PRESENTATIONS AND
WHITEPAPERS

MEETING 1

APRIL 7-8, 2009 SANTA FE, NEW MEXICO

INTERNATIONAL MEETING 2

PORIYAREIRROIECT JUNE 28-29, 2009 PARIS, FRANCE

®

MEETING 1

PRESENTATIONS

APRIL 7-8, 2009 SANTA FE, NEW MEXICO

Improving HPC Software: Welcome

Pete Beckman (Argonne National
Laboratory/University of Chicago) and Jack
Dongarra (University of Tennessee/Oak Ridge
National Laboratory)

e-Infrastructure in FP7: HPC related aspects
Catherine Riviére, GENCI, France

Development of an Over Petascale Computer in
Japan

Satoshi Matsuoka, GSIC Center, Tokyo Institute of
Technology/National Institute of Informatics

International Exascale Software Program
Abani Patra, NSF Office of Cyberinfrastructure

Improving HPC Software: Overview

Pete Beckman (Argonne National
Laboratory/University of Chicago) and Jack
Dongarra (University of Tennessee/Oak Ridge
National Laboratory)

Thou Shalt Specialize or Commoditize? The
Japanese Situation Towards Peta and Exascale
Satoshi Matsuoka, GSIC Center, Tokyo Institute of
Technology/National Institute of Informatics

Technology and Architectures for Future
Large-Scale Computing Systems

Rick Stevens, Argonne National Laboratory and
University of Chicago.

Computational Science and HPC
Software-Development in Europe

Thomas Lippert and Bernd
Mohr,Forschungszentrum Jilich, JSC and Gauss
Centre for Supercomputing e.V.

Slides from the panel:Software Barriers to HPC,
Today and Tomorrow

Panel participants:Al Gara, Jean-Yves Berthou,
Mitsuhisa Sato, Peggy Williams, Vivek Sarkar, Ann
Trefethen

Science Drivers, Current HPC Software
Development, and Platform Deployment Plans
for the USA Horst Simon,Lawrence Berkeley
National Laboratory and UC Berkeley

®

MEETING 1

WHITEPAPERS

APRIL 7-8, 2009 SANTA FE, NEW MEXICO

Musings on the Path Toward Exascale
Robert Lucas - ISI/USC

BSC Vision Towards Exascale
Mateo Valero, BSC

Software Challenges of Extreme Scale
Computing
Michael Heroux - Sandia National Laboratory

Software and Exascale Computing
Bill Camp - Intel Corporation

Application Analysis and Porting in the PRACE
Project

Peter Michielse - Netherlands National Computing
Facilities Foundation (NCF)

The Application Perspective - Seeking
Productivity and Performance
David Barkai - Intel Corporation

EDF white paper
J.Y. Berthou and J.F. Hamelin - EDF R&D

The Biggest Need: A New Model of Computation

Thomas Sterling - Louisiana State University

NSF IESP Whitepaper

Abani Patra, Rob Pennington, Ed Seidel - Office of

Cyberinfrastructure, National Science Foundation

A Proposal for a Capability Centers Consortium

Bill Gropp, Mark Snir - NCSA and the University of

[llinois at Urbana-Champaign

Slouching Towards Exascale
Rusty Lusk, Argonne National Laboratory

A Collaboration and Commercialization Model
for Exascale Software Research

Mark Seager and Brent Gorda, Lawrence
Livermore National Laboratory

The Case for A Hierarchal System Model for
Linux Clusters

Mark Seager and Brent Gorda, Lawrence
Livermore National Laboratory

PDE-based applications and solvers at extreme
scale

David Keyes, Columbia University & SciDAC TOPS
project

Developing a high performance
computing/numericalanalysis roadmap

Ann Trefethen, Nick Higham, lan Duff, and Peter
Coveney

18

MEETING 2

@

Performance at Exascale

Bernd Mohr (Jilich Supercomputing Centre) and
Matthias S. Mueller (Wolfgang E. Nagel Center for
Information Services and HPC)

Resource Management
Barney McCabe (ORNL) and Hugo Falter (ParTec)

Programmability Issues

Vivek Sarkar (Rice U.), Jesus Labarta (UPC),
Mitsuhisa Sato (U. of Tsukuba), Barbara Chapman
(U. of Houston)

Models of Computation — Enabling Exascale
Thomas Sterling, Louisiana State University

Major Computer Science Challenges at
Exascale
Al Geist (ORNL) and Robert Lucas (ISI)

Towards Exascale File 1/0
Yutaka Ishikawa, University of Tokyo

Co-design of Architectures and Algorithms
Al Geist (ORNL) and Sudip Dosanjh (SNL)

IESP Exascale Challenge: Resilience and Fault
Tolerance
Al Geist (ORNL) and Franck Cappello (INRIA)

JUNE 28-29, 2009 PARIS, FRANCE

PRESENTATIONS
AND WHITEPAPERS

Consistent Application Performance at Exascale
William Kramer and David Skinner

An Exascale Approach to Software and
Hardware Design
William Kramer and David Skinner

Improving
HPC
Software

IESP the Need

The largest scale systems are becoming more
complex, with designs supported by large
consortium

The software community has responded slowly

Significant architectural changes arriving

Software must dramatically change
Our ad hoc community coordinates poorly, both with
other software components and with the vendors

Computational science could achieve more with
improved development and coordination

Where We Are Today:

We are not prepared for the changes coming

Hardware features are uncoordinated with software
development

(power mgmt, multicore tools, math libraries, advanced memory models, etc)

Only basic acceptance test software is delivered with platform
UPC, HPCToolkit, Optimized libraries, PAPI, can be YEARS late

Vendors often “snapshot” key Open Source components and
then deliver a stale code branch

Counterexample: A model that works — MPICH for BG /P
Community codes unprepared for sea change in architectures

Coordination via SOW /contract is poor and only involves 2
parties

No global evaluation of key missing components

The IESP Workshops:

Goal: Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment.

Build a plan for how the international community can join
together to improve software available for high-end systems
over the next 2 to 10 years.

The DOE (SC, NNSA), NSF, and EU have committed
their support for the workshops.

This is the first workshop in the series of three.

