computer Science Division 

Argonne National Laboratory 
 
Introduction 
 
Let us speculate about how we will program exascale machines.  Some believe that the 
current “standard” of MPI plus a venerable sequential language (Fortran, C, or C++) will 
become as abruptly obsolete as the vector Fortran compilers of the 1970s.  While it is 
exciting to contemplate an ab initio redesign of the HPC software infrastructure, 
experience tells us that large-scale software (and HPC software is now very large scale) 
requires a migration path that consists of incremental steps during which only some parts 
change at a time.  Indeed, as scalability forced vectorization to give way to message 
passing, Fortran changed a little but was not replaced by Ada. 
 
Where We Are Now 
 
We are about to take another major step, but not a cataclysmic one.  We now have robust, 
portable, and effective standard languages for programming a von Neumann machine 
with a single program counter and a single address space.  Thanks to MPI, we have a 
robust, portable, and effective standard for communication and synchronization among 
such machines, What we lack is a robust, portable, and effective standard for parallel 
programming (multiple program counters) within a single address space.  (Neither 
OpenMP nor POSIX pthreads provide features needed for an approach effective for 
HPC.) 
 
MPI, admittedly cumbersome for some straightforward tasks, has become the universal 
mechanism for expressing parallelism among multiple address spaces, for several 
reasons.  Designed through a completely open process, it included the concerns of 
multiple stakeholders from the beginning.  This process resulted in a definition that was 
portable to a wide class of machines and with a certain degree of performance 
transparency that encourages the development of high-performance, scalable libraries and 
applications.  MPI’s design favored the development of portable libraries over end-
application programs, and in this it has been successful.  Its specification includes 
language interoperability and other features that enable it to fit into the HPC ecosystem 
with existing tools.  These properties are worth reviewing because we must be sure that 
what we add to our programming environment be not worse than MPI. 
 
The Next Step 
 
The next step we are about to take is forced upon us by physics, so it is pointless to resist.  
Because of power and heat dissipation requirements, multicore chips are already with us.  
Whatever shape exascale computers ultimately take, we will be programming machines 
with less memory per processing core than we are now.  This reality will force most (not 



all) applications to augment their existing programming model to include parallelism 
within an address space together with their current MPI-based parallelism across multiple 
address spaces. 
 
This “hybrid” style of programming is already being used by applications in many areas 
as they migrate toward petascale.  The current most common shared-memory approach is 
OpenMP.  Although high-performance programming is difficult with OpenMP because 
of its lack of locality control, OpenMP+MPI is virtually the only approach being widely 
used, for several reasons:  (1) OpenMP is available on a wide variety of machines;  (2) 
both Fortran and C are supported; and (3) the OpenMP and MPI standards make explicit 
commitments to each other that provide clear semantics for various levels of thread safety 
in hybrid programs.  The fact that OpenMPI+MPI represents an incremental step for most 
applications (the overall MPI structure of the application can be maintained while the 
MPI processes are internally parallelized with OpenMP threads) is an important factor in 
encouraging applications to move to a hybrid model. 
 
But OpenMP, at least as currently defined and implemented, is unlikely to be the final 
answer for shared-memory parallel programming.  In addition to the lack of locality 
control, most implementations are restricted to single-node parallelism, where the 
hardware provides the shared memory and synchronization mechanisms.  Applications 
are already finding the need for larger memories to be associated with their MPI 
processes than are hosted on the single nodes of petascale machines.  Therefore it may be 
useful to consider the PGAS languages (UPC, Co-Array Fortran, and Titanium), which 
offer a shared-memory model with a distinction between local and shared memory, thus 
providing locality control and performance transparency. 
 
What the PGAS languages lack so far is clear semantics for interaction with MPI and 
implementations to match.  One can imagine a million-thread computation organized as 
10,000 UPC or CAF address spaces with 100 threads each, communicating via MPI, 
which strains the scalability of neither model.  Again, this would be an incremental 
change for an existing MPI application. 
 
Libraries 
 
In discussing approaches to parallel programming, one often forgets that not all 
programmers require the same features from their programming models.  Let us define a 
library as a collection of functions that are usable in multiple applications.  Writers of 
such libraries need access to performance and (except for certain vendor-specific 
libraries) portability.  To obtain these features, they are willing to give up a certain degree 
of ease of use.  Application writers, on the other hand, wish to focus on their science and 
would rather not cope with some of the details required for scalability and performance.  
For them, the easier it is to develop applications, the better they can produce 
computational science results. 
 
We are most familiar with the dichotomy between application and library in the case of 
mathematical software, since the mathematics is the same for so many applications.  But 



there also exist libraries that are specialized to certain families of algorithms rather than 
areas of application.  For example, researchers have expressed interest in sophisticated 
load-balancing libraries that can hide all of the MPI communication from an application 
code, simultaneously providing scalability while simplifying the application logic. 
 
What We Need to Do 
 
Four actions would make progress toward programming exascale machines. 
 

• Eschew ritualized denigration of MPI.  It is a robust definition, with robust 
implementations, of a critical component of future programming systems, namely 
the transfer of data among separate address spaces.  Support continued research 
into areas of MPI that need it.  The MPI-3 Forum is at work on extending the 
standard. 

• Recognize the need for a shared-memory programming model.  What current 
applications and libraries alike will embrace is a programming system for 
parallelism within an address space.  Such a system needs to be comparable with 
MPI in portability and performance transparency.  It need not be scalable to the 
ultimate levels, but should not be restricted to running on a single node.  Clear 
semantics for interoperability with MPI are required.  This is a critical research 
topic; multiple solutions should be pursued at this point.  PGAS languages show 
promise, but semantics for interoperability with MPI are not yet there. 

• Understand the difference between end applications and libraries.  While some 
applications will use hybrid systems consisting of explicit management of 
parallelism within an address space together with MPI, other applications may be 
able to rely on libraries, some of them specialized to single algorithms or 
domains. 

• Don’t abandon the HPCS language ideas.  While separate, vendor-sponsored 
development of multiple “high-productivity” languages has not attracted much 
attention from application programmers yet, the HPCS languages (Chapel, X10, 
and Fortress) have introduced a number of important ideas. An open, multi-
agency program with a clearly defined research focus could ultimately bear 
significant fruit. 

 
Conclusion 
 
This has been necessarily a simplified speculation on programming models for exascale 
machines.  In particular, it has largely ignored the issue of GPUs (although they often 
come with their own shared address space and thus require a shared-memory 
programming model) and has focused on hierarchies having depth of only two.  Even 
within these simplifications, however, many challenges and exciting research 
opportunities exist on the path to exascale. 

 



1 
 

A Collaboration and Commercialization Model for Eascale Software 
Research 

Mark Seager and Brent Gorda,  
Lawrence Livermore National Laboratory 

March 24, 2009 
Version 3 

 
Motivation 

In the US, recent software research and development for petascale systems has been performed by two 
main entities: US Government funded R&D collaborations (both at Universities and at Government Labs) 
and Industry efforts at products.  With few notable exceptions, there has been little diffusion of 
technology from the R&D collaborations to industrial efforts and little feedback from the industrial 
efforts to the US government funded R&D efforts.  However, the broader community has found value in 
some of the R&D efforts and would like to see continued support.  For the most part, support is 
voluntary by the development groups because the funding was only for the R&D, not ongoing support.  
On the other hand, industry efforts end up being funded for specific platforms and are generally 
proprietary and suffer from the lack of overall effort due limited private and public investment.  
Understanding these lessons from petascale efforts is essential for forming a coherent strategy going 
forward to exascale. Clearly, a different research and development and commercialization model is 
desired going forward. 

Proposed Model 

Many US Government funded R&D collaborations produce useful results and lessons learned that are 
available to the HPC community for a variety of platforms.  There is also much duplication of effort 
within various HPC vendor organizations in the name of differentiation and specialization.  Both of these 
approaches are inefficient because they don’t effectively leverage each other.  The basic R&D efforts 
don’t feed into commercial development models and overall requirements from customers fielding 
systems are not being fed back into the R&D efforts.  

To overcome this and align forces toward the Petascale, we propose a new Open Source Collaborative 
R&D model with commercialization paths.  This leverages the “best of breed” development models from 
DOE Office of Science (DOE/SC) petascale research efforts that are typically Open Source, Community 
development based.  It also leverages the NNSA Advanced Computing and Simulation (ASC) 
PathForward (now FastForward) program where HPC provider product roadmaps are accelerated and 
provide a clear commercialization strategy. 

Figure 1 depicts the proposed model graphically.  In this model for software development for exascale 
systems, we retain the flexibility of R&D efforts to experiment, push the boundary and to be allowed to 
fail.  The fruits of these efforts (in the blue STAR figure) are handed off as harvestable results (e.g., code, 
algorithms, models or techniques) and as “lessons learned.”  These are harvested by a new class of 
efforts labeled as Development and Engineering (D&E) collaborations in the Orange Box.  These D&E 



2 
 

ASC PathForward‐like efforts include a commercialization path should the results be successful.  These 
products are then delivered and supported on various HPC systems by the providers of these 
commercial technologies (e.g., system software by system vendors and ISV products such as code 
development tools).   The key difference is the management and funding model for these efforts.  
Rather than separate independent efforts in R&D, D&E, Products and Support, we propose they be 
linked.  Funding agencies for the D&E collaborations (E.g., ASC and DARPA) should participate as 
contributors in the R&D efforts (e.g., DOE SC and NSF).  That is, the R&D organizations should continue 
to lead the R&D portions, but include contributions from organizations that focus on the D&E 
collaborations.  Likewise, R&D organizations should contribute to the D&E funding planning and 
execution in the D&E efforts.  As vendor partners contribute to the D&E collaborations, natural 
commercialization strategies will emerge.  Vendor partners should also be included, when appropriate, 
in the R&D collaborations. 

 

Figure 1: A new software development model for exascale systems couples basic R&D with commercial effort so leverage the 
best of both worlds. 

In all cases, linkages between stages should be valued as part of the project selection process in order to 
incentivize the migration of technology from R&D to D&E and ultimately into products and services.  
Naturally some R&D proposals could be formed without D&E collaboration paths, but may be selected 
for funding based on the strength of the technical merits.  In other words, the model should be flexible, 
but encourage and incentivize technology migration. 

A side effect of this strategy is that at every stage of migrating technology from left to right in Figure 1, 
there is a corresponding opportunity to shape the agenda of upstream events by migrating challenges, 
requirements and “Lessons learned” in counter flow direction (right to left in Figure 1). 

There is a large gap between what has been developed for current 100s of teraFLOP/s Linux clusters and 
1‐20 petaFLOP/s systems that have been delivered or are on the horizon. The larger system comes with 
huge requirements in terms of scalable systems software and file systems; Reliability Availability and 
Serviceability (RAS); programming models and application resiliency.  It is important that the community 
consider multiple passes through the process depicted in Figure 1 be attempted before fielding exascale 
systems in 2018 and beyond.  

MAIN PRINCIPLES 



3 
 

1. Coordinate strategy between R&D‐>D&E and D&E‐>P&S. With migration path towards 
commercialization. 

2. Keep current focus areas and funding agents for R&D, D&E and P&S as they currently are and 
add stake holders from next stage in the process. 

3. Keep the model flexible as possible to encourage development and competition.  
4. Multiple iterations required to get to exascale. 

 



1 
 

The Case for A Hierarchal System Model for Linux Clusters 

Mark Seager and Brent Gorda,  
Lawrence Livermore National Laboratory 

April 6, 2009 
Version 2 

 
Motivation 

The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High‐performance 
computing requirements.  Rather, HPC systems, especially Leadership class systems, sit on top of a 
pyramid investment mode.  Figure 1 shows a representative pyramid investment model for systems 
hardware.  At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per 
year) in semiconductor fabrication and process technologies. These costs, which are approximately 
doubling with every generation, are funded from investments multiple markets: enterprise, desktops, 
games, embedded and specialized devices. Over and above these base technology investments are 
investments for critical technology elements such as microprocessor, chipsets and memory ASIC 
components. Investments for these components are spread across the same markets as the base 
semiconductor processes investments.  These second tier investments are approximately half the size of 
the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on 
scalable computing systems such as those needed for HPC and other markets.  These tier 3 technology 
elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs.  
Above these is tier 4 are relatively small investments necessary to build very large, scalable systems 
high‐end or Leadership class systems. Primary among these are the specialized network designs of 
vertically integrated systems, etc.  

 

Figure 1: Leadership‐class HPC systems sit on top of a $15B+ pyramid of investment. 



2 
 

The Hierarchal Systems Model of Petascale Systems 

Since the mid‐1990s Linux clusters and proprietary, vertically integrated systems (PVIS) have leveraged 
the above hardware and software pyramid investment model. The gap between the scalability of COTS 
Linux clusters and PVIS systems have diminished in the intervening years and now form a major fraction 
of the TOP500 list.  However, with recent development in PVIS, such as IBM BlueGene and Cray XT4, the 
scalability of PVIS has again vastly outstripped basic Linux clusters. By looking at lessons learned in the 
march to petascale PVIS, we have learned that one must focus on three things: scalability of hardware, 
scalability of system software and infrastructure and applications scalability.  Key observations on 
hardware and system software scalability coming out of the BlueGene experience are: 1) keep the highly 
replicated hardware and software components as simple possible and still get the job done (known as 
KISS, or Keep It System, Stupid); 2) applying a “factor and simplify” design methodology1 leads to a 
hierarchal system model for both hardware and software; 3) the runtime environment (including the OS 
and system services) felt by applications must extremely low noise. These design principles lead to an 
extremely simple (small parts count) compute node implementation with MTBF measured in the field of 
about 3 millennia.  On the software side the highly replicated unit is the light weight kernel (LWK).  Due 
to the simplicity of the compute node architecture all external (but not interconnect) I/O and other OS 
functionality is function shipped to IO nodes (ION) with an external SAN interface.  This creates a 
hierarchal system model where there is a large number of CN and a reasonable number of ION (about 
the same size as a small to medium size Linux cluster). If we now add a few Login nodes where users 
login interact with the system (e.g., code development, batch job management and visualization) and a 
few Service Nodes for the RAS infrastructure and scalable system administration, then we have the basis 
for a fully hierarchal system infrastructure.  For example, job launch and debugger daemons can be 
migrated off the compute nodes (and thereby reduce the system noise and improve software reliability 
by keeping the CN LWK environment simple as possible) to the ION.   