International Community Effort

We believe this needs to be international
collaboration for various reasons including:

The scale of investment
The need for international input on requirements

Europeans, Asians, and others are working on their own
software that should be part of a larger vision for HPC.

The process must be totally open

Executive Committee:
Co-Chair: Jack Dongarra, Univ, of Tennessee / ORNL, US
Co-Chair: Pete Beckman, Argonne National Laboratory, US
Franck Cappello, INRIA, FR
Thomas Lippert, Julich Supercomputing Centre, DE
Satoshi Matsuoka, Tokyo Institute of Technology, JP
Paul Messina, Argonne National Laboratory, US

A Plan Could Include:

Work with vendors to create the HPC equivalent to the ITRS
(Int’l Tech Roadmap for Semiconductors)

Get community working on software before machine becomes available

Community proposed unified roadmap for exascale software

|dentify missing components for future architectures and a plan
to address them

Develop models for working more closely with vendors

(support, acceptance tests, target features)
|dentify key application areas to drive development
Community software development models

Funding and organizational models

Achievable Outcomes

Improve the capability of computational science

Build and strengthen international collaborations and
leadership; deliver more capable, productive HPC systems

Build and improve R&D program developing new
programming models and tools addressing extreme scale

Open source HPC development guided by roadmap with
better coordination and fewer missing components

Joint programs in education and training for the next
generation of computational scientists.

Vendor engagement and coordination for more capable
software supporting exascale science

Workshops and Report

3 workshops over the next year
1: Santa Fe, April 7-8
2: Paris France, June 28-29
3: Japan in the early Fall

Broad engagement by the community
Initial reports in summer 2009

Final report for first year at SC09
Planning for IMMEDIATE payoff

Could begin ramping up next year

www.exascale.org
Home Meetings Documents Community Help

Main Page]

Page Discussion View source History

The mission of the International Exascale Software WorkshoplInformation

Project (IESP) is to lay the foundation for exascale
computing by mobilizing the global open source software
community to combine and coordinate their collective efforts
far more efficiently and effectively than ever before. The
IESP will hold a series of three workshops to organize and
structure this community wide effort. The first,
invitation-only workshop will occur on April 7th and 8th in
Sante Fe, New Mexico, US, with people arriving in time for a reception on April 6th.
Attendees will include members from industry, academia, and government, with
expertise in a range of critical areas.

Workshop Location
Workshop Agenda (draft)
Executive Committee
Organizing Committee
Background Material

. J

Goals for the first meeting include the following:

» Assess the short-term, medium-term and long-term needs of applications for
peta/exascale systems

» Explore how laboratories, universities, and vendors can work together on
coordinated HPC software

» Understand existing R&D plans addressing new programming models and tools
addressing extreme scale, multicore, heterogeneity and performance
» Start development of a roadmap for software on extreme-scale systems

Attendance at the workshop is by invitation only. Additional details on registration
will be coming soon.

IESP

Plan to build an international partnership that joins
together industry, the HPC community, and production
HPC facilities in a collective effort to design,
coordinate, and integrate software for leadership-
class machines.

Build an international plan for developing the next
generation open source software for scientific high-
performance computing

Engagement in the Following
Activities

Build international collaborations in the areas of high-performance
computing software and applications.

Development of open source systems software, /O, data
management, visualization, and libraries of all forms targeting
tera/peta/exascale computing platforms,

R&D of new programming models and tools addressing extreme
scale, multicore, heterogeneity and performance,

Cooperation in large-scale systems deployments for attacking
global challenges,

Joint programs in education and training for the next generation of
computational scientists.

Vendor engagement to coordinate on how to deal with anticipated
scale.

Goals for this the workshop include

Assess the short-term, medium-term and long-term
needs of applications for peta/exascale systems

Explore how laboratories, universities, and vendors
can work together on coordinated HPC software

Understand existing R&D plans addressing new
programming models and tools addressing extreme
scale, multicore, heterogeneity and performance

Start development of a roadmap for software on
extreme-scale systems

Topics

Purpose of the workshop series, desired outcome (international
Research, Development, & Deployment efforts for open source
system software and tools for exascale computers)

|dentify key technical areas on which to focus, e.g., file
systems, message-passing and multi-threading sw, fundamental
numerical sw, system management tools, debuggers, ...

Begin to identify which groups would like to tackle what areas
and which funding sources might support the work

Begin to develop the open source model, cooperation and
collaboration modes, project organization

Goals for next two workshops, i.e., focus of their agendas

Plan

Day 1
Overviews of architecture trends
Current status of HPC systems and SW models
Science Drivers in US, EU, and Japan

Panel on SW Barriers for HPC, today and tomorrow
Three evolutionary SW items
Three revolutionary SW items

What are the community interaction models to address both
evolutionary and revolutionary themes?

Plan Day 2

Breakout 1: Technical Roadmap Discussion: What is
feasible? What are the top challenges?

Breakout 2: Collaboration model and funding: How
can we work together?

Goals and agenda for next workshop

Follow on Meetings

Refine the ideas that emerged from the earlier
meetings.

Incorporate new ideas into the plan.
Expose the IESP to a wider group of people.

We would like to get buy in from as many people
as possible. Some may not be able to attend the
earlier meetings.

/Y
Ol House
Restaurant

.=

Lobby

Eldorado Court

15 o -

Lobby Lounge

Kitchen

:

Concourse

e

Pavilion

Anasazi Ballroom #

South North |
[rodveme] [
-~ -
Concourse
—
: Zia
A B c

e-Infrastructure in FP7:
HPC related aspects

Main contents:

e-Infrastructure: the mission
Framework Programme 7

Main flagship projects

— GEANT

- EGEE

- DEISA & PRACE

— ... and scientific data repositories

FP7 ‘Capacities’: RI Call 7 topics

iNnfrastructure

e-Infrastructure: the mission!

e-Infrastructure refers to the
creation of a new research
environment in which all European
researchers have shared access to
unique or distributed scientific
facilities (including data,
instruments, computing and
communications), regardless of thelrg
type and location in the world.

Framework Programme 7: 2007 to 2013

Euratom Cooperation

JRC
1751 M€ 4062M€ 32413 M€

Capacities
4097 M€

People

4750 M€ Ideas
7510 M€

Research Infrastructures
42% - 1715 M€

Dev. of policies
INCO
Science
in Society

Regions of Knowledge

Shilps Research Potential

Bl Information Society and Media

c
2
w
2
£
£
G
o
<
©
@
-
o
g
5
w
.x

~55B€

iNnfrastructure

GEANT: connecting Europe

= Pan-European coverage
(40+ countries /3900 universities / 30+ million students)

= Hybrid architecture:

= connectivity at 10 Gb/s
(aggregated traffic) =k

I

= dark fiber wavelengths
(demanding communities)

2
) S
@
=
\; o
- \ o
: o
— ~ N >
I - 2 2
) 'Y ™ "~ £ \ 23
e LU [—] - Yy =95
GE'IA(NTZ um-mnm-mg“ ~ o il Em
ﬂ. §c
i AMT2 1 pmrated by DA o Bebalt o Garmpe's MBS 7, \é Ag
c©
o
i
£2
o <
* X
"

iNnfrastructure

Global dimension of GEANT

)
GEXANTZ At the Heart of Global Research Networking

[GEANT2 Coverage

www.geant2.net

GEANT2 is operated by DANTE on behalf of Europe’s
research and education networks

;w'\
DANTE

www.dante.net European Commission

=
el
Q
=
©
c
o
s
o
32
a’s
ES
Ec
o
o2
€5
o
gE
2e
o<
* X %
.
be

iNnfrastructure

EGEE: Tackling Global Challenges

ccee

Enabling Grids ' » e
for E-sclenct - Astrophnys*icsnan,d,_Qastroparticle physics
7~ Biomedical and bio-informatics
Computational chemistry
Computational sciences
- High Energy Physics
Disaster recovery
‘Digital Libraries
Earth sciences

Geophysics

>300 sites N\ Finance
>100 000 CPUs, 25 PByte of storage Fusion
~300 000 jobs successfully completed per day

200 Virtual Organisations

>16000 registered users, representing 1000s of scientists

B Information Society and Media

c
2
v
2
£
£
G
o
€
s
@
a
o
g
5
o
.x

Scientific Data Infrastructure

ciety and Media

tion So

GEANT network infrastructure

c
2
w
2
£
£
G
o
<
©
@
-
o
2
5
o
*

WL Informa
*

iNnfrastructure

DEISA: ‘virtual’ HPC services

W Distributed
w European
Infrastructure for
» Supercomputing

* * Applications

iNnfrastructure

12 sites in 7 countries connected
at 10 Gb/s

Over 22,000 CPUs with an
aggregated peak performance of
close to 1 Peta flops

Running larger parallel
applications in individual sites

Enabling workflow applications

with grid technologies
(UNICORE)

Providing a global data
management service

2

S

o

=

o

c

o

52
S

a2

v

o

c

Extreme Computing Initiative

PRACE: the preparatory phase

FINLAND

» SWEDEN
UNITED
% KINGDOM

IRELAND NETHERLANDS, & OWAND

A GERMANY

FRANCE AUSTRIA
SWITZERLAND
SERBIA

. \ —— TURKEY
SRAINE GREECE
\ CYPRUS

N

18 European countries signed the PRACE MoU !!

Bl Information Society and Media

@l European Commission

infrastructure
Image courtesy of the PRACE partnership

Draft WP2010 topics:
RI Call 7: Open 30.07.09; close 24.19

INFRA-2010-1.2.1: Distributed computing
infrastructure (DCI)

INFRA-2010-1.2.2: Simulation software and
services

INFRA-2010-1.2.3: Virtual Research Communities

INFRA-2010-2.3.1: First implementation phase of
the European HPC service

INFRA-2010-3.3: Coordination actions,
conferences and studies supporting policy
development, incl. international cooperation

TOTAL Indicative budget: 115 Million Euro

further information

www.cordis.europa.eu/fp7/ict/e-infrastructure/

e-Infrastructure:

Building Global Virtual
Research Communities

ciety and Media

Konstantinos.Glinos@ec.europa.eu

tion So

c
2
w
2
£
£
G
o
<
©
@
-
o
g
5
w
.x

N Informa

iNnfrastructure

2

Contents

> simulations for predictions (example)

» science and technology policy in Japan

> project of the next generation supercomputer
> grand challenges in applications

» collaborations with private sectors

» concluding remarks

RIMEN

p-Contribution to the IPCC by the Earth Simulator

Global warming projections

<under the MEXT* research project>

Earth
Simulator =

Some of major outcomes

€ Highest resolution coupled model

— “Very likely” Attribution (stronger
confirmation)

€ Super-high resolution Global Atmospheric

model — Projection of increased strength
of Typhoons & Hurricanes (new finding)

@ Earth system model

— Carbon cycle feedback causing
additional warming (new finding)

IPCC

Fourth Assessment Report (2007)

Synthesis Rep.

Working Group III
(Mitigation)

T

(Physical Science Basis)

Sound
Scientific
Basis for:

Bali

Roadmap
(Climate
Change

Conference
in 2007)

(* IAV = Impact, Adaptation and Vulnerability)

Outline of the 3rd S&T Basic Plan

@ 1. Fundamental Concept
2 Strategic Priority Setting in S&T

eRecent situation re\ ePromotion o
eBasic stance toward the ePrioritization of R

eFundamental ideas and policy goz Primary prioritized area

eTotal gov’tal R&D investment: Environmental sciences, Nan

\25 trillion ($200 billion) Secondary prioritized areas; Energy,

MONODZUKURI tech., Infrastructure, Fro

3. S&T system reforms (outer space & oceans)
ePromotion strategy for the prioritized areas

eFostering S&

providing opportu _ ,
eProgress in science and le 4. Public Confidence and Engagement

innovation R iol
eUpgrading infrastructures for S&T N aﬁnggcsilal (ias:ues

promotion _
e Strategic commitment on international oRelnf_orcement of accounta

ST achy 2 - relations of S&T activities

ePromotion of public understanding of

eFacilitation of public engagement with S&T-
related issues

5. Missions of the CSTP

eMore efficient and effective
eBreak of institutional or operational bottle necks
eFollow-up of the Plan and promotion of progress in S&T

po Key Technologies of National Importance

RIKEN

tentative image
-—

A a(-_ﬂﬂ

il

PTTD =

f\ﬁ v\ | i it L Y —- T
.“ﬁ\\\l s e ! e

f— s 2 ﬁ =

Next Gen'erat-ithﬁl
Supercomputer

. projects RIKEN is conducting

p Six Goals of the Third Science and Technology
o
i Basic Plan (FY2006-FY2010)