                                                            
1 The “factor and simplify” design methodology takes a seemingly impossible problem (e.g., scaling Linux OS to 
65,536 way parallelism for BlueGene/L) and breaks it into two problems; one of which is easy to solve and the 
other is merely difficult (e.g., a light weight kernel on the 65,536 compute nodes (the difficult piece) and function 
ship to Linux on 1,024 IO Nodes (the solved piece)). 



3 
 

 

Figure 2: Hierarchal PVIS system model showing how the next generation of scalable tools can naturally use this hierarchal 
hardware and software infrastructure. 

This offers the opportunity for a hierarchal system infrastructure that associates a set of ION with CN at 
job launch time and job launch is also hierarchal in the sense that a user submits the job and the batch 
system, running on a SN launches job steps (parallel jobs) that start by launching daemons on behalf of 
the user on the ION and then those daemons launch the job (and later manipulate it for the debugger 
and other performance analysis tools) onto the CN LWK. This “factor and simplify” approach also 
serendipitously provides a fan out infrastructure for tools and other system services.  This fan out 
infrastructure approach provides unique opportunities for scalability.  For example, debuggers when 
setting memory watch points or conditional memory watch points require processing every time each 
MPI task touches a page in memory containing the target memory address as most implementations use 
page table (or similar) mechanism to trap memory references with little performance impact on 
memory operations on watched pages. However upon this hardware page trap, the debugger must then 
determine if the memory address referenced in the page is the one being monitored or not and check to 
see if the condition is met, if there is one.  This processing typically is today serialized back to the 
debugger process running on the Login node and interacting with the user.  This is not scalable.  With 
the hierarchal infrastructure, the debugger daemon running on each of the ION can process all of the 
page faults from MPI tasks on the CN under its dominion. This process runs in parallel across all the ION.  
As the job grows, so does the number of ION associated with it and the method describe is thereby 
scalable.   

The Scalability Dilemma for Exascale Systems Has at Least Two Horns 

Although significant research needs to be done on system scalability for Exascale systems, it is clear that 
a hierarchal system model, possibly with multiple levels in the hierarchy, is at least an intermediate step 
or starting point for research activities.  The second horn of the Exascale systems scalability dilemma is 
that if PVIS systems drift too far away from where Linux clusters are, then the pyramid investment 



4 
 

model in Figure 1 breaks down.  It breaks down because more and more specialized technology will have 
to be developed for the PVIS and less and less leverage is obtained from lower levels in the pyramid.  
Thus we need to keep Linux clusters scaling up to petascale and beyond as we push PVIS systems 
technology to the Exascale.  Thus the march to Exascale must be two pronged: scale PVIS to Exascale 
and COTS Linux clusters to petascale and beyond.   

Current Flat Linux Cluster System Model 

To understand the gaps here for Linux clusters it is instructive to review the current state of the art in 
Linux cluster design and deployment methodology. 

 

Figure 3: Linux Clusters of various sizes can be economically built from a Scalable Unit concept. 

Recent advances in design indicate that multiple Linux clusters can be more economically built, 
integrated and operated by adopting a Scalable Unit (SU) design methodology. These and other Linux 
cluster designs in common use today essentially present a “flat system” model.  SU are small aggregates 
of nodes that contain all the essential elements and node types necessary to build Linux clusters of 
various sizes: even vary large ones.  In Figure 3, a SU design based on the 288 port IBA 4x DDR switch is 
depicted.  The preponderance of nodes are CN as these are where the user MPI based applications run. 
The remaining nodes perform systems (and Login) functions and hence are kept minimal.  In this SU 
design, we have the minimum of Login Nodes (LN at 1) and Remote Partition Servers (RPS at 1) and a 
few gateway nodes (GW at 4) necessary to provide sufficient IO bandwidth for applications running on 
the cluster over a SAN to the Lustre (or other) global (accessible multiple Linux clusters), parallel 
(supporting parallel IO within a cluster) file system.  When building Linux clusters of various sizes the 
system functions also grow linearly and scale appropriately.  For example, the RPS remote boots all the 
diskless nodes in the cluster (CN and GW) and serve up root and swap partitions for each node.  Since 
this function is replicated independently in each SU these services scale with system size. For large 
clusters all one needs to add is a way to configure multiple RPS nodes in parallel from a single 
management workstation attached to the cluster over a management Ethernet.   

Proposed Model 

From the above discussion, we notice that a slight tweak on the Linux cluster “flat system model” based 
on SU design point can yield a hierarchal system model and offer the potential to scale Linux clusters to 
10K‐100K nodes.  It turns out, from the hardware side, only a slight shift is necessary: 



5 
 

1. Design and build compute node as simple as possible (KISS) 
2. Use gateway nodes as ION 
3. Use RPS nodes as cluster of service nodes 

The with recent advances in microprocessor design (e.g., including memory controllers and memory 
buses directly on the processor) and the tendency of the industry to aggregate more function onto the 
processor with time, it is possible to envision a very simple node design and a path to get there quickly.  

On the software side a moderate shift is necessary to bridge the gap: 

1. Light weight (low noise) Kernel 
2. Function shipping interface to ION 
3. All system services off of ION, only minimal job launch on CN 
4. Debugging and process manipulation interface on ION to CN processes 
5. Distributed RAS DB and infrastructure 

Filling this gap will require significant effort by the Linux community.  However, there has been a lot of 
research and development out of DOE SciDAC (e.g., FASTOS effort) that can be harvested.  In addition, 
many vendors have indicated a willingness to commercialize such a model for the community.  

This would be a good example of how we can change the industry by utilizing the 
R&DD&ECommercialization mechanisms described in a companion white paper titled “A 
Collaboration and Commercialization Model for Exascale Software Research.” 

 

MAIN PRINCIPLES 

1. HPC pyramid investment model requires we pull up the rest of the pyramid while pushing to 
exascale or the model breaks down. 

2. Hierarchal systems model developed for petascale systems is a good starting point, with possibly 
more than one level in the hierarchy, for exascale systems research 

3. The current “Flat” Linux cluster systems model can be turned into a hierarchal systems model 
and scale up to 10K to 100K nodes. 

4. A change to both hardware (simpler compute nodes) and software are required. 
5. We can mine existing petascale systems efforts and combine it with readily available 

commercialization paths.  



IESP Whitepaper: PDE­based applications and solvers at extreme scale 
David Keyes 

Columbia University & SciDAC TOPS project 
 
The thirst for extreme floating-point processing rates is unquenchable in the foreseeable 
future, being driven by the need for: (1) better resolving the full ranges of length or time 
scales in multiscale phenomena, (2) accommodating physical effects with greater fidelity, 
(3) allowing the model degrees of freedom in all relevant dimensions, (4) better isolating 
artificial boundary conditions in PDE models and better approaching realistic levels of 
dilution in particle models, (5) optimizing or controlling physical scenarios (by solving 
inverse problems) once they are adequately resolved by forward models, (6) quantifying 
uncertainty, and (7) improving statistical estimates.  As applications stretch to take full 
advantage of extreme architectures, however, the computational complexity of some 
algorithms, such as Courant-stability-limited explicit solvers as well as some linear and 
nonlinear solvers, grows superlinearly in memory size, making it impossible to weak 
scale, even though memory capacity would seem to allow it.  Extreme scales put a 
premium on finding “optimal” algorithms, whose complexity is at worst log-linear in 
problem size; any suboptimal component will ultimately dominate the execution profile. 
In fact, to justify the acquisition and operating costs of exascale hardware, one needs to 
be concerned not only with complexity exponents, but also with the coefficients in front 
of the power laws, which can vary considerably from one formulation to another.  The 
availability of high capability architecture makes algorithms more, not less, important.   
 
Fortunately, algorithms such as linear solvers have kept pace with extreme scales, and 
optimal versions are known for many PDE-based formulations of driving applications.  
Therefore modelers who can cast their simulations in terms of these formulations (e.g., 
sequences of Poisson solves to build up a preconditioner for a multicomponent system of 
more general type) may weak scale to 105 processor cores today, on a massively parallel 
computer with a log-diameter network.  The logarithm, if it does not also arise from other 
causes, is a consequence of the global reduction operations that are present in Newton, 
Krylov, and other algorithms and ultimately degrades the marginal effectiveness of 
additional processor-memory elements if the synchronization stranglehold is not deferred 
by reducing its frequency.  Furthermore, the marginal effectiveness of additional 
processors dividing the bandwidth of a memory shared among many processors may be 
nearly zero in many sparse algorithmic kernels.   
 
As a further threat to effective use of extreme scale hardware, we note that progressive, 
mathematically beneficial trends in algorithms, such as increased use of unstructured 
meshes and adaptive discretizations that yield more accuracy per degree of freedom 
stored or flop performed at the expense of increased indirection, more conditionals, or 
more integer operations per flop, inveigh against the uniformity and predictability that are 
required to obtain maximum use of the floating point hardware.  Traditional performance 
metrics focusing on floating point rates only in highly unbalanced hardware have long 
ceased, in general, to be reliable guides to the merits of a numerical computation.  
Instead, performance optimizers should hunt for each successive bottleneck – whether 
bandwidth, latency, number of integer load/store units, or whatever – and ask what 



algorithmic alternative could relieve it by exploiting unused capacity in some other 
hardware resource. 
 
Solvers are just one of many algorithms that must scale.  Tools for managing meshes, 
fields, and particles, e.g., their generation, partitioning, adaptation, interpolation, and for 
constructing of the discrete equations from the underlying models must all be scalable, as 
well, or Amdahl’s Law will impose a limit to scalability that is asymptotically 
independent of process granularity.  The algorithmic techniques required to support 
simulations of interest at extreme scales include CAD-to-mesh geometric adaptivity, 
solution-based adaptivity, mesh partitioning, discretizations of virtually all types (with 
attention to advanced high-order discretizations), contact-detection algorithms, optimal 
implicit solvers, stiff method-of-lines integrators, kinetic and particle methods, 
unconstrained and constrained optimization (for parameter identification, control, design, 
etc.), sensitivity analysis (statistics- and derivatives-based), and uncertainty 
quantification. Extreme-scale simulation represents an opportunity for developers of the 
enabling technologies in applied mathematics and computer science to demonstrate a 
paradigmatic shift that they have envisioned for years as completely new application 
codes are written. The connective and control code and the majority of the means of 
interchange of data between code components will have to be rewritten together with 
algorithmic kernels take advantage of modern software practices and high-performance 
architectures. Virtually all large-scale data structures in existing codes will have to be 
replaced with distributed versions. In simulations at extreme scales, no data structure 
whose size scales with the system can be relegated to just one processor-memory element 
or replicated on each.  As the software infrastructure is rebuilt, due attention can be given 
to extensibility, reusability, object orientation, componentization, portability, 
performance portability and tuning, code self-description and self-monitoring, and the 
construction of multi-layered interfaces that enforce correct usage.   
 
Beyond these improvements that are occasioned by extreme scales (though valuable at 
any scale) the synchronizations that are built into most codes as matters of convenience in 
programming model must be drastically reduced. New algorithms and new programming 
models must be found that postpone synchronizations as long as possible.  One class of 
trade-offs that is well developed requires more memory and more nearest-neighbor 
communication, which in turn allow many relaxation sweeps or Krylov steps to be 
conducted per synchronization.  Another class of trade-offs hierarchically decomposes an 
implicit solve that involves all degrees of freedom globally into a set of infrequently 
communicating local implicit solves, with frequent synchronization within the local 
basins only.  Such algorithms are known and are in some nonlinear problems actually 
demonstrably faster than their globally synchronizing counterparts, though they might in 
general be expected to be slower.  However, full exploitation of asynchronous algorithms 
requires programming scientific applications much like operating systems, with different 
priorities assigned to different tasks, depending upon whether they are on or off the 
critical path, and with data-driven associative communication between them.  The SPMD 
bulk synchronous model that is so convenient to understanding large-scale simulations 
will have to yield to far more general constructs that are less reproducible and likely far 
more difficult to verify for correctness and to predict for performance. 



 
 
Developing a high performance computing/numerical analysis 
roadmap 
 
Overview 
A Roadmap Activity in the UK has leveraged US and European efforts for identifying the challenges 
and  barriers  in  the  development  of  high‐performance  computing  algorithms  and  software.      The 
activity has identified the Grand Challenge to provide: 

• Algorithms and software that application developers can reuse  in the form of high‐quality, 
high performance, sustained software components, libraries and modules 

• a  community  environment  that  allows  the  sharing  of  software,  communication  of 
interdisciplinary knowledge, and the development of appropriate skills. 

Through a series of workshops and discussions with UK HPC application groups and numerical 
analysts five areas of challenge have emerged.  
 
HPC­NA Roadmap Themes 
 
Cultural 
a. Identify potential community players 
b. Develop models of community sharing 
c. Provide community activities, workshops, training, virtual meeting spaces. 
d. Engage internationally 
 
Applications and Algorithms 
a. Identify exemplar applications 

i. Develop baseline models for communication and benchmarking 
b. Develop map of algorithms across application domain 

i. Indentify impact of specific algorithm development across discipline groups 
ii. Speed dating 
iii. Take mapping of dwarfs on capability computing 

c. Develop map of developments internationally 
i. Collect information about ongoing related activities 
ii. Discuss with international funding agencies plans 

 
Software 
a. Abstractions (in collaboration with CS) 
b. Code generation and adaptive software systems 
c. Guidance on best practice for software engineering development 
d. Develop frameworks and tools for application developers 
e. Languages = take note of the DOE funded activities. 
 