<Goal 3 >
<Goal 1> .
Discoverv & Creation of Sustainable Development < Goal 5>
Y - Consistent with Economy and Good Health over Lifetime
Knowledge toward the future .
Environment -
. e :
Milky Way formati , Multi-level unified simulation
w Realization of tailor %
process process " maid medical care organ Catheter
" ; it Clrculatory Skeleton,, ;%\
‘ . !EEL@E!EF~““"~'J i
tﬁz‘cell s =

by RIKEN by RIKEN Cw

Aurora outbreak process by JAMSTEC Protein £

o Drug design
Gene therap: ..
FLE
dene |58 B
2 candidate medicine Target protein Reactivity
by JAMSTEGC .

by Univ. of Tokyo and RIKEN

! Nan.o_te_chn.o_l_qgl Car development

{
f
‘ f by JAEA

TSI NSTERE Tsunami damage prediction
w by JAXA : . - :
by Tohok
by JAEA by INS by NISSAN Uﬁiv.o oku
<Goal 2 >
Breakthroughs in <Goal4> < Goal 6>
us Innovator Japan Safe and secure Nation
. p
Advanced Science and

Technology - Strength in Economy & Industry -

Expansion of Highest Computer for
Global Usaqge

?

4 Sustained Performance (FLOPS)

Government
Investment
100P — National — 100P
Leadership
(The Next Generatio
The Next Generation
Supercomputer Project
Next—next
— Generation |
s National Dy 1P
Leadership
(Earth Sjmulator)
Earth Simulator Project
National ‘]
Leadership
10T _
T [CP—PACSV 10T
NWT
100G — dpoordLory Persona| | 100G
P | Personal Entertainment
ersonal Entertai t
Entertainment nrertainmen PC, Home Server
PC, Home Server .
[PC, Home Server Workstation,
Workstation, Worklstatlo?,. Gpme Machine, Digital
N g Machine, Digital | |

6 2015 2020 2025

CACST: Center for Advanced Computational
Science and Technologov (tentative name)

¢ Computer science and Computational science

¢ Both researchers will gather and expect to develop new research
fields and methodologies

¢ Currently, we are designing the center and operation policy of
the supercomputer

+ The users will be chosen by a new committeEln
_RIKEN to pick up valuable subjects

—————
) SO
{ —_——
e 3
—
e

About 5km from Sannomiya ext-Generation
12 min. by Portliner

P
To Akashi / Awaji-Island

Kobe Airport

P, The Locatlon of the Next Generation
e ."“Supercomputer Center

A

o < -3 % \\L\x\\"\\\ }.R

-."-s- ﬁ...;& \u—-—. et

—ett? i

Kobe Airport

Photo: June, 2006

WP'N Relations with Other Supercomputer Centers

N
\
o I(lt-nl Inst. of Tech.)

ﬂokk-doUng)
Virtual research
environment for
- arious fields
i Uniy, As of Feb. 2
Kumamoto Univ. 35 ‘ €D superSINET 10Gbps P SuperSINET node
x,‘.:;i... Univ.) ‘ SINET 1000Mbps—1Gbps a SINET node
— .,‘.".‘h.miel ~

Proposed by National Institute of Informatics (NII)
(Note)V O :Virtual Organization 9

WP.N Development & Application of Next-Generation
Supercomputer Project by MEXT

FY2006: 3,547Million yen / FY2007: 7,736Million yen
FY2006~FY2012 (total budget expected) about 110billion yen

1. Purpose of policy
Development and implementation of the world’'s most advanced and high-performance Next-
Generation Supercomputer, and to develop and disseminate its usage technologies, as one of
Japan's "Key Technologies of National Importance"” (National Infrastructure).

2. Expected effects
As an important tool for simulation, supercomputing needs to be developed further. This project
aims to bring the Next-Generation Supercomputer to completion in 2012.
In order to maintain world-leading position in variety of areas, the following academic-industrial
collaboration activities will be conducted under the initiative of MEXT.
(1) Development and implementation of the world's most advanced high-performance Next-
Generation supercomputer
(2) Development and dissemination of software that makes optimum use of the supercomputer
(3) Establishment of the world's most advanced and highest standard supercomputing Center of
Excellence, which includes the Next-Generation Supercomputer

3. Project Framework

* Integrated development of computer and software
» Establishment of nationwide academic-industrial collaborative structure, with RIKEN as the project

headquarters
* A new law has been introduced for the framework of usage and administration

@

azN (Goals of the Next Generation Supercomputer Project

1. Development and installation of the most advanced

high performance supercomputer system

2. Development and wide use of application software to

utilize the supercomputer to the maximum extent

3. Provision of flexible computing environment by sharing
the next generation supercomputer through connection
with other supercomputers located at universities and

research institutes

4. Establishment of “Advanced Computational Science

and Technology Center (tentative name)”

2

RIMEN

O)

Advisory
Board

Project Organizations

MEXT: Policy & Funding

Office for Supercomputer
Development Planning

Project
Committee

R&D Scheme

|

~

RIKEN: Project HQ \ i

NIl: Grid Middleware
and Infrastructure

-/

Supercomputer R&D Center ||

IMS: Nano Science
Simulation

(Ryoji Noyori)
\Project Leader: Tadashi Watanabe) \

j> Next-Generation

Riken Wako Institute:
Life Science Simulation)

4 N

Industry Users

Industrial Committee
for Promotion

of Supercomputing

\J

~/

Evaluation Scheme

Evaluation
Committee

\[Universities, Laboratories,

Industries]/

(Note) NiI: National Institute of Informatics, IMS: Institute for Molecular Science

RIKEN and Advanced Center for Computing and
RIKEH Communication

+ RIKEN

+ comprehensive research in science and e Wakute
technology (excluding only humanities

%),

ATerahertz-wave

Research Program

and social sciences)

+ physics, chemistry, medical science,
biology, and engineering extending from

basic research to practical application 4
+ 7 campus in Japan, 5 outside Japan ?