Sustainability 
a. Develop models for sustainable software 

i. Long term funding 
ii. Industrial translation 
iii. Open community support 
iv. Other 



 
b. Creation of MSC and other postgraduate training 
 
 
 
 
Knowledge Base 
a. Develop mechanisms for collecting information on existing software and dissemination 
b. Develop mechanism for continuing community input 
c. Education and training – 

i. Optimization for example 
ii. Software engineering 
iii. Provide computational science internships 
iv. Bid for short courses or summer schools 

 

The activity is continuing in the UK to put more measurable priorities on the components in 
the evolving roadmap.  Details can be found at http://www.oerc.ox.ac.uk/research/hpc‐na. 



IESP JUNE 28-29, 2009 PARIS, FRANCE

Performance at Exascale
Bernd Mohr (Jülich Supercomputing Centre) and 

Matthias S. Mueller (Wolfgang E. Nagel Center for 

Information Services and HPC)

Resource Management
Barney McCabe (ORNL) and Hugo Falter (ParTec)

Programmability Issues
Vivek Sarkar (Rice U.), Jesus Labarta (UPC), 
Mitsuhisa Sato (U. of Tsukuba), Barbara Chapman 
(U. of Houston)

Models of Computation – Enabling Exascale
Thomas Sterling, Louisiana State University

Major Computer Science Challenges at 
Exascale
Al Geist (ORNL) and Robert Lucas (ISI)

Co-design of Architectures and Algorithms 
Al Geist (ORNL) and Sudip Dosanjh (SNL)

IESP Exascale Challenge: Resilience and Fault 
Tolerance
Al Geist (ORNL) and Franck Cappello (INRIA)



Performance at Exascale 
 
Bernd Mohr 
Jülich Supercomputing Centre 
b.mohr@fz-juelich.de 
 

Matthias S. Mueller, Wolfgang E. Nagel  
Center for Information Services and HPC 
{matthias.mueller,wolfgang.nagel}@tu-dresden.de 

Introduction 
Exascale systems will consist of complex configurations with a huge number of potentially heterogeneous 
components. Deep software hierarchies of large, complex software components will be required to make use of 
such systems. While the software layers are designed to be transparent, they are typically not transparent with 
respect to performance. This performance intransparency will result in escalation of unforeseen problems to 
higher layers, including the application. This is not a really new problem, but certain properties of an exascale 
system significantly increase its severity and significance. 

• At this scale, there always will be failing components in the system with a large impact on performance. 
A “real-world” application will never run on the exact same configuration twice. 

• Load balancing issues limit the success even on moderately parallel systems, and the challenge of 
locality will become another severe issue which has to be addressed by appropriate mechanisms and 
tools.  

• Dynamic power management, e.g., at hardware level inside a CPU, will result in performance variability 
between cores and across different runs. The alternative to run at lower speed without dynamic power 
adjustments may not be an option in the future.  

• The unknown expectation of the application performance at exascale will make it difficult to detect a 
performance problem if it is escalated undetected to the application level. 

• The ever growing higher integration of components into a single chip and the use of more and more 
hardware accelerators makes it more difficult to monitor application performance and move performance 
data out of the system unless special hardware support will be integrated into future systems. 

Altogether this will require a integrated and collaborative approach to handle performance issues and correctly 
detect and analyze performance problems.  

Performance Analysis 
A large number of approaches for performance analysis exist that have successfully applied at small and medium 
scale. The large amount of performance data may seem to impede the use at exascale. However, this is not the 
case as long as features like memory size and I/O capabilities scale with compute power. An instrumented 
application is nothing but an application with modified demands on the system executing it. This makes current 
approaches for performance analysis still feasible in the future as long as all involved software components are 
parallel and scalable. In addition to increased scalability techniques like automatic analysis, advanced filtering 
techniques, on-line monitoring, clustering and analysis as well as data mining will be of increased importance. A 
combination of various techniques will have to be applied. The following considerations are key for a successful 
approach to performance at exascale: 

• Failover or more general the operation with failed components should be performance neutral. 
• An exascale system has to be capable to monitor the performance of components, not just the 

functionality. 
• Hardware and software components need to provide sufficient performance details for analysis if a 

performance problem unexpectedly escalates to higher levels. 
• Metrics beyond FLOPs need to be developed to identify and quantify performance problems, to measure 

the sustained performance and the gap to the attainable peak performance. 
• Programming models should be designed with performance analysis in mind. Part of that could be a 

(standardized) hidden control mechanism in the runtime system that will be able to dynamically control 
– in time and space – the generation of performance data if requested.  

• Performance analysis in the presence of “noise” requires inclusion of appropriate statistical descriptions. 
• Performance analysis needs to incorporate techniques from the areas of signal processing and data 

mining. 



DRAFT 

 

Resource Management 

Barney McCabe (ORNL) and Hugo Falter (ParTec) 
 
A scalable application is an application whose performance scales with the size of the 
computing system.  To be scalable an application must make effective use of additional 
resources, i.e., the application must demonstrate a performance improvement that is 
proportional to an increase in resources.  This improvement can be demonstrated by 
reducing the time to completion for a fixed size problem (strong scaling) or by increasing 
the size of the problem that can be completed in the same amount of time (weak scaling). 
Alternately, a scalable application can be characterized as an application whose 
performance is constrained by the availability of one or more resources, i.e., a scalable 
application is a resource constrained application.  Ultimately, application scalability is 
based to the ability of the application to manage the resources provided by the computing 
system. 
 
By presenting an abstraction of a computing system, programming models emphasize the 
management of some resources while de‐emphasizing others.  Successful HPC 
programming models emphasize the management of the resources that are most likely to 
constrain the scalability of an application, while de‐emphasizing the management of other 
resources.  For example, explicit message passing models, like MPI, have been very 
successful in HPC because they abstract the details of inter‐node communication, but 
emphasize the management of distributed of memory by requiring that applications encode 
explicit message exchanges to access remote memory.   
 
Approaches to resource management can be categorized in two dimensions: static/dynamic 
and explicit/implicit.  Static resource management decisions are made before execution, 
while dynamic decisions are made during execution.  Dynamic decisions typically incur 
some overhead (additional use of resources) during execution but they can incorporate 
information about the dynamic behavior of the program.  Explicit resource management 
decisions are written into the code for the application, while implicit decisions are 
implemented in the translation or runtime system.  Programming models emphasize the 
management of some resources over others by choosing which resources require explicit 
management by the application developer and which can be delegated to implicit 
management by the underlying runtime system.   
 
Table 1.  Approaches to Resource Management 

  Static  Dynamic 
Explicit  Algorithms  Zoltan load balancing 
Implicit  Register allocation by a compiler  Demand‐paged virtual memory 

 
The tradeoffs between static and dynamic approaches in resource management are 
relatively straightforward to evaluate.  Dynamic approaches can be justified when the 
overhead needed to monitor resource usage and to adjust the management of these 
resources results in an overall improvement in application performance.  These 
justifications are typically complicated by the fact that the costs and benefits are highly 
application dependent and the fact that the overhead may require a resource that is 
different from the resource used to measure performance improvement, e.g., the overhead 
uses memory and performance is measured in time to completion. 



DRAFT 

 

 
Evaluating the tradeoffs between explicit and implicit approaches is rarely straightforward.  
Implicit resource management decisions remove much of the burden for making resource 
management decisions from the programmer (moving this complexity to the runtime 
system) and may enhance application portability, because details regarding resources of the 
target platform do not need to be encoded in the application.  However, because implicit 
approaches seek to hide the true nature of the resource, there is a chance that application 
developers will unknowingly use the resource in an inappropriate fashion.  A simple 
example of this comes when programmers fail to maintain temporal locality in their data 
access, yielding poor virtual memory or cache performance when the existence of these 
mechanisms is not explicit in the programming model. 
 
No implicit resource management strategy is ideal for all applications.  There is a significant 
chance that any implicit resource management decision will adversely affect the scalability 
of an important application.  In most cases, the critical resource management decisions are 
limited to a small portion of the application and most of the application code does not need 
to include explicit resource management decisions.  For this reason, it is important that 
implementations of programming models provide programmers with the tools needed to 
“opt out” of the implicit management decisions as needed.  As an example, compilers for 
procedural programming languages provide implicit management of the registers available 
on a CPU.  Using profiling tools, application programmer can identify performance critical 
parts of their code and, if needed, hand code specific subroutines in assembly code, opting 
out of the implicit management of CPU registers provided by the compiler.  Providing 
mechanisms to opt out of dynamic, implicit resource management decisions is typically 
more difficult.  In the past, this has been addressed by providing hints and callbacks.  Hints 
allow the programmer to provide explicit advice to the runtime system in advance.  The 
runtime system uses the hints provided by the programmer to guide its management of the 
resources.  Callbacks allow programmers to register handlers that implement explicit 
resource management strategies. 
 
For the past two decades, high performance computing (HPC) has focused on increases in 
processing resources; although, there is general recognition that balanced increases in 
other resources (e.g., memory, storage, and inter‐processor communication) may critically 
impact the ability of an application to take advantage of increases in processor resources.  
As we enter a time in which processor cycles are ubiquitous, the processor is unlikely to be 
the resource which critically constrains the performance of an application.  As such, we, as a 
community should take this opportunity to re‐consider the tools and approaches available 
to application developers to support them in the management of resources for scalable 
applications. 
 
 



Programmability Issues 
Vivek Sarkar (Rice U.), Jesus Labarta (UPC), Mitsuhisa Sato (U. of Tsukuba),  
Barbara Chapman (U. of Houston) 
 
Programming models are central to our effort to address the exascale challenge. They are 
the key interface that will allow the separation of the programmers’ concerns from those 
of system designers, potentially at different levels of granularity. Any such model must 
meet the extensive needs of application developers and be supported by the entire 
software stack. The programming and execution model interfaces are key to allowing 
programmers to focus on their algorithms while providing the mechanisms that will 
enable the compilers and run times to infer the information they need to optimize, 
automatically and dynamically, the use of system resources (cores, memory, bandwidth, 
power). Considerable research is needed to define and implement the programming and 
execution models for such systems. Whereas evolutionary approaches may best support 
the migration of existing application software, revolutionary models may be best suited to 
providing extreme-scale performance for new applications on emerging architectures. 
Both approaches should be explored. 
 
Desirable properties of exascale programming models include the following: 
 

• They should provide highest levels of performance. Most HPC programs are 
written for performance. Moreover, exascale programming languages should be 
performance-aware: they should provide an adequate abstraction of high 
performance parallel hardware platforms to enable the exploitation of their 
features, and some means to tune performance. The failure of automatically 
parallelizing compilers and HPF was caused not only by technical immaturity but 
also by a lack of an interface in the programming language for performance 
improvement. When the programmer finds a performance bug, he or she should 
have some mean to improve performance by modifying the program. The model 
should provide the necessary interfaces to allow tools (especially performance 
tools) to obtain information on the application’s execution behavior. 

• Expressivity is a key requirement. Exascale programming languages should 
provide a model and an interface to express the parallelism in programs. In 
functional programming languages and "old" dataflow languages, parallelism is 
implicit since the model of computation itself exploits the parallelism. In 
imperative languages, new constructs and mechanisms should be introduced to 
express the parallelism. From the application points of view, task parallelism must 
be able to support coupled multi-physics simulations at several levels for exascale 
systems. Applications will need to express massive amounts of potentially fine-
grain parallelism, of asynchrony and locality. Dynamic application behavior will 
need to be supported. It should be possible to express hierarchical parallelism 
within the application. Latency hiding needs to be facilitated.  

• They should enable composability. Composability is essential to support 
productive programming on exascale systems. Libraries and object-oriented 
approach help accomplish this in conventional sequential programming, but they 



don't always work in parallel programming. For example, it is difficult to use 
parallel libraries with current OpenMP. Parallel object-oriented programming is 
sometimes useful, but has some problems.  

• They should support fault tolerance and error handling. Fault tolerance is one 
of the most difficult issues faced on exascale systems. If faults are exposed to 
programmers, then some programming language support will be required to 
handle them. It must moreover be possible for an application to respond to faults 
and program errors gracefully rather than simply crashing. 

• They need to support massively parallel I/O. An abstraction of I/O, including the 
file system, may help programmers handle the huge amounts of data that will 
have to be read and written. 

 
Approaches to programming exascale systems should take the following into account: 
 

• There is a need to provide a smooth transition path from existing practices and 
codes to future approaches. Programming environments will be needed that 
support this transition, as well as all phases of application development and tuning 
on exascale architectures under new and enhanced programming models. 

• Approaches should provide portability (functional and performance) across 
platforms such that the porting effort can be amortized over the foreseeable 
variation of systems to appear from now till the exaflop era and beyond. 

• Incremental parallelization/tuning of applications is a desirable property closely 
related to the above two issues. 

• Initial approaches should address the device, node and system level 
programming. Proposals for hybrid programming should ensure clean interaction 
between the different levels and ensure that the synchronization semantics and 
scheduling decisions at one level do not imply restrictions on other levels.  

 
Topics for detailed study include: 
 

• Address space structure. Identify abstract levels of a structure that is simple 
enough for use by a programmer to express objects/ideas yet allows the run time 
flexibility regarding its mapping to the potentially varied physical structure. 

• Flexible work generation (parallelism/task specification) and synchronization 
structures beyond pure fork-join approaches in order to support flexible 
parallelism and high levels of asynchrony. Ideas from data flow or functional 
programming may be revisited and smoothly integrated into current practices. 

• Latency tolerance, being able to specify required data accesses with large 
lookaheads such that implementations (compiler or run time) can anticipate the 
required data transfers and schedule them appropriately. 

• The issue of hierarchy and heterogeneity, providing mechanisms for modular 
designs with interchangeable implementations of tasks. 

• Separation of functionality and performance, providing mechanisms for the 
programmer to provide hints that may help satisfy performance or power 
requirements, but are not required to provide functionality of the algorithms.  



• Malleability, the ability of applications to dynamically adapt to the available 
resources which may vary during a job run. Programming and execution models 
should support/promote malleable programming practices by separating 
(virtualizing) the algorithmic structure of a program from the resources where it is 
executed. 

• Error handling and fault tolerance. Providing the appropriate hooks for 
resilient applications. 

• Application development environments that facilitate the migration of current 
codes and/or the development of new ones from scratch. 