+ about 3000 researchers

+ an Independent Administrative
Institution under the Ministry of

e A Bio-Mimetic
ARIKEN Kobe Institute Control Research Center

Education, Culture, Sports, Science &

Technology (MEXT) from 2003 ﬂ
+ Advance Center for Computing & W—_.=
Communication 4 B

+ Providing RIKEN researchers with

ARIKEN China Office

{China)

computer resources and network
services

+ Operating RSCC(RIKEN Super

ARIKEN-Singapore

s

ARIKEN BNL

Combined C| USter) Representative Office ARIKEN-MITNeuroscience Research Center

{Singapore) Research Center (U.S.A)

(U.SA)

Wﬂ Policy and Outline of
A Next Generation Supercomputer Project

Purpose of policy:
development, installation and application of an advanced
high performance supercomputer system, as one of

Japan’s “Key Technologies of National Importance”

Total Budget:
about 115 billion Yen (0.7 billion Euros)

100% national funds
Period of Project:

FY2006 — FY2012

p Applications Selected for Basic Designs
e of Hardware

21 application codes have been selected for
basic designs of hardware:

6 from nano sciences

6 from life sciences
3 from environment and disaster protection

4 from engineering

2 from physics and astronomy

p. The Next-Generation Supercomputer project

RIKEN

The Next-Generation Supercomputer project started in 2006 which is being
carried out by RIKEN, with partners in industry, universities, and the government,
under an initiative by MEXT (the Ministry of Education, Culture, Sports, Science
and Technology).

Due to be ready in 2012, the peta-scale computing by the new supercomputer
will ensure that Japan continues to lead the world in science and technology,
academic research, industry, and medicine.

[System configuration]

The Next-Generation Supercomputer will be
hybrid general-purpose supercomputer that
provides the optimum computing
environment for a wide range of

SIRIALEEs will be performed in processing
Processing unit consist_] units that are suitable for the particular

Front-end unit

Vector unit

ing of interconnected simulation.

vector processos -Parallel processing in a hybrid configuration of
scalar and vector units will make larger and

Local file Local file more complex simulations possible.
system -red ﬁ|- system P P

P, Schedule of Project

Vs

2006 2007 2008 2009 2010 2011 2012
Operation& Completion A
Processing unit Conceptual . : Prototype and Production, installation,
g design Detailed design evaluation and adjustment
% Front-end unit Basic _ '
e (total system design Detailed design Production and evaluation Tuning and improvement
3 software) : . : ;
Shared file Basic _ _
system design Detailed design Production, installation, and adjustment
Next-Generation
IN”atﬁggiitgﬁce Development, production, and evaluation Verification
Simulation
Next-Generation
integrated Development, production, and evaluation Verification
Computer . :
- build?ng Design Construction
S
=
Q Research . :
2 building Design Construction
Operation Decisions on policies and systems Preparation Operation
.

ﬁ Major Applications of Next Generation Supercomputer

RIKEN
CEngineering

Disaster Prevenii_g

Nanotechnology
eMaterial design
o (xygen and catalylic response

o Tsunami damage prediction
oClouds analysis

7%

<

Global Environment

eRocket engine design
ePlane development

-
Nuclear Power

eLaser reaction analysis o\ilky Way formation process h
eNuclear reactor analysis e Aurora outbreak process
| Targeted as grand

, - o Planet formation process
I challenges
iy | 4 - @

D

Astrophysics

@

RK=N Task Forces to Develop the Grand Challenges
Application Codes

Nano Science

Conducting Institute: Institute for Molecular Science (IMS)
Budget for 2008 Fiscal Year: 5.6 Million US Dollars

Contributing Institutes and Universities: 6

Life Science

Conducting Institute: RIKEN
Budget for 2008 Fiscal Year: 14.4 Million US Dollars

Contributing Institutes and Universities: 14

@

Basic Concept for Simulations in Nano-Science

RIKEN

Next Generation Energy

Next Generation Nano Informational Function and Materials
7 | Nonlinear Optic Device

Solar Energy Fixation

Medicines, New Drugs, and DDS(Drug Delivery Systems) X

Nano Quantum Device

Spinelectronics

Fuel Alcohol . .
Fuel Cell | Next Generation Nano Biomolecules
Electric Energy Storage |ipmas Virus
: Nafion Anticancer Drugs
. ,._7@ Protein Control
w Water Nano Processes for DDS

Ultra High-density Storage Device
Integrated Electronic Device

...... Electronic Conduction
in Integrated Systems

" Integrated Systems

Mesoscale Structure of
Naflon Membrane

S

Semi-Macroscopic

RS 2

Naflon Membrane

Molecular Assembly

—

Water Molecules inside Lisozyme Cavity

Self-assembling Ca
Quantum Chemistry Molecular Dynamics

Micelle

Protein Folding

5V

psulation

Electrons and Molecules
e

Polio Virus

0O O 06O
O 0O 0O O

/

ST e ondensed Maters

Self-Organized Magnetic Nanodots

- Orbiton N\
. : & rbltal Wave) Domain
One Dimensional R ==
Crystalof Silic.qn‘ - ©
.,@*.' \. ‘_/"’ i Ferromagnetic Half I\:’etal
! ; “0 i] “on”,
\"!’// \?‘ light light
Doping of Fullerene and ical Switch 'ieht
Carbon Nanotubes SRl Elect
. ectrons
Electron Theory of Solids .

20

P. Molecular Recognition of Proteins

RIMEN

Water molecules and
lons recognized by
a protein

Cellulase

A water molecule
recognized by enzyme-
cellulose complex.