 
The evolutionary path aims to adapt existing programming models to needs of exascale 
computing, and facilitate task of creating and tuning potentially hybrid application codes. 
This could include work to enhance MPI, OpenMP, CUDA/OpenCL or other approaches 
to programming accelerators and SIMD units, as well as work to improve their 
interoperability. It might also include more effort to deploy the PGAS languages and 
ensure that they may interoperate with other programming interfaces. A revolutionary 
path might be based upon HPCS languages or might be a completely new path. It might 
be worthwhile to revisit old parallel programming models and languages to obtain new 
insights from the past, as is being done in the architecture community. Functional 
programming models used to programming the dataflow machines, such as Id, SISAL, ... 
could be interesting to evaluate. HPF was a great effort to develop a standard parallel 
programming language and is also worthy of re-examination. It is important to take their 
experience of failure into account for better future developments. 
 
In such an open field, it is advisable to pursue a few alternatives and ensure there is 
sufficient sharing of experiences as well as comparative studies between them. These 
should be in terms of complexity/readability of the code and programming effort as well 
as performance (both actual measurements on common platforms as well as predictions 
for different potential targets). Although these types of studies are often difficult to 
perform, special efforts should be devoted to that. Common sets of algorithms should be 
used for evaluation by all the proposed models. 
 
Finally, we should promote efforts to develop standard APIs between several levels and 
components of existing software in the IESP community. For programmers and end-
users, candidates for standardization will include:  

• PGAS languages (UPC and CAF, …) 
• Global views models such as Chapel and HPF 

For the system developer, the candidates are:  
• One-sided communication APIs 
• Fault tolerant model and APIs 
• API for I/O on massively parallel system 
• API for accelerators 
• Performance profile API and data format such as OTF 
• API for thread scheduler 

 



The standard development effort is a key to "evaluation" which develops the community. 
It will be the basis for the next "revolution" of rich diversity for exascale computing. 
 



Models of Computation – Enabling Exascale 

Thomas Sterling 
Louisiana State University 

May 17, 2009 

 

The derivation of new systems’ software and tools for high performance computing 
environments at Exascale will demand realignment and adjustment of functionality and 
capability of software components to exploit the new opportunities and address the new 
challenges of future system architectures, which themselves will be created in response 
to advancing hardware technologies. The evolution of digital device technology, the 
most dramatic in the history of human technology, has catalyzed a sequence of 
architecture classes over the last six decades, each optimized to the specific properties 
of their respective emergent technology phase. Programming models and 
representative languages followed to best exploit the performance capability of the 
system hardware during each phase. Algorithms were devised to reflect the 
computational needs of the applications while constrained to the semantic constructs of 
the available APIs. This reactionary strategy is being replayed as HPC once again 
experiences a phase-change with the advent of heterogeneous multicore for ultra-high 
performance computing. However, this empirical random-walk methodology is time 
consuming, error prone, and costly due to its intrinsic lack of guiding principles to 
facilitate co-design of all system layers simultaneously. Such comprehensive principles 
comprise a paradigm or model of computation to which all layers comply and contribute 
to achieve overall system optimal behavior with respect to critical objective functions. 
Can we get ahead of the game to leapfrog the tedium of catch-up? Or putting it another 
way, can a model of computation be derived that will enable the development of 
Exascale computer systems through the co-design of its comprising system software 
(and architecture) layers? A brief discussion of the nature and characteristics of models 
of computation (alternatively, “execution models”) is offered to contribute to the current 
community discussions on proceeding toward the realization of Exascale computing by 
the end of the next decade. 

Prior HPC phase-changes included the: 

 original sequential instruction operation,  
 sequential instruction issue,  
 vector,  
 array,  
 systolic (for SPDs), and  
 the most recent communicating sequential processes (CSP).  



Others such as dataflow and reduction models did not achieve commercial status 
although interesting experiments were performed. The multiple-thread/shared-
memory model is concurrent with CSP for limited scale systems.  

The current HPC phase-change is apparent by the forced deployment of 
heterogeneous multicore components to maintain the continued peak performance 
progression consistent with Moore’s Law and the underlying exponential growth in 
semiconductor device density. However, these structures are reactive to the 
combined pressures of power consumption, processor design complexity, and 
efficiency factors. They do not reflect a clear understanding of an underlying 
innovative execution model by which this combination of resources can be 
effectively employed for future applications. It is a subject of controversy as to 
whether incremental extensions to current methodologies (e.g., MPI) may serve this 
purpose. Four factors of the new phase suggest that incrementalism is a false hope 
even if it does adequately serve over the next three to five years with diminishing 
efficiency and scalability. These factors include: 

1. > 1000X scalability gain with respect to current best levels  
2. Power efficiency > 50 Gigaflops per watt, 
3. Non-stop operation in the presence of single point failures, and 
4. Support for efficient dynamic graph processing 

Together these factors challenge conventional practices to: 

a) Solve the multicore programming problem, 
b) Reduce the ever increasing memory wall, 
c) Expose and exploit billion-way parallelism, 
d) Incorporate innate latency mitigation and hiding methods, 
e) Reduce average energy per operation by two orders of magnitude, 
f) Integrate memory-oriented operations for meta-data parallel computing, 
g) Achieve fault tolerance through support at all levels, 
h) Embrace dynamic adaptive resource management for runtime efficiency, load 

balancing, and reconfiguration (resiliency), 
i) Exhibit a global address space, 
j) Greatly increase efficiency of parallel control such as elimination of global 

barriers, lightweight task creation and context switching, and dynamic task 
migration, and 

k) Permit heterogeneous cores to be optimally scheduled. 

Other requirements may prevail as well but these are sufficient to demonstrate the 
inadequacy of common methods which over the prior decade and a half have resorted 
to static mapping of coarse grained parallelism to physical processes, avoiding latency 



rather than hiding it (noting some pre-fetch methods), overly constraining flow control by 
simplistic global barriers, forcing a distributed memory mind set, and forcing 
programmers to explicitly manage allocation of resources to data and tasks. No one 
layer of the system is sufficient to address any of these but multiple layers engaged 
synergistically implementing new strategies may do so. The model of computation 
provides the template for the patterns of execution to be accomplished each layer 
working in tandem with the others. 

A model of computation describes how an abstract computation evolves on a physical 
machine successively altering the intermediate state of both to converge on a final 
solution. It defines the name spaces, the control semantics, the memory consistency 
model, the forms of parallelism that it may exploit, and potentially other attributes as 
well. It may define policy interfaces or invariants without specifying the actual specific 
policies themselves in order to provide flexibility in system implementation and 
application. Such policies might include scheduling methods and priorities, name space 
management, and means of achieving compound atomic operations for example. 

There are multiple key consequences of adapting a model of computation to a new 
class of system hardware technologies. One is the verification through its existence and 
mapping of functionality requirements to hardware mechanisms that full and complex 
calculations can be performed on expected hardware designs. A second is that such a 
model simplifies overall system design. Without it, each layer of a system must be 
developed (assuming complete system design) in terms of every other layer; a order n-
squared process. Adopting a model of computation only requires that each layer be 
defined in terms of its contributing functionality to realizing the shared model; basically 
an order n process. Even with iteration for convergent refinements and optimization, an 
execution model can greatly simplify the design process. A third value is that it does 
permit early experimentation with early algorithm and application kernels through the 
likely existence of a low-level application programming interface and test environments. 
While unlikely to provide absolute performance numbers, it will yield insight in to the 
utility of the control semantics of the model, and therefore future systems that employ it 
as a basis for hardware and software system design. And forth, such a model as has 
happened before, facilitates sharing and cooperation across disciplines and institutions.  

How does a model of computation directly contribute to design concepts and decisions 
for the many combined layers of the system? Some examples, in no way 
comprehensive, are suggested: 

o Application interface layer – the execution model defines the basic data 
organization, name space (shared or distributed), distributed communication 
semantics, and parallelism form and control. All these relate to the API and 



programming models that may be employed in constructing applications and 
libraries.   

o Compiler layer – the model of computation combined with the system processors’ 
ISAs and the previously defined API syntax determines the responsibilities in 
translation and analysis that is to be performed by the compiler. This includes 
invocation of runtime system functions and operating system service calls. The 
compiler will provide software implementation of software support mechanisms. 

o Runtime system layer – A major effect of the model of computation is its 
definition of the functionality of the runtime system. This software is likely to grow 
in importance for new systems and will be heavily influenced by the model of 
computation determining how and what information about the runtime state will 
be exploited to manage tasks and resources. The runtime system will provide 
dynamic control, scheduling, allocation, and some synchronization of concurrent 
activities according to the underlying execution model. 

o Operating system layer – the model of computation will determine what support it 
requires from the lower level system some of which will be provided by operating 
system services that must be provided.  

o Architecture layer – For efficiency and scalability, the model of computation will 
require certain time critical mechanisms to be implemented at least in part in the 
hardware architecture to minimize overhead. Other architecture requirements 
driven by the model of computation include how to perform virtual to physical 
address translation, guaranteed compound atomic functions on data, and 
efficient communications.  

Towards the establishment of the next generation model of computation, research is 
required to understand the driving requirements and to devise alternative solutions that 
will enable computing systems and methods for Exascale in the next decade. The 
above discussion has considered the general strategy and approach as well as the 
basic challenges that will guide the derivation of such a model of computation.  

 

 



Whitepaper on the 
Major Computer Science Challenges at Exascale1 

February 2009 

Al Geist, ORNL and Robert Lucas, ISI 

 

Exascale systems will provide an unprecedented opportunity for science, one that will make it possible to 
use computation not only as a critical tool along with theory and experiment in understanding the 
behavior of the fundamental components of nature but also for critical advances for the nation’s energy 
needs and security. To create exascale systems and software that will enable DOE to meet the science 
goals critical to the nation’s energy, ecological sustainability, and global security, we must focus on major 
architecture, software, algorithm, and data challenges, and build on newly emerging programming 
environments. Only with this new infrastructure will applications be able to scale up to the required levels 
of parallelism and integrate technologies into complex coupled systems for real-world multidisciplinary 
modeling and simulation. Achieving this goal will likely involve a shift from current static approaches for 
application development and execution to a combination of new software tools, algorithms, and 
dynamically adaptive methods. Additionally, we must bring together new developments in system 
software, data management, analysis, and visualization to allow disparate data sources (both simulation 
and real-world) to be managed in order to guide research and to directly advance science. Achieving this 
vision will require fostering long-term, sustained, communitywide activity in evolving code suites. Large-
scale applications, like large-scale computers themselves, require the support of multiple specialists 
within a single community. Indeed, the community of computer vendors, application scientists, and 
computer scientists, together with the hardware and software they both develop and use, form an 
integrated, interdependent ecosystem. 
 
Several recent studies and workshops [1-10] have identified the high level problems facing the HPC 
community as it moves towards exascale over the next decade. This paper compiles and organizes the 
major software challenges into four categories:  

• Problems caused by the growing scale and complexity of computer architectures  
• Problems caused by the growing complexity of science applications, including the longstanding 

problems with debugging and tuning large applications at scale 
• Problems are caused by the huge increase in the data produced and consumed by peta and 

exascale systems.  
• Problems of software sustainability such as hardening and long-term support of popular software 

packages, education of the next generation of HPC specialists, and training the existing users 
about advanced techniques and tools.  

 
These workshops pointed out that it is critical that work begin today if the DOE’s scientific computing 
community is to be able to exploit exascale systems when the technology to create them matures in the 
coming decade. 
 
1. Challenges due to scale and complexity of system 
   
                                                            

1 Work in process. Based on an analysis of the computer science challenges from the DOE Exascale studies. 
 



For most of the past five decades, the growing computational power of supercomputers has come 
primarily from a doubling of clock frequency every 18 months.  In the last two decades, this has been 
augmented by an increase in the number of processors.  Over this time period, the clock rate increased by 
six orders of magnitude, while the number of processors increased by three orders of magnitude. Due to 
constraints on heat and the power requirements of today’s microprocessors, the last frequency doubling 
occurred about five years ago and has remained effectively constant ever since. Vendors have shifted to 
putting multiple processors (cores) on a chip; first two, then four, then eight. The number of cores per 
chip is expected to continue to increase exponentially over the next decade.  Today’s supercomputer 
vendors see the only way to continue increasing the computational power of their systems is through 
increasing the number of processors and hence the scale and complexity of their systems. In the last five 
years supercomputer architectures have gone from 1000 processors to 100,000 processors and the next 
generation systems are going to have over a million processors. The rate of growth of parallelism is in 
fact accelerating, and will likely exceed one hundred million when exascale systems appear.  Some 
estimates even predict that the need for multiple threads to cover main memory and communication 
latency means that scientific codes will contain billions of threads. 
 
The change of shifting from using faster processors to using multi-core processors is as disruptive to 
scientific software as the shift from vector to distributed memory supercomputers fifteen years ago. That 
change required complete restructuring of scientific application codes, which took years of effort. Some 
application communities still haven’t transitioned to even a thousand-way parallelism.  The shift to multi-
core exascale systems will require applications to exploit million-way parallelism and overcome 
significant reductions in the bandwidth and volume of memory available to each CPU. This “scalability 
challenge” driven by the exponential increase in the amount of parallelism in the system affects all 
aspects of the use of high performance computing. It makes all the existing problems harder, such as 
getting performance from the applications, managing the system, debugging, etc.. It also creates new 
challenges such as fault tolerance, the need for new programming models, and verification of results. 
 
There is another looming shift in the complexity of the node architectures that will be as big a challenge 
to software development as the exponential growth in processors. This is the potential shift to 
heterogeneous node architectures. Today most supercomputers are of huge scale but they are 
homogeneous. Over the next decade it is expected that the multi-core processors will include several 
different types of cores on each node, for example, a computation accelerator, a graphics processor, a 
communication processor, an IO processor, etc.  An early example of a heterogeneous system is the 
Roadrunner supercomputer at LANL.  
 
The major challenges caused by the increasing scale and complexity HPC systems are cross cutting of the 
entire software stack. The software challenges include the rapid increase in parallelism, the memory wall, 
system heterogeneity and fault tolerance. For each of these challenges computer science research is 
needed across the entire stack not just at one level. For example, making an application fault tolerant is 
not sufficient if the system software is not also fault tolerant. Making the system software fault tolerant is 
not sufficient if the data can be corrupted by faults in the data management software. To be able to use 
these systems to solve the nation’s problems, DOE, as the pioneer in HPC, must improve all parts of the 
software stack and influence the architecture design to meet the scientific needs. The challenges impact 
both the developers and users of the system software, the applications, the runtime, communication, IO, 
and data management, including analyzing the results. 
 
1.1 Increasing Parallelism 
The increase of system concurrency from hundreds of thousands to hundreds of millions will be a 
tremendous challenge for system software to manage and for applications to get good performance at this 
level of parallelism. Almost all of today’s large-scale applications use the message-passing programming 
model (MPI) together with traditional sequential languages (C, Fortran, C++), but new architectures with 



many cores per chip and parallelism in the millions are expected to make this programming model more 
problematic and  less productive in the future. Thus new approaches are needed. For example, a hybrid 
programming model such as MPI with some global view techniques such as Unified Parallel C (UPC) or 
Co-Array Fortran (CAF). In order to facilitate the utilization of the extreme scale resources, new 
programming models and High Productivity Computer Systems (HPCS) languages must be explored. 
 
1.2 Memory Wall  
The memory wall traditionally refers to the challenge that the bandwidth and latency to memory 
continues to grow at a slower rate than the processor power. The transition from frequency-based scaling 
to core-based scaling will make the memory wall both higher and broader. It is higher in that bandwidth 
and latency continue to get worse as memory gets farther away from CPU operations (at least in terms of 
clocks). The memory wall is going to get broader in that the overall memory capacity per core must 
decrease. It will be harder and harder to maintain the desired byte-to-flop ratio—in absolute capacity 
(flops/s per byte) and bandwidth terms (flops per byte). Hence, applications will have to be redesigned to 
make better user of limited memory. Additionally, applications will have to deal with increasing 
hierarchies of memory (and indeed storage). There are now often five levels of direct access memory 
(register sets, three levels of cache, and main memory). In the future there may be more levels and more 
(or less) sharing of these levels within a shared memory node, as well as a new level of persistent FLASH 
to augment the DRAM main memory. 
 
1.3 Influencing Architecture Design 
DOE scientists have been pioneering users of high-end systems for over five decades.  While the systems 
themselves are usually manufactured and deployed by computer system vendors, architecture research 
conducted by DOE scientists, often in collaboration with the vendors, allows DOE to develop the 
specifications for the systems.  To maximize the utility of the computer hardware, DOE computer 
scientists often contribute everything from system software to programming environments and debugging 
tools.  Recent examples abound, including BlueGene/L, Red Storm, and Roadrunner.  As we look 
forward to exascale, high-end systems will become increasingly specialized, and DOE scientists will have 
to take an even more active role in designing of both the software and the hardware of such systems to 
assure their utility for the scientific problems that face the nation.  
 
1.4 Heterogeneity  
Heterogeneity exists at many different levels in modern supercomputers. The systems have several 
different node types: compute, IO, login; several different operating systems; and several different 
interconnection networks: RAS network, command network, one or more communication networks. 
Despite this heterogeneity, these systems are usually considered homogeneous because the fundamental 
compute node is homogeneous and replicated tens of thousands of times across the system. A 
heterogeneous system is one where there are regions of different compute nodes across the system. For 
example the proposed Japan 10 PF system is designed to be a mix of three different types of architectures: 
vector, cluster, and specialized (GRAPE). Another form of heterogeneous system is where the compute 
nodes are heterogeneous. An example is the “Roadrunner” system where each compute node has a 
traditional AMD multi-core processor plus an IBM Cell processor, originally designed for the Sony 
Playstation. The major chip vendors have all started exploring creating heterogeneous multi-core chips 
that combine light-weight, high compute density processor units (e.g., GPUs) and traditional 
computational units (CPUs) in order to increase the computational power on a single chip. It is expected 
that over the next decade most supercomputers will be constructed using such heterogeneous multi-core 
processors. 
 
Heterogeneity is also appearing at the system level, as computer centers adopt a “crop rotation” model, 
whereby systems are partially updated on a regular basis.  A recent example occurred at the ORNL 



Leadership Computing Facility, when two generations of Cray XT systems were simultaneously 
deployed. 
 
Heterogeneity is a radical shift from today’s environment. System management, job scheduling, efficient 
resource utilization, and load balancing all become much more complex. Today’s code development 
assumes a homogenous run-time environment, with parallelization being done manually by each code 
developer. At the scale where applications need to make use of millions of heterogeneous processes, 
discovering the opportunities for parallelization becomes much more difficult and requires a set of tools 
that can automate the parallelization of the trivially parallelizable segments of code, and aid the 
application developer in finding less obvious opportunities. This task is even more daunting when 
considering future heterogeneous multi-core architectures, since the parallelization algorithms have to 
take into account the different types of processors and the interactions between them. Compiler research 
will be needed to understand how to exploit heterogeneous hardware, automating as much of this as 
possible and providing code-restructuring assistance where automation is not possible.  
 
1.4 Fault Tolerance 
Modern PCs may run for weeks without rebooting and more data servers are expected to run for years. 
However, because of their scale and complexity, today’s supercomputers run for only a few days before 
rebooting. Exascale systems will be even more complex and have millions of processors in them.  The 
major challenge in fault tolerance is that faults in extreme scale systems will be continuous rather than an 
exceptional event. This requires a major shift from today’s software infrastructure. Every part of the 
exascale software ecosystem has to be able to cope with frequent faults; otherwise applications will not be 
able to run to completion. The system software must be designed to detect and adapt to frequent failure of 
hardware and software components. On today’s supercomputers every failure, even ones that get 
reconfigured around, kills the application running on the affected resources. These applications have to be 
restarted from the beginning or from their last checkpoint. The checkpoint/restart technique will not be an 
effective way to utilize exascale systems, because checkpointing stresses the I/O system and restarting 
kills 999,999 running tasks because 1 fails in a million task application. With the potential that exascale 
systems will be having constant failures somewhere across the system, application software isn’t going to 
be able to rely on checkpointing to cope with faults. A new fault will occur before the application could 
be restarted, causing the application to get stuck in a state of constantly being restarted. For exascale 
systems, new fault tolerance paradigms will need to be developed and integrated into both existing and 
new applications. 
 
To complicate matters even more, the GPU accelerators that are being considered for heterogeneous 
systems often do not have any error checking on the processors or in their memories. This is because 
there is no market force to require error checking since a few incorrect pixels on the frame of an 
animation is not noticeable. But if GPUs become common in peta and exascale systems then undetected 
errors from GPUs or other sources could dramatically increase the rate of faults in large systems.  
 
Research in the reliability and robustness of exascale systems for running large simulations is critical to 
the effective use of these systems. New paradigms must be developed for handling faults within both the 
system software and user applications. Equally important are new approaches for integrating detection 
algorithms in both the hardware and software and new techniques to help simulations adapt to faults. 
 
2. Challenges due to complexity of applications 
As computational capabilities have grown, so have the resolution and complexity of the simulation 
models. The large simulation codes today incorporate multidiscipline, multi-physics, multiple time scale 
and multiple solution methods. They have taken years to develop by teams of programmers and scientists 
and can include millions of lines of code. As we make the leap to exascale computation the impact on the 



cost to update, recode, and incorporate more advanced models into the simulations can be an order of 
magnitude higher than the cost of the supercomputer hardware. In order to contain these costs, the 
exascale software ecosystem must support more efficient program development that addresses the 
following application challenges: 
 

• Scaling limitations of present algorithms 
• Innovative algorithms for multi-core, heterogeneous nodes 
• Software strategies to mitigate high memory latencies 
• Hierarchical algorithms to deal with BW across the memory hierarchy 
• Need for automated fault tolerance, performance analysis, and verification 
• More complex multi-physics requires  large memory per node 
• Model coupling for more realistic physical processes 
• Dynamic memory access patterns of data  intensive applications 
• Scalable IO for mining of experimental and simulation data   

 
The user requirements are heavily shaped by the length of the life cycle of the applications. HPC 
applications have both long development cycles and long periods during which the application is in 
"production." An important aspect of this life cycle is that code is always in development -- even 
production code. Thus, the users require assurances of stable support for a programming model, including 
the development tools that enable its use. Further, "new" applications are almost never entirely new—they 
almost always take some existing code base to provide key underlying physics or mathematics 
functionality from an existing application. As a result, users are not open to tools that only target "new" 
applications or require significant changes to the established workflow of the application team. 
 
Applications are becoming much more multifaceted as teams include a variety of languages, libraries, 
programming models, data structures, and algorithms in a single application. In fact, application teams are 
listing scalable tools for debugging, memory correctness, thread correctness, and multimode performance 
analysis as key factors in their productivity.  
 
Today’s tools are limited in scope, capability, and scalability. The overhead associated with current 
measurement techniques is too intrusive at the petascale and may skew analysis so much as to render any 
analysis ineffective. Therefore, we need to develop scalable and less intrusive methods of collecting 
performance data, develop knowledge discovery methods for extracting key performance features, and 
provide assistance in feeding the results of these analyses back to the code transformation. 
 
 
2.1 Improving Programmability 
Exascale computer architectures will require radical changes to the software used to operate them and the 
applications that run on them.  
 
New ways of specifying computations: Scientists must be freed from the details of managing data 
movement among memory systems and synchronizing access to shared memory among threads of 
control. They will need languages and libraries, in some cases discipline- or even application-specific, 
which specify results to be obtained with less attention to the details of the computation than is currently 
necessary. Implementation of such libraries and languages will require lower-level programming models 
and tools that permit execution on a wide range of hardware and exploit the capabilities of exascale 
architectures. 
 
Portability: Libraries are the typical software test beds where new programming models and execution 
models are proved out and this will continue to be the case. Numerical and communication libraries 
provide a fast vehicle for getting the new concepts into use by the application developers. MPI is the 



portable programming model today. Any new programming model that is created must be, at a minimum, 
be as portable across the key HPC systems, clusters, and development platforms of the time to be adopted 
by software developers. Tools to assist in the code transformations to new models and new algorithms are 
going to be critical in transitioning the millions of lines of code to a new programming model. 
 
Huge code size: The increasing prevalence of coupled multi-disciplinary codes has combined with the 
long life cycle of scientific applications and the use of third party libraries to make codes larger and more 
complex. As a result, tools must handle larger executables. Tool developers are already seeing demand for 
tools to handle codes of several hundred mega-bytes to giga-bytes of executables. In addition, the rise of 
component based programming is resulting in applications that have hundreds if not thousands of shared 
libraries. So tools must be developed that handle both huge binary files as well as large numbers of files.  
 
The memory challenge states that the memory per core in petascale architectures is going to decrease. 
Developers need tools that will help them understand the scaling behavior of memory allocations and 
usage as well as detect correct memory semantics. With limited node memory, tools that monitor how 
much memory is being used in a parallel job over time would also be useful. To be applied at extreme 
scale, all of these tools must have little overhead, a criteria that many existing memory correctness tools 
fail to meet. 
 
Tools throughout software life cycle: The tool needs vary with the life cycle stage. Initial code 
developers need full featured debuggers and performance analysis tools and are willing to work with tools 
with relatively high overheads, such as some memory correctness tools. Similar functionality is also 
needed for code being maintained. In addition, support for version tracking, code coverage and regression 
testing (both correctness and performance) are useful at this stage. Supporting code ready to run at large 
scale requires yet different tools. Lightweight debugging functionality is essential at these scales, as are 
low overhead mechanisms for performance profiling and analysis. Codes in production need workflow 
tools to interact with applications and large scale systems. Finally, tools to support fault tolerance, with a 
focus on data integrity, are expected to become even more important during this life cycle stage as faults 
become continuous. 
 
2.2 Building New Applications 
The vision for the next decade is to have a totally integrated approach to how applications are built, 
modified, updated, and used in other applications. In such a development environment the tools will 
interoperate with each other and assist the scientists in writing, debugging, tuning, and maintaining their 
codes. This will be facilitated through: 
Rapid, modular construction of new applications from existing suites of interoperable components. 
Scientific software components with well-defined interfaces have the potential to greatly increase code 
reuse, thus shortening development times and increasing software reliability. 
Coupling of multiple applications into ever-larger applications through automated workflows.  
Single large runs remain an important class of large-scale computations, but many applications need 
parameter studies consisting of large numbers of coordinated sets of runs, each perhaps consistent of a 
pipeline of computation and analyses. High-level, standard languages for coordinating such families of 
executions will enable scientists to focus on science rather than “run management.” 
Debugging Tools. An integral part of application development includes verifying that code runs as 
expected. Current debuggers are not able to handle even a few thousand tasks much less the 100,000 tasks 
on today’s supercomputers. Application developers for today’s large systems fall back to the very 
inefficient method of debugging—dumping user inserted debug code to output files. With the vast 
increase of process count going to exascale systems, searching manually for a single anomalous process 
among the millions of running processes and threads is not tenable.  
 



Application teams need tools for managing application builds and configurations, mixed language 
support, dynamic linking, program configurations, remote access, compiler infrastructures for application-
specific analysis and transformations, and integrated development environments. Application teams 
specifically request lightweight tools to diagnose memory, threading, and message passing errors that are 
easy to use and scale from the desktop system to the petaflop platform. Furthermore, the architectures and 
system software must make the necessary performance and reliability information available to these tools 
so that they can perform root-cause analysis with greater accuracy. 
 
For performance and correctness tools the availability of scalable tools is particularly critical. These tools 
require a scalable infrastructure to provide tool communication, data management, binary manipulation of 
application executables, execution management for batch schedulers and operating systems, and a variety 
of other capabilities. Tool infrastructures must be efficient, modular, fault tolerant, and flexible. 
 