Courtesy of IMS

P. Basic Concept for Simulations in Life Sciences

RIM=N
Organ ok Organism Vascular
. . 2 i Blood System
Micro-machine =\ \\} % info.med.vale. Circulation |
=N\ edu/ -
Tissue

Structure

Catheter

http://ridge.icu.ac.jp Chemical
Bio-MD £ Process

/ Protein DDS
Genome

‘Gene Therapy 4

Genes
Micro

Under total combination of

simulation physics ... S

RIKEN

Simulation for Circulation System

Blood Circulation I Heart (Hisada et al.) I Capillaries

ﬁ Promotion Program of Supercomputers
for Industries

Industrial Committee for Super Computing Promotion

» established in 2006

» participated by more than 170 companies from
various industries

» activities: simulation of engines, analyses of car body,
material and polymer simulation, weather simulation

wp‘u Recent Activities of ICSCP

seminar and expo to industrial researchers about usefulness of simulations

6 seminars a year
for member

Industries

ﬁ Promotive Activities by Public Computer

RIKEN

Centers for Industrial Use of HPC

MEXT is conducting a project to
stimulate use of public high-
tech facilities for industrial R&D

>

Earth Simulator and computer centers
of major universities provide their

computer resources for industries

test use for free and productive use for charged _

Flelds ot

about 40

applicants
from industries

-

-

drug design semi conductors aerodynamics

functional materials banking system fuel cell

noise control of cars and bullet train catalyst

internet search engine audio interpretation

P. Concluding Remarks

RIKEN

» The next generation supercomputer project aims at:

ato keep cutting-edge computer technologies inside Japan
ato prompt application software developing activities
ato rear young scientists for HPC fields

» Consequently, we expect:
at0 maintain competitiveness in worldwide HPC technology
ato innovate R&D in industries by computational science
ato create new IT businesses such as SaaS (service as a software)

» Then, we accomplish:
ato reinforce science infrastructure in Japan
ato retain high economic activities

International Exascale
Software Program

National Science Foundation Abani K. Patra Office of
Where Discoveries Begin apatra@nsf.gov Cyberinfrastructure

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov

Drivers

e Advances in most branches of science and engineering are critically dependent on
iIncreasingly complex multi-scale, multi-physics, data driven computations and analysis.

e Complexity of Systems
e Moore’s Law and Beyond -- Multicore, manycore,

e Heterogeneous machines

First Cosmological simulations to
include black hole physics by Di
Matteo et. al. at Carnegie Mellon
funded by OCI and MPS/AST.

e Data Intensive Scalable Computing
e \Workflows, Grids, Clouds ... ~ 1
e All this dealt with by software and tools! | B ctrantod by e

simulation and optimization tools to

e Support for which is g spread across divisions, direciarak maximize product

AI\/ID Phennm | . J- l J- H i

rom Tower A to Tower Fl m Tower C to

wwwwwww

R T >4 i e
V| - miting - N . o s G
s = leusd < —— 7
v,
= "
» 3
Closs - SN
~ 4
! 5
1 N Unknowin Pesions Ofthe map Locations)
iy LT Y/ i/
(1 /L1 . | 7 <
b . | z
; 2 Siw /

HnT—*w«lTu—L‘. F C to Tower 8

b
3
: 1
iy x
o\
Eas B i tthvaiies . .
) |l il] Slow-cus. \ s [\
\ 253 &1 § T o1
Hah b1l B > . | pusegorc =
2 2888 / FNAL GRFARIL L Ay
—— - - % W N7
7 — . — e L
® e > .
ooz e n 7 X i
ucrtEp L N 2
[gt X .
. b N
s L)

S) om Tower B to Alo Tower B
ggggggggggggggg | "w: ‘W Renci H l
nantahala.renci.org:9001 U -

4»"%

7\ National Science Foundation Abani K. Patra Office of
Where Discoveries Begin apatra@nsf.gov Cyberinfrastructure

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov

How?

NSF/OCI engaged in actualizing “Cl Vision...” -- Atkins et. al.

e (Computational Science -- the unifying theme across many
threads that lead to successful use of computational hardware
in the discovery and innovation process -- support for which is

and spread across divisions

Advisory C ee onNtEyperinirasiructure \AL,UJ as formed
sub-committ _*v;gx Forces™ to deal with multiple aspects

-- HPC, Grand Challenges, Software, Campus Bridging, Data,

LWD

v {'1 National Science Foundation Abani K. Patra Office of

Where Discoveries Begin apatra@nsf.gov Cyberinfrastructure

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov

“Cl Task Force”

e “opportune time to carefully investigate alternate mechanisms and methodologies for ensuring
that the research, development and sustenance of the nation’s software and tool infrastructure
Is well positioned to help our scientists with a competitive advantage and not a disadvantage.”

e The charge to the group comprises of the following:

e (Characterize and estimate the magnitude and scope of need

L Develop initiatives] pro nvthydevelopment and sustainabilit
Pl

of the soft And 1o , ative research and innovation
leading t ‘ al competitiveness’a Nleage leadersnip

e Analyze institutional anc arrier ‘to promoting and supporting such an
infrastructure.

o Z\ National Science Foundation Abani K. Patra Office of

Where Discoveries Begin apatra@nsf.gov Cyberinfrastructure

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov

Questions?

® What are the new applications that are emerging or likely to
emerge in the coming decade?

® How can NSF best stimulate development of exascale software
applications?

® How can useful softwareithatthasibeen developed as part of the
exascale effort besusta development period?

¢ What systems softwarewilFberrequired? Distributed systems
support, programming environn runtime support, data-
management user tools?

> B
[

)

8 {'2 National Science Foundation Abani K. Patra Office of
Where Discoveries Begin apatra@nsf.gov Cyberinfrastructure

Questions?

® What application support environments will be needed?
Application packages, numeric and non-numeric library
packages, problem-solving environments?

® How can NSF aid or catalyze developments that make it
possible to use the same tools, including compilers, debuggers
and performance tools Bscales all the way down to
the typical researcherSHaAPtOpIoRaesktop?

e What education and training actions should be considered to
prepare researchers, students and educators for future
cyberinfrastructure?