2.3 Execution Environment  
Managing a system with a million processors and faults occurring almost continuously produces new 
challenges for system software. Efficient scheduling and resource management become significantly 
harder with a dynamically changing configuration as does upgrading and monitoring. The acceleration in 
scale puts additional pressure on the scaling of all system software components.  In particular, OS scaling 
has been a historical challenge at each change in scale. Several performance issues are anticipated to 
become of increasing importance. Perhaps at the top of the list is load balancing. Tools are needed to 
detect load balance problems and to assist the dynamic load balancing of applications.  
 
In order to guide research, and to directly advance science there must be a more flexible and dynamic 
resource management capability throughout the computing environment to allow computing, analysis, 
visualization, and live data to be integrated simultaneously during a simulation. While workflows provide 
a nice execution interface for the scientist, they will need to evolve to meet the needs of the growing 
complexity of applications.  

a) Semantic awareness in workflows: Workflows need intelligence to identify which actors can be 
linked technically, highlight mismatch of units between actors, enable better control over 
parameter sweeps, and learn from previous workflows. 

b) Optimization of workflows: Currently workflows are driven by the need to optimize the 
scientist’s time. In the future they may also need to consider other options such as optimizing 
power, CPU cycles and data transmission time by dynamically scheduling on appropriate 
systems. This will require that the workflows be aware of the underlying hardware.   

c) End-to-end software environments to support collaborative data analysis: As advances in 
mathematics and computer science make the analysis of larger and more complex data sets 
feasible, it is also necessary to bring these advances together in an environment that supports the 
end-to-end process of data analysis from the initial data to the final results. This environment 
should include support for workflows, provenance, and storage of data.  

d) Incorporation of policies:  Workflows will also need to incorporate any privacy and security 
policies that may dictate how and what data can be analyzed.  

 
2.4 Validation and Verification 
The scale and complexity of the science problems enabled by exascale systems require new techniques 
for making sure that the calculations are done correctly. It will be increasingly important to validate that 
new extreme scale algorithms are solving the right problem and to verify that the answer produced is 
correct and not corrupted by numerical stability or numerical errors from transient non-fatal faults. 
 
The difficulties in drawing scientifically-meaningful conclusions from vast volumes of data is reflected in 
the greater need for code validation, uncertainty quantification, and the analysis of data across ensembles 
of simulations. Often, the quality of the data, and the variation in the data, add to the challenges resulting 



from the massive size of the data, thus increasing the need for robust algorithms that are not sensitive to 
the settings of parameters. 

 
3. Challenges due to increased data 
The data challenges include dealing with the volume, different formats, transfer rates, analysis, and 
visualization of massive (potentially distributed) data sets. Exascale applications running on as many as a 
million processors are likely to generate data at a rate of several terabytes per second (even assuming only 
a few megabytes per processor). It is not practical to store raw data generated at such a rate. Dynamic 
reduction of the data by summarization, subset selection, and more sophisticated dynamic pattern 
identification methods will be necessary to reduce the volume of data. And the reduced data volume will 
have to be stored at the same rate as it is generated, in order for the exascale computation to progress 
without interruption. 
 
This requirement presents new challenges of orchestrating data movement from the supercomputer to the 
local and remote storage systems. Data distribution will have to be integrated into the data generation 
phase. Managing the dataflow using well-coordinated workflow engines will be required as part of the 
software infrastructure that runs the simulations. 
 
The issue of large-scale data movement will become more acute as very large datasets or subsets are 
shared by large scientific communities. This situation will require large volumes of data to be replicated 
or moved between production and analysis machines, often across the wide area. While networking 
technology is greatly improving with the introduction of optical connectivity, the transmission of large 
volumes of data will inevitably encounter transient failures, and automatic recovery tools will be 
necessary. 
 
Another fundamental requirement is the automatic allocation, use, and release of storage space. 
Replicated data cannot be left in storage devices unchecked, or storage systems will fill and become 
clogged. A new paradigm of attaching a lifetime to replicated datasets, and the automatic management of 
data whose lifetime expires, will be essential. 
 
3.1 Parallel File Systems 
Parallel file systems such as Lustre and PVFS2, and I/O software stacks including MPI-IO and high-level 
I/O libraries (e.g. HDF5, Parallel netCDF) are in extensive use in HPC by a wide variety of applications. 
Current deployments typically use vendor file systems and enterprise hardware and are providing 
adequate storage performance, capacity, and reliability for current systems. For the next decade the key 
challenges to Parallel File Systems are scaling, performance, and fault tolerance. Overall, we need storage 
systems at HPC centers that provide scalable bandwidth and tolerate non-catastrophic failures without 
data loss.  
 
3.2 Data Management  
Scientists are facing the burden of managing the data generated by large-scale simulations and 
experiments.  They need to deal with multiple steps of moving the data between software modules, 
extracting subsets of the data, summarizing the data, generating images or movies, and moving the data to 
archival storage.   Such tasks are extremely time consuming, and require expertise that is irrelevant to the 
scientist, such as transfer protocols, security mechanisms, and idiosyncrasies of archival systems. 
 
In order to support exascale data generation, data storage will fundamentally change. Users will need 
tools that manage the movement of data automatically across a storage hierarchy. Data that is used often 
will be moved to highly parallel dynamic storage, while archived data will reside in powered down 
storage or passive storage devices. Furthermore, algorithms to automatically track and remove unused 



data from the dynamic storage will be essential to minimize storage costs. Collections of datasets will be 
organized as directories. Such abstraction will fundamentally change the way the I/O is expressed by 
applications and will involve a storage management layer that maps datasets into physical devices without 
effecting the applications. 
 
Keeping track of the data generated is already a daunting task. The meaning of the data, referred to as 
metadata, requires precise annotation of how the data was generated, and the scientific interpretation of 
each data item. Furthermore, many scientific datasets are generated from other datasets, or perhaps a 
combination of datasets. This requires the capability of tracking the history, or provenance, of the data. 
Today, such tools are provided in ad hoc manner; some metadata is collected in various forms of 
notebooks, some in databases, and some embedded as headers of files. In the exascale regime the 
automation of this task is essential because of the sheer volume of the data and the accelerated rate of 
their production. Standard metadata models and tools will have to be developed, as well as tools to 
automatically capture the metadata as the datasets are generated. Furthermore, the data models need to 
support standard ontology for each scientific domain and allow for dynamic evolution of such standards. 
 
3.3 Turning Data into Scientific Discoveries  
One of the challenges in contemporary science is the process of discovering knowledge and testing 
hypotheses in the presence of a growing deluge of data. A recurring theme in this document—that 
existing methods will not scale to meet the challenges of exascale systems and data—holds true in the 
area of knowledge discovery. Existing approaches for knowledge discovery do not scale to the exascale. 
Failure to address the issues of knowledge discovery in the exascale ecosystem will have a profound and 
adverse impact on all science programs.  
 
A number of different, yet complementary, approaches to address these problems will require exploration:  

• Ability to visualize and analyze results at coarse and fine resolutions depending to support the 
natural investigatory process that relies on context/focus interaction;  

• Better visual data analysis algorithms for characterizing and presenting uncertainty; 
• Integration of visual data presentation and data analysis techniques (e.g., clustering, classification, 

statistical analysis and representation) to aid in accelerating knowledge discovery; 
• Greater emphasis on the human-computer interface to increase the efficacy of visual presentation 

motifs and interactive knowledge discovery interaction models; 
• Context-centric interfaces to simplify use of complex software infrastructure; 
• Rethinking design and implementation of fundamental knowledge discovery algorithms and 

software infrastructure to be capable of effectively leveraging exascale platforms. 
 
As the size of simulation, observational, and experimental datasets grow into the petascale range, many of 
the existing technologies do not scale to be practical for both on-line and off-line data analysis and 
knowledge discovery processes.  These additional challenges need to take advantage of acceleration, 
parallel processing, and smart navigation, summarization, and manipulations of the massive datasets.  
New methods for achieving better efficiency of searching, processing, exploring, and displaying 
information are needed.  Finally, scalable and flexible data formats for storing, processing, provenance, 
and sharing results of data analysis are required. 

 
3.4 Efficient Searching  
Searching for key pieces of information in data is becoming challenging due to several factors. With data 
reaching the petabyte scale, there is a need for better indexing technology to support multiple tasks such 
as database search, sub-graph extraction, and text searches with ranking. The data being searched is also 
becoming more complex, with simple row/column tables being replaced by graphs, data with associated 
uncertainty, collections of data such as a sequence of interactions in a graph, and so on. Users are also 
making more complex queries and may require an estimate of the time it would take to obtain an answer 



to the query.  To address these issues, we need advances in several different areas including, but not 
restricted to, indexing, sampling, query estimation, and approximate query answering. The characteristics 
of modern datasets, as well as the hardware on which the analysis software is executed, suggest the need 
to re-think existing algorithms or develop new ones due to:  
Scalability of the analysis techniques: We need advances in both mathematical algorithms and computer 
science issues to ensure that our analysis techniques will scale with both the size of the data and the 
number of processors available to run the analysis algorithms. This would require new parallel 
algorithms, scalable data structures, techniques for re-organizing the data to be more suitable for multiple 
processors, automatic compiler-driven parallelization, etc. Since data maybe inherently distributed and 
streamlined, algorithms need to be adapted to these physical properties of the data. 
Modifying algorithms for new architectures: With the paradigm shift from single processors to multi-
core architectures, GPUs, and FPGAs, we need research to determine how scientific data analysis tasks 
can be re-designed to be highly multi-threaded to take advantage of these architectures. In particular, I/O 
bottlenecks often encountered by data intensive applications can be circumvented with in-memory data 
operations and specialized indexing techniques such as Quaterrnary Triangular Mesh (for geoprocessing), 
and space filling curves (for increasing locality in multidimensional spaces). The new architectures can be 
particularly well suited for some of the newer types of data.  For example, algorithms for fast quantile and 
frequency estimation in data streams can benefit from the use of GPUs. Likewise, significant amount of 
processing tasks may be accelerated using FPGAs, e.g., kernel computations, key statistics, pattern 
recognition using templates etc. 
Analysis within storage: An approach to minimizing the time taken to move data from storage to where it 
is being analyzed is to analyze the data where it is in storage. This is referred to as Active Storage.  
Research is needed to understand the data structures necessary for such analysis and the approaches 
including programming models, software libraries used to embed analysis functions within storage, and 
the storage infrastructure enhancements necessary to make this possible.   
Exploiting modern programming models and constructs: MapReduce, Bigtable, and have been 
successfully used in various applications on several different architectures for the analysis of large 
datasets. However, it is unclear if such programming models can be directly used in the context of 
scientific data. Research is needed to determine how such models can be extended to implement scientific 
data analysis algorithms and meet the requirements of fault tolerance and scalability, while supporting the 
fine granularity and frequent synchronization needs of scientific applications. 
 
4. Software Sustainability 

Creating an exascale software ecosystem entails more than just solving the technical challenges. It 
includes educating scientists on how to use the solutions, both new tools and new approaches, and 
demonstrating why using these solutions is to their advantage. It includes making sure that the solutions 
are hardened to production quality so that they can be integrated into the software suites of the nation’s 
supercomputer centers. It includes making pieces available as they are completed, rather than waiting 
until everything is done. And it includes helping users integrate these pieces into existing codes so that 
science teams can benefit in the near term and build up trust in the solutions being provided for the 
exascale software ecosystem.  
Sustaining and hardening software to production quality: Academic and laboratory researchers and 
developers rarely possess either the software engineering skills or the desire to transition research ideas to 
production code, with concomitant support. The pathway from research prototype to a software tool that 
is widely available, production quality and actively supported is not clear. In most cases, the funding 
researchers receive is targeted toward specific research goals, and not necessarily to provide tool porting, 
testing, documentation, standardization, or user support. A new model of software tool support is needed 
if we are to address current and future needs. 



Engagement with applications and domain experts: All too often, software tools are developed in the 
absence of detailed understanding of the user and application needs. Conversely, users are often unaware 
of the technical difficulties underlying tool design and support. Bridging this gap with a collaborative 
software development and extension process, where promising ideas are identified and tested early, then 
enhanced and supported across the application development and support cycle, would ameliorate the 
expectations gap.  
User training: Software development tools can be very flexible and powerful in their own right. The 
developers of these tools should make it a priority to train the user community on tool capabilities and 
usage. Furthermore, usability should be a major requirement included in any funding focusing on 
transition to production software. 
Education and workforce: As is the case in other areas of HPC and computer science, there is a specific 
need to educate new students and workers in order to ensure a sufficiently large and capable workforce. 
  
 
6. References 

 
1. Final report from Exascale townhall meetings- Breakout Group Seven “Software Challenges”. June 

2007 
 
2. Workshop on Software Development Tools for Petascale Computing final report. August 2007 
 
3. Workshop on Visual Analysis and Data Exploration at Extreme Scale final report, October 2007,  
 
4. Scalable Systems Software Summary Report ASCR PI meeting, April 2008 
 
5. Data Management and Analysis Summary Report ASCR PI meeting, April 2008 
 
6. Workshop on Mathematics for Analysis of Petascale Data final report, June 2008 
 
7. Whitepaper “The Scientific Data Analysis Process at the Petascale” Editors: Chandrika 

Kamath, Arie Shoshani, August 2008 
 
8. Workshop on CS/Math Institutes and High Risk/High Payoff Technologies for Applications 

preliminary report, October 2008 
 
9. DARPA “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”, 

Kogge, et.al. (September 2008)  http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf 
 

10. DARPA “Exascale Software study”, Sarkar, et.al., (In preparation) 
http://www.lbl.gov/CS/html/SC08ExascalePowerWorkshop/Sarkar-SC08-Exascale-Workshop-v2.pdf 

 



Towards Exascale File I/O


Yutaka Ishikawa 
University of Tokyo, Japan


2009/05/21




Background & Overview


•  Existing libraries and systems 
–  High Level I/O Library 

•  Parallel HDF5 
–  Collective I/O 

•  MPI-IO 
–  Global File System 

•  Lustre, PVFS, GPFS, …  
•  Existing file systems 

–  Global file system only 
•  Most systems 

–  Staging 
•  Files are copied to a local disk of each 

compute node before execution, and 
then dirty files are copied to the global 
file system after execution. 
 e.g., Earth simulator, Riken Super 
Combined Cluster, PACS-CS@Univ. 
of Tsukuba 

•  Environment to develop exascale file systems 
•  Challenges towards exascale systems 

1.  File system configuration 
2.  Exascale file access technologies 
3.  Exascale data access technologies 
4.  Exascale Layered implementation 

•  Collaboration Scenarios 
•  Milestone 

2009/05/21




Environment to develop exascale file systems


•  Benchmarks and use cases 
–  To understand  file system performance and reveal the weakness of the file system 
–  Involvement of application developers’ skill 

•  We have to discuss with application developers to understand the application 
characteristics 

•  We have to cooperate with application developers to achieve better file I/O 
performance 

–  Is the following consortium still working ? 
•  Parallel I/O Benchmarking Consortium 

 http://www-unix.mcs.anl.gov/pio-benchmark 
•  Tools 

–  File I/O access tracer 
•  To understand the application I/O characteristics 

•  Experimental Equipments 
–  1 K to 10 K nodes 
–  The developed code can be deployed to compute nodes and file servers 

•  Kernel modification 

2009/05/21




Research Topics: File system configurations


2009/05/21


Global 
file 
system


Local disk 
on each 
node


Disk for 
group of 
nodes


Type A  ✔ 

Type B ✔  ✔ 

Type C  ✔  ✔ 

Type D  ✔  ✔  ✔ 

Type A 

Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…

Compute 

Node

Compute 

Node

Compute 

Node

Compute 

Node

…


Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…


Type C 

Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…


Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…


Disk


Servers

Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…


Type B 

Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…

Disk
Disk
Disk
Disk
 Compute 

Node

Compute 

Node

Compute 

Node

Compute 

Node

…


Disk
Disk
Disk
Disk


Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…

Disk
Disk
Disk
Disk


Type D 

Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…

Disk
Disk
Disk
Disk


Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…

Disk
Disk
Dis

k

Dis
k


Disk


Servers


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


…

Disk
Disk
Disk
Disk


Disk


Servers




Research Topics: Exascale file access technologies


•  Type A (Global file system only) 
–  This configuration may be not applied 

•  Type B (Global file system + Local disk) 
–  Local disk will be SSD. 
–  Research topics 

•  Both the file and meta-data cache mechanisms in each node 
•  File staging 
•  If two networks for both computing and file access are installed, some optimization 

mechanisms utilizing both networks are also research topics 
•  Type C (Global file system + Group file system) 

–  Each group file system provides the file access service to the member nodes of its group 
–  Research topics 

•  Efficient file staging 
•  The group file system as file cache 
•  The file service mechanism to some groups if an application runs over those groups  

•  Type D (Global file system + Group file system + Local disk) 
–  The combination of Types B and C 

2009/05/21




Research Topics: Exascale data access technologies


•  Most application developers use the read/write file I/O system calls (, at 
least  in Japan) 

•  If the parallel HDF-5 is enough capability to describe exascale 
applications, the following research topics are candidates: 
–  Efficient  implementation of parallel HDF-5 for exascale parallel file 

system 
•  Optimization over cores in each node 

–  Application domain specific libraries on top of parallel HDF-5 
•  If the parallel HDF-5 is not enough capability, 

–  Design of extended API and the implementation data structure is 
redesigned 

•  Deployment Issues 
–  Portable efficient implementation 
–  Tutorials for the application developers 

2009/05/21




Research Topics: Layered Implementation for collaboration


•  Data Access Layer 
–  Parallel HDF and others 

•  Cache and Collective Layer 
–  Approaches 

•  Memory-mapped parallel 
file I/O 

•  Distributed Shared 
Memory 

•  … 
•  Communication Layer 

–  Accessing parallel file system 
•  Parallel File System 

2009/05/21


Data Access 
Layer 
Cache 
And 

Collective 
Communication 

Communication 

Parallel File 
System 

API/ABI


API/ABI


API/ABI




Collaboration Scenarios


1.  Almost no collaboration 
–  Joint workshops are held 

2.  Loosely coupled collaboration 
–  Benchmarks are defined 

3.  Collaboration with Standardization 
–  Network protocol is defined 
–  Client-side API/ABI are defined 

•  New Parallel File I/O 
•  Highly abstracted Parallel File I/O in addition of  HDF5 ? 

4.  Tightly Coupled collboration 
–  Developing the single File I/O software stack


2009/05/21




Milestone


2009/05/21


2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016


Benchmarks
 V1.0


development


Supercomputer 
centers@Japan


Univ. of Tokyo
 Kyoto Univ.
 Univ. of 
Tsukuba


Univ. of Tokyo




  

 - 1 - 

IESP Exascale Challenge: 
 

Co-design of Architectures and Algorithms 
 

Al Geist  (ORNL) and Sudip Dosanjh (SNL) 
 

Historically, huge supercomputers were built and delivered with little or no software on them. 
The application developers were left with heroic efforts to get there simulations to run efficiently 
on these systems. In order to improve the effectiveness of peta and exascale systems we need to 
have a paradigm shift where architectures and algorithms are co-designed. 
 
There is a large gap between the peak performance of supercomputers and the actual 
performance realized by today’s algorithms. This architecture-algorithm performance gap will 
get even wider with the increase in computing power being driven by a rapid escalation in the 
number of cores incorporated into a single chip rather than increases in clock rate. The transition 
from massively parallel architectures to multi-core architectures will be as profound and 
challenging as the change from vector architectures to massively parallel computers that 
occurred in the early 1990’s that enabled our Nation and the U.S. Department of Energy to break 
the teraflop barrier.  To effectively bridge this architecture-algorithm gap and use the next 
generation of computers, we must solve a host of architectural challenges in hardware and 
software. 
 
Hardware challenges: 

• Moore’s Law still holds, but clock speed is constrained by power and cooling limits 
• Processors are shifting to multi/many core with attendant hierarchical parallelism 
• Compute nodes with hardware accelerators create the additional complexity of 

heterogeneous architectures 
• Processor cost is increasingly driven by pins and packaging, which means the memory 

wall is growing in proportion to the number of cores on a processor socket 
• Supercomputer architectures must be designed with an understanding of the applications 

they are intended to run 
• A supercomputer architecture that performs well on full scale real applications cannot be 

built from only commodity components.  
Software challenges: 

• Scaling limitations of present algorithms 
• Hierarchical algorithms to deal with bandwidth across the memory hierarchy 
• Software strategies to mitigate high memory latencies 
• More complex multi-physics requires  large memory per node 
• Need for automated fault tolerance, performance analysis, and verification 
• Innovative algorithms for multi-core, heterogeneous nodes 

 
Promoting the integrated co-design of architectures and algorithms represents a fundamental 
shift from simply procuring and operating large scale systems. A key way to lower the risk of 



  

 - 2 - 

adopting novel architectures and technologies is to demonstrate through paper studies, system 
simulation, and hardware prototypes the performance benefit of these technologies. The vision is 
that both the hardware designers and the software designers will compromise based on what the 
other group can do in a given timeframe. The evolution of the architecture and algorithms then 
becomes more aligned, which helps close the performance gap. Deploying small prototype 
systems will facilitate application, algorithm and system software development, prove the 
technology to industry, and lower the risk of adoption of advanced architectures. The metrics for 
success will be measured through changes to product roadmaps, and integration or adoption of 
co-designed technologies into next generation supercomputer systems.  
 
 
 



  

 - 1 - 

IESP Exascale Challenge: 
Resilience and Fault Tolerance 
Al Geist (ORNL) and Franck Cappello (INRIA) 

 
Research in the reliability and robustness of exascale systems for running large simulations is 
critical to the effective use of these systems. New paradigms must be developed for handling 
faults within both the system software and user applications. Hardware support may also be 
investigated to reduce the fault tolerance overhead. Equally important are new approaches for 
integrating detection algorithms in both the hardware and software and new techniques to help 
simulations adapt or be indifferent to faults. One essential element toward these objectives is a 
better understanding of HPC usage scenarios, applications needs, fundamental origin of the 
algorithm sensibility to faults, and failures root causes. 
 
What users want is resilience in the execution of their applications. They want to be able to 
submit a long-running job and have it run to completion in a timely manner. However, because 
of their scale and complexity, today’s supercomputers typically have faults somewhere in the 
system every day and run for only a few days before the number of faults require rebooting. 
While supercomputers can often reconfigure around faults, every fault kills the application 
running on the affected resources. Historically these applications have to be restarted from the 
beginning or from their last checkpoint, but the checkpoint/restart technique is already losing its 
effectiveness on petascale systems and will not be viable on exascale systems because of the rate 
of failures and time required to write out checkpoints. A new fault will occur before the 
application could be restarted, causing the application to get stuck in a state of constantly being 
restarted. 
 
Exascale systems will have millions of processors in them and some projections say they will 
have a billion threads of execution.  The major challenge in resilience is that faults in extreme 
scale systems will be continuous rather than an exceptional event. This requires a major shift 
from today’s software infrastructure. Every layer of the exascale software ecosystem has to be 
able to cope with frequent faults; otherwise applications will not be able to run to completion. 
The system software must be designed to detect and adapt to frequent failure of hardware and 
software components. With the potential that exascale systems will be having constant failures 
somewhere across the system, application software isn’t going to be able to rely on current 
checkpointing techniques to cope with faults. For exascale systems, new paradigms to tolerate 
hardware and software faults will need to be developed and integrated into both existing and new 
applications. 
 
Silent errors are the ìmonster in the closetî for exascale systems. Silent errors are simply faults 
that occur that never get detected. They can be transient as in the case when a bit or logic gate 
gets flipped spontaneously. Transient flipping of bits happens continuously in the memory of the 
largest systems in the world, but ECC memory automatically detects and corrects these faults. 
Silent errors arise when any part of the memory is not ECC or data paths are not protected, or 
when multiple memory faults cancel each other out preventing ECC from detecting the faults. 
Silent errors are not limited to transient affects, for example, an undetected hardware failure is a 
silent error. Often they are only discovered when the application running on this hardware: gives 



  

 - 2 - 

the wrong answer, fails to complete, or completes much more slowly than usual. By then it is too 
late for the application to recover. Silent errors are not limited to hardware faults. There have 
been several cases where software or firmware code has had bugs in it that only manifest in rare 
cases, for example, router-chip software that changes the bits in one message out of every billion. 
The key characteristic of silent errors is that they are undetected; therefore, there is no 
opportunity for an application to adapt or recover from the fault.   If the rate of silent errors is too 
high, then a user must worry that the results of his simulation are correct. This gets back to 
resilience and correctness of their algorithms and application in the face of faults. Designing 
mechanisms to tolerate silent errors depend on a better comprehension of these errors especially 
when they hit the hardware. Very few results are available about the quantitative evaluation of 
their likelihood at large scale during the application executions.  
  
Exascale systems will need to have much more hardware fault detection built into the 
architecture and software fault detection built into the software stack in order to reduce the rate 
of silent errors. Once detected, there is still much work to do, including coordination between 
different layers of the software stack, deciding on a plan for recovery, reconfiguration, 
adaptation, and recovery of the application. 
 
When faults become continuous, there will be a critical need for fault oblivious algorithms, and 
applications that can run-through faults. Very little is known today about how to create such 
applications except for in the simplest cases that are nearly embarrassingly parallel. The 
challenge does not rest just with the application developer, the system software also needs to be 
completely rethought to allow it to cope with a continuous stream of faults and being in a 
constant state reconfiguration of the system. Much research and paradigm shifts must occur.  
 
In addition to progress in application, system and hardware, there is a need for experimental 
environments being able to stress and compare different fault tolerance approaches and 
techniques in a scientific way. Large scale testbeds are essential in the observation and 
understanding of complex phenomena. Software environments capable of reproducing usage and 
fault scenarios are also needed to test and debug new resilience concepts at large scale, before 
putting them in production. 



1 

Consistent Application Performance at Exascale 
William Kramer and David Skinner 

June 21, 2009 
 

This whitepaper sets out to examine the future of application performance consistency on 
exascale parallel computing systems. By performance consistency we mean the regularity of 
wall clock times to complete a fixed amount of application progress. In particular we do not 
address consistency of results from applications. Correctness of results is an important topic 
as well and will be treated separately.  

The design of high performance computers concentrates on increasing computational 
performance for applications. Performance is often measured on an optimally configured, 
dedicated or near dedicated system to show the best case in performance. In real 
environments, resources are seldom dedicated to a single task and systems run multiple tasks 
that may negatively influence each other. It is this more complex production context that is 
arguably more important in setting user expectations of application performance. Managers 
of large HPC resources likewise depend on consistent delivery application performance in 
production for allocation shared use of the resource by multiple science teams.  

 

Large scale systems running in production mode are particularly prone to performance 
fluctuation. By their nature they involve a large number of components servicing a varied 
workload. Resource contention which results in performance degradation can be caused by 
underprovisioned interconnects, topology mismatches, congestion aware messaging, 
assignment of memory, systems software layers, system management event timing (daemons 
running at particular times aka “system jitter”), bugs in configurations, software and 
hardware and system management and configurations. Keeping all of these impediments in 
check so that users observe consistent performance is challenging at the terascale and 
petascale. It is therefore crucial that we consider how larger machines and larger applications 
can be avoid the pitfalls encountered with today’s machines.  

What level of consistency is reasonable to expect for Exascale? Inconsistency of parallel 
applications has implications for how much useful work can be produced by Exascale 
systems. Performance inconsistency is caused by many factors but on well managed HPC 
systems, the simple causes of inconsistency (multiple jobs running within a shared memory 
processor, simple configuration mistakes, etc.) are not the primary causes of inconsistency. 
Factors leading to changes in performance occur over multiple time scales and originate both 
from within systems, within applications and from external sources. As a result, variability in 
runtime performance is strongly tied to the hardware and software architecture. On today’s 
Terascale system, it has been shown that high degrees of consistency (CoV < 1%) are 
regularly achievable for most workloads (Kramer W. T., 2008).  

The performance impact of inconsistency can be quite large, becoming the dominant 
impediment to parallel scaling in some cases.  Consistency, or really the lack of it, will play 
an even larger role for the effectiveness of Exascale architectures unless proactive steps are 
taken to address it. Inconsistency can result from a myriad of causes including the hardware 
architecture, the.   