¢ %71 National Science Foundation Abani K. Patra Office of
Where Discoveries Begin apatra@nsf.gov Cyberinfrastructure

mailto:apatra@nsf.gov
mailto:apatra@nsf.gov

Improving
HPC
Software

IESP Workshop #1
Santa Fe, New Mexico: April 7 & 8

Version 1.0 started by Ken Kennedy in 2006...
Effort was re-launched in 2008
Initial planning meeting at SCO8

This meeting sponsored by DOE & NSF in coordination
with EU and Japanese

68 attendees
Subsequent meetings will be held and sponsored by
Europe (end of June) and Japan (October)
Workshop reports will focus plans and identify issues

PIES?

Agenda

Today
Goals and HPC Software Status
Science drivers and HPC plans: Japan
Architectural trends for HPC
Science drivers and HPC plans: Europe
Software Barriers for HPC, today and tomorrow

Science drivers and HPC plans: Europe: USA

Tomorrow

Breakout groups:

Tech Roadmap, Collaboration / Coordination models

IESP Goal

Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment

Workshops:

Build an international plan for developing
the next generation open source software
for scientific high-performance computing

Then Do It...

Components / Workshop Charge

Outline of what a plan would include, and possible outcomes
Assess the software needs for peta/exascale computation
Explore how to develop a community architecture roadmap

Gather and analyze existing R&D plans for addressing extreme
scale; what is missing?

|dentify key technical areas to be included in plan
Begin development of a roadmap for peta/exascale software

|dentify R&D models that enable laboratories, universities, and
vendors to co-develop coordinated open source HPC software

Examine funding and governance models that support
international development

A Running Start: www.exascale.org

e Musings on the Path Toward Exascale, Robert Lucas - ISI/USC

e BSC Vision Towards Exascale, Mateo Valero, BSC

e Software Challenges of Extreme Scale Computing, Michael Heroux - Sandia National
Laboratory

e Software and Exascale Computing, Bill Camp - Intel Corporation

e Application Analysis and Porting in the PRACE Project, Peter Michielse - Netherlands
National Computing Facilities Foundation (NCF)

e The Application Perspective - Seeking Productivity and Performance, David Barkai - Intel
Corporation

e FDF white paper,).Y. Berthou and J.F. Hamelin - EDF R&D

e The Biggest Need: A New Model of Computation, Thomas Sterling - Louisiana State
University

o NSFIESP Whitepaper, Abani Patra, Rob Pennington, Ed Seidel - Office of
Cyberinfrastructure, National Science Foundation

e A Proposal for a Capability Centers Consortium, Bill Gropp, Mark Snir - NCSA and the
University of lllinois at Urbana-Champaign

e Slouching Towards Exascale, Rusty Lusk, Argonne National Laboratory

e A Collaboration and Commercialization Model for Eascale Software Research, Mark Seager
and Brent Gorda, Lawrence Livermore National Laboratory

e The Case for A Hierarchal System Model for Linux Clusters, Mark Seager and Brent Gorda,
Lawrence Livermore National Laboratory

e [ESP Whitepaper: PDE-based applications and solvers at extreme scale, DavidKeyes,
Columbia University & SciDAC TOPS project

Qutline: HPC Software

Current State: HPC Software
Background: Activities in Europe and Japan

The Changing Architecture
The IESP Workshops

Roadmap and Outcomes

The Open Source Community Provides
Most of the World’s HPC Software

Peak Performance 1,645 1,382

U.S. Deﬁnmcnr of Ener

Office of Science
B

TSUBAME 1.2 Evolution (Oct. 2008)| rh
The first "Petascale” SC in Japan
-’:r torage

1.5 Petabyte (Sun x4500 x 60)
10,000 CPU Cores

0.1Petabyte (NEC iStore)

300,000 SIMD Cores
~900TFlops-SFP,
~170TFlops-DFP

Voltaire ISR9288 Infiniband x8
10Gbps x2 ~1310+50 Ports
~13.5Terabits/s

(3Tbits bisection)

QGB/s aggregate /0 BW

Sun x4600 (16 Opteron Cores)
32~128 GBytes/Node
10480core/655Nodes
21.4TeraBytes
50.4TeraFlops
Linux (SuSE 9, 10)

National Energy Research
Computing Center (NE ccoe

Harpertd ¢
90Node 720CP! .

AMD Opteron Cores 181 ,504 150,176

000 .
National Lab

FINLAND

, SWEDEN
UNITED
. KINGDOM A
IRELAND' NETHERLANDS

GERMANY
AUSTRIA
SWITZERLAND
\ SERBIA

POLAND

FRANCE

TURKEY

\ PORTUGAL
|

PAINA
S GREECE

\ CYPRUS

\

Located at Lawrence Berkeley

— Cray XT-4 Franklin: 102 Tflop/s,
9,660 nodes, 19,320 cores

- IBM Power 5 Bassi: 6.7 Tflop/s,

8.2TeraFlops

NEW: co-TSUBAN
"W 30Node 720CPU (Low Power)
~7.2TeraFlops

CIearSpeed CSX600
SIMD accelerator
360 648 boards,
35

52.2TeraFlops

Nvidia Tesla T10P-one card per node, ~680 cards
High Performance in Many BW-Intensive Apps
10% power increase over TSUBAME 1.0 (130TF SFP / 80TF DFP)

op/s, 712 cores Franklin
urrently being
5, 38,640 cores [

Argonne’s IBM Blue Gene/P — 556 TFs

The Community is Diverse and Robust

In the last 10 years, galvanization of Open Source

development dramatically improved software

A very small sample:

Linux Operating System, libc
Python, Perl

PAPI, TAU, Kojak

dCache

UPC

MPICH, OpenMPI
ScalAPACK

JuBE

Vislt

GASNet, ARMCI/GA

CFEngine, bconfig
Ganglia

SLURM, Cobalt

Dyninst

Torque /Moab, OpenPBS
Charm++

pNetCDF, HDF5
GridFTP

FFTW

PVFS

A Long History of Collaboration & Sharing

®00 The Netlib

@ (E\ (X)(#)(@ hitp://www.netlib.org/

w2 ¥)= ([Cl:(GoogleQ)

Netlib Repository at UTK and ORNL

Netlib is a collection of mathematical software,

papers, and databases.

There have been

Software, papers, etc.