2 

Understanding the parallel scaling factors leading to performance inconsistency needs to be a 
chief concern of the design and use Exascale systems. Since the majority of testing and 
performance analysis is done on test systems much smaller than production machines, it is 
common to encounter variability induced performance loss at scale that goes unseen on 
smaller machines. 

The variability of performance is as important as availability and mean time between failures 
to users to be able to accomplish their goals. For example, the user’s productivity is impacted 
at least as much when performance varies by a factor of two, as when a system’s availability 
is only ½ of the expected time. In both cases, the amount of work done is only half of what is 
expected of the system. 

Multiple sources show inconsistency in runtimes leads to many negative impacts [ (Figueira 
and Berman 1966), (Worley and Levesque 2004), (Zhang, Sivasubramaniam, Moreira, & 
Franke, 2001)] all of which make a HPC, and future Exascale systems have less value. The 
first impact is less overall work done by the system. Runtime inconsistency is inherently bad 
for performance since variations in runtime proceed upward from some best case runtime, 
i.e., variation is seldom toward better than optimal performance. The longer a task takes, the 
more time it takes to get usable results for analysis. Since some applications have a strict 
order of processing steps (i.e. in climate studies, year 1 has to be simulated before year 2 can 
start), they cannot directly overcome this slowdown via, say, increased parallelism. 
Inconsistency can also introduce wider error margins for non-deterministic applications, 
leading to more difficulty verifying results. 

Inconsistency decreases the efficiency of HPC parallel computers since cycles are lost to 
both job failure and complex job scheduling to mitigate the lack of consistency [ (Srinivasan, 
et al. 2002), (Lee, et al. 2004)]. Jobs fail through incorrect estimation of the batch queue 
requirements. System scheduling becomes less effective because users must be overly 
conservative in requesting batch time. Most scheduling software relies on user-provided run 
estimates, or times assigned by default values, to schedule work effectively. When a cautious 
user over estimates runtime, the job scheduler operates on poor information and results in 
inefficient scheduling selections on systems. These all contribute to the loss of user 
productivity and decreased system impact. 

Consistency is influenced by a number of factors. 

• System configuration and management errors and bugs  (Kramer and Ryan 2003) – at 
Exascale, with orders of magnitude more components, there will be increased likelihood 
that such artifacts are introduced.  

• Hardware architectural features – including the network topology, size of computational 
nodes, hardware collective features (from vectors to distributed collectives), automated 
error recovery and hardware consistency features (e.g. global cocks).  (Skinner and 
Kramer October 6-8, 2005)  At Exascale, the trade-offs of many more cores within an 
SMP/node or a much broader network, will greatly influence the consistency of systems. 

• Software architectural features – including message passing collectives, the OS foot print 
(micro kernels, Light Weight OS, full OS), synchronization primitives, automated error 
recovery and service provisioning.  (Kramer and Ryan May 2003) The software layers, 
being less integrated than HW design and having to be limited by hardware features by 
prove the most challenging area to control inconsistency at the Exascale. 



3 

• Application Implementations – including in-effective use of resources, static workload 
allocation, I/O and application specific check pointing.  At the Exascale, in order to deal 
with the system challenges of resiliency, parallelism and performance, applications will 
have more responsibility for dynamic workload reassignment, adaptive behaviors (AMR) 
and recovery.  This will lead to even more challenges for consistency unless there are 
well planned interactions between the system components and the applications. 

• Resource Management – including scheduling applications that compete for resources, 
prioritization, Quality of Service, and coordination of services.  Often this type of 
consistency challenge is the result of insufficient information for the scheduling agents 
and insufficient methods for applications to express their needs.  At the Exascale, power 
management will increase the need for dynamic interactions competing different needs.  
For example, the Exascale facility may wish to control power costs, or the system may do 
power control automatically, without taking into account the consistency needs of the 
applications.   

The challenge is how to maintain this level of consistency at the Exascale. To date, once 
inconsistency is identified, it is possible, albeit not always easy, to restore consistency by 
making changes to parameters, fixing bugs and adjusting configurations and so on.  It is not 
clear this will be the case at Exascale unless consistency is a holistic design parameter.  Key 
issues for assuring consistency at the Exascale include 

• Architectural and system design criteria that reflects consistency requirements 
• Testing for consistency at scale 
• Well studied solutions and trade-offs for consistency 
• Consistency metrics for Exascale systems 
• Understanding system architectural influences that can be explicitly linked to 

consistency 
• Resource management that is too narrowly defined 
• Ineffective methods to express performance and consistency needs up and down 

the software hierarchy 
In order for Exascale systems to exhibit the consistency that is required to make the 
applications and systems productive, new understanding of the causes and solutions to 
inconsistency are needed, along with new ways of measuring the impact of design, 
implementation and operational choices have on consistency.  In order for applications to 
mitigate the effects that make systems inconsistent, new mechanisms for expressing 
consistency requirement and applications reactions are also required. 
 
Figueira, S. M., & Berman, F. (1966). Modeling the Effects of Contention on the Performance of 

Heterogeneous Applications. Proceedings of the High Performance Distributed Computing (HPDC '96), 
(p. 392). 

Kramer, W. T. (2008). PERCU: A Holistic Method for Evaluating High Performance Computing Systems. 
University of California at Berkeley, Department of Electrical Engineering and Computer Science. 
Berkeley, CA: University of California. 

Kramer, W., & Ryan, C. (May 2003). Performance Variability of Highly Parallel Architectures. Berkeley, CA: 
Lawrence Berkeley National Laboratory. 

Kramer, W., & Ryan, C. (2003). Performance Variability on Highly Parallel Architectures. International 
Conference on Computational Science 2003. Melbourne Australia and St. Petersburg Russia. 

Lee, C. B., Schwartzman, Y., Hardy, J., & Snavely, A. (2004). Are user runtime estimates inherently 
inaccurate? 10th Workshop on Job Scheduling Strategies for Parallel Processing. New York, NY. 



4 

Skinner, D., & Kramer, W. (October 6-8, 2005). Understanding the Causes of Performance Variability in HPC 
Workloads. 2005 IEEE International Symposium on Workload Characterization (IISWC-2005). Austin, 
TX. 

Srinivasan, S., Kettimuthu, R., Subrarnani, V., & Sadayappan, P. (2002). Characterization of Backfilling 
Strategies for Parallel Job Scheduling. nternational Conference on Parallel Processing Workshops 
(ICPPW'02), (p. 514). 

Ujfalussy, B., Wang, X., Zhang, X., Nicholson, D. M., Shelton, W. A., Stocks, G. M., et al. (November, 1998). 
High performance first principles method for complex magnetic properties. Proceedings of the ACM/IEEE 
SC98 Conference. Orlando, FL: IEEE Computer Society, Los Alamitos, CA 90720-1264. 

Worley, P., & Levesque, J. (2004). The Performance Evolution of the Parallel Ocean Program on the Cray X1. 
Proceedings of the 46th Cray User Group Conference.  

Zhang, Y., Sivasubramaniam, A., Moreira, J., & Franke, H. (2001). Impact of Workload and System Parameters 
on Next Generation Cluster Scheduling Mechanisms. IEEE Transactions on Parallel and Distributed 
Systems , 12 (9), 967-985. 

 



1 

An Exascale Approach to Software and Hardware Design 
William Kramer and David Skinner 

June 21, 2009 
 

The demands of Exascale require a complete rethinking of the software and hardware 
development process that has become the ad hoc standard in HPC.  For the past 10-15 years, 
horizontal layers software and hardware design and development have been the de facto 
standard of creating HPC software, in part due to the influences of funding methods, research 
incentives, software methods, the Open Source movement and commercial outsourcing and 
specialization.  This Horizontal Design approach leads to the development of discrete 
components in the SW stack and independent hardware components – all developed with 
different methods, differing requirements and quality.  Unlike past generations of system 
software (from the earliest OSs through to the original community source movement with 
Unix)  and hardware, where some degree of top to bottom Vertical Design existed, the last 
10-15 years have been dominated by plug and play componentization that are focused on 
horizontal functionality and portability.  
 
The horizontal design approach has notable successes like the Linux kernel, MPI and a 
variety of job schedulers.  It also has many challenges that are inhibiting progress and 
making even Petascale systems challenging to fully exploit.  As many who field Terascale 
clusters know, every cluster is now unique with different horizontal components (often in 
name, at least in version).  Currently at the Tera and Petascale level there is only one 
company that produces a system software stack which is vertically designed from top to 
bottom and one other company that is providing a scaled, vertically tested stack that has 
specifically designed components added to the horizontal components.  
 
To reach Petascale, the HPC community has mitigated many of the issues in the horizontal 
design method such as relying on vendors to do vertical testing and integration, standing up 
extra test bed resources for integration testing and error correction, taking excessive time 
from the few large scale production systems to do integration, testing, diagnosis and 
correction, or living with inefficient and error prone systems. The current horizontal design 
method presents a number of insurmountable challenges to reach Exascale.  Yet economics 
and cost effectiveness will not let us return to the days of completely proprietary vertical 
methods. Nor can one organization alone, be it government or private, afford to pioneer 
Exascale and make it a success. 
 
There is some hope!  What is needed is to change the horizontal approach of developing 
essentially isolated SW components that have narrow view of their function and role in the 
system. Instead, the community must organize the hardware and software development 
activities with component cross cutting principles.  The cross cutting principles define the 
requirements, function, interfaces, integrations and performance needs for each horizontal 
component. Instead of thinking of integration as the final step in defining and developing and 
Exascale system, it will be the first step.  
 
The cross cutting requirements for the vertical design approach were identified to first order 
at the first IESP workshop.  They include: Resilience (reliability & fault tolerance); 



2 

Performance; Programmability; Computational model; I/O; Consistency and verification; 
Resource Management; and Power Management/Total Cost of Ownership.   
 
There are limited proofs of existence that has the hint the vertical design approach yields an 
effective and long lived, yet flexible solution to this conundrum.  Some examples include  

• The DOE SciDAC program.  SciDAC introduced the concept of software application 
development teams and software infrastructure teams that are linked in an iterative 
approach to developing applications that relay on increasing more effective software 
infrastructure 

• Scientific “framework” development for large scale experiments and long lasting 
infrastructure.  High Energy Physics regularly uses a formal process of vertical 
architecture definition, software development and testing often incorporating 
thousands of funded and unfunded contributors.  The processes here are notable for 
progressive demonstrations of integrated progress milestones (e.g. Data Challenges) 
and timely delivery for equipment that is being co-developed.  

• The methods used to produce community based SW such as the High Performance 
Storage System which follows formal methods and shares development across 
multiple organizations. 

• Commercial OS development methods such as those that exist in IBM and Cray. 
• Formal testing methods that are used in verification and validation of network 

protocol change proposals. 
 
 
One factor motivating a renewed emphasis on vertical integration is the dominance of 
software failures as the causative factors in large scale system availability. Failure at scale of 
system software such as filesystems, batch schedulers, and even authentication mechanisms 
such as LDAP is a major problem for HPC resource managers. In many cases vendors 
leverage software which works well at smaller scales but place too much reliance on the 
ability of the software to integrate seamlessly at all levels. Some studies indicate that on large 
systems, across vendors and architectures, SW accounts for the majority of sytem wide 
failures on HPC systems. 
 
User experience can also suffer when insufficient attention is paid to end to end software 
functionality. The usability of tools such as debuggers and performance profilers can 
diminish significantly when they are used beyond the scale that software vendors are capable 
of performing testing. Improving usability and thus the value of the HPC resource to science 
can be improved by a more goal oriented vertical approach, one that builds in expectations of 
usability at scale.  
 
The vertical approach is not at odds with previous approaches to HPC software development. 
A tightly coupled vertical design can still produce software which is of lateral use, however 
attention to vertical integration diminishes risks of software failure encountered when relying 
upon “off the shelf” generic software. Vertical integration does not replace these software 
components but improves them for HPC.  
 



3 

In summary, Exascale will not be achievable without a tightly coupled vertical design, design 
and integration process.  The methods that got the HPC to early Petascale will not stretch to 
Exascale.  The vertical approach does not diminish community contributions, flexibility or 
openness, but rather makes the investments people and organizations make more likely to 
have impact.  
 


	Meeting 1
	Presentations
	Improving HPC Software: Welcome
	e-Infrastructure in FP7: HPC related aspects
	International Exascale Software Program
	Development of an Over Petascale Computer in Japan
	Improving HPC Software: Overview
	Thou Shalt Specialize or Commoditize? The Japanese Situation Towards Peta and Exascale
	Technology and Architectures for Future Large-Scale Computing Systems
	Computational Science and HPC Software-Development in Europe
	Software Barriers for HPC
	Science Drivers, Current HPC Software Development, and Platform Deployment Plans for the USA

	Whitepapers
	Musings on the Path Forward to Exascale
	BSC Vision Towards Exascale
	Software Challenges of Extreme Scale Computing
	Software and Exascale Computing
	Application Analysis and Porting in the PRACE Project 
	The Application Perspective - Seeking Productivity and Performance
	EDF White Paper
	The Biggest Need: A New Model of Computation
	NSF IESP Whitepaper
	A Proposal for a Capability Centers Consortium �
	Introduction
	Potential Activities
	Information Sharing
	Information Aggregation
	Collaborations
	Standardization

	Issues
	Funding
	Organization
	Technical Issues

	Inventory

	Slouching Towards Exascale
	A Collaboration and Commercialization Model for Exascale Software Research
	The Case for A Hierarchal System Model for Linux Clusters 
	PDE-based applications and solvers at extreme scale
	Developing a high performance computing/numericalanalysis roadmap


	Meeting 2
	Performance at Exascale
	Resource Management
	Programmability Issues
	Models of Computation - Enabling Exascale
	Major Computer Science Challenges at Exascale
	Towards Exascale File I/O
	Co-design of Architecture and Algorithms
	Resilience and Fault Tolerance
	Consistent Application Performance at Exascale
	An Exascale Approach to Software and Hardware Design