« Browse the Netlib repository
« Search the Netlib repository

Services provided at Netlib
« NA Digest archives

Related efforts

« HPC Challenge Benchmark

o Matrix Market

« Repository In a Box (RIB)

« StatCodes at Penn State, statistical source codes and pi
« Top500 Supercomputer Sites

521,793,715 requests to this repository as of Mon Mar 2 03:40:38 EST 2009 .

--_-_-_-_-_-_-_-’

The massive archive site WSMR-
SIMTEL20.ARMY.MIL at White Sands
Missile Range, New Mexico, USA,
which is home to more than 2
gigabytes of files for many computer
systems, including MSDOS, Unix, VMS
and some mainframes, will be shut
down by its operators as of September
20, 1993. Unless a new home is found
for the archives, this major archive site
will vanish.

Index of /pub/historic-linux/ftp-archives/tsx-11.mit.edu/Oct-07-1996

Name Last modified Size Description
a Parent Director -
[23 680x0/ 24-May-2002 12:19 -
E:i ALPHA/ 24-May-2002 12:19 -
BETA/ 24-May-2002 12:19 -
README 24-May-2002 12:20 3.4K
README. tsx~11 24-May-2002 12:20 275
@ attic/ 24-May-2002 12:19 -
E} binaries/ 24-May-2002 12:19 -
E:i distributions/ 24-May-2002 12:19 -
ED docs/ 24-May-2002 12:20 -
63 dos utils/ 24-May-2002 12:20 -

The Result....

Open Source HPC Software Stacks for
Small Linux Clusters are Everywhere

Innovating@Sunv Community Voices v HowtoBuyv Loginw

United States [Change] | English

@ Sun

microsyst s

Home > Products > Software > Enterprise Computing > HPC and Grid Computing > Sun HPC Software >

Overview Features Tech Specs Support m

Sun HPC Software, Linux Edition

ie nat inaluidad with tha aafhuara

Open Rich and Verified

Download Sun HPC Software, Linux Edition for free

PlaﬂormvThe Power of Sharing

Products Industries Services Partners Resources Company G radd Sy

centraized web and

Clustertech HPC Environment Software Stack

Comprehensive, robust and scalable operation
environment for every Linux HPC cluster.

Features and Benefits.

Home / Pro

cts / Platform Open Cluster Stack 5
monkoring nfrastructure
and aertsystem.

Platform Open
Cluster Stack 5

» Intel Cluster Ready

» Additional Components
» Workload Management
» Features and Benefits

ot be Indhidually
configured.

Scalable. Superior scalabilty
[—

cluster configuration engine.

» Services and Support . Supports
» White Papers S s

*FAQ Platform Open Cluster Stack (OCS) 5

Exminates the ik of single
point fallure by advanced
high avallabilky

Minimize the cost and time spent on deploying and managing a Linux cluster techncloges

"Intel and Platform Computing have optimized the performance of hundreds of
thousands of enterprise High Performance Computing nodes."

clustertech.com 1

Richard Dracott, General Manager, Intel High Performance Systems

Get Sun HPC Software, Linux Edition

Download Sun HPC Software, Linux Edition today at no cost.

Free Sun HPC Software, Linux Edition 1.2 Download
Sun HPC Software, Linux Edition 1.2 is available to download now. Please note that technical support

What You Get

« Lustre 1.6.6

« perfctr 2.6.36

* Env-switcher 1.0.13
«+ genders 1.9

+ git 1.6.0.4

+ Heartbeat 2.1.4-2.1

+ Mellanox Firmware
tools 2.5.0

+ Modules 3.2.6

+ MVAPICH 1.0.1

+ MVAPICH2 1.0.3
+ OFED 1.3.1

* OpenMPI 1.2.6

+ RRDTool 1.2.26
+ OpenSM 3.0.3

+ pdsh 2.16

+ Powerman 1.0.32

+ HPCC Bench Suite
1.2.0

* Lustre |OKit

+ IOR 2.10.1

+ LNET self test
« NetPIPE 3.7.1
+ Slurm 1.3.10

* MUNGE 0.5.8
+ Ganglia 3.0.7

+ 0neSIS 2.0.1

+ Cobbler 1.0.3

+ CFEngine 2.2.6
+ Conman 0.2.1

+ FreelPMI 0.6.6
« IPMtool 1.8.9.1
+ Ishw B.02.12.01

Just Buy [t¢
Scalability Thins the Market

For some markets, a closed
source business model
continues to work well BG/P Software Stack Source Availability

I/O and Compute Nodes Service Node/Front End Nodes

Single-node optimized math 5 Compmmmm] [ame] []| |3 =
libraries & compilers o o] T %j e] (| Lt | [t
Debuggers for small clusters o

§ [CNK] Linux kernel GPFS 5
Some queuing systems, parallel ‘ &

Commn o - Ll

file systems, HSMs o G | : e i

C Recovery, Mailbox E ‘arallel boot, Mailbox
Small cluster applications: Fluent,

g e [(Seeecd) =
CFD++, etc f fomE (o FEN

Ke

S

Hardware
[] Closed. No source provided. Not buildable.
[Closed. Buildable source. No redistribution of derivative works.
| Open source license, Reference implenentation. No IBM-supported community.
[Open source. Supporting community.

=

Why Seek to Improve This?

The largest scale systems are becoming more
complex, with designs supported by large
consortium

The software community has responded slowly

Significant architectural changes arriving

Software must dramatically change
Our ad hoc community coordinates poorly, both with
other software components and with the vendors

Computational science could achieve more with
improved development and coordination

Extreme-Scale Platform Design:

Industrial revolution and globalization has arrived

Yesterday

Seymour & team
designs and
hand builds set

of computers

Dozen HPC
companies
flourish:
incompatible OS
& components

Today

Commodity
components and
Open Source
move effort to
integration

Design-Build partner-
ships for extreme scale
e.g.

* LLNL/ANL/IBM

« Sandia/ORNL/Cray
* Fujitsu/NEC/Hitachi/Riken

Tomorrow

Globally Distributed
teams, Diverse
technology
providers, Open
Source Software

e.g: PRACE

Traditional Sources of Performance
Improvement are Flat- meg (2004)

10,000,000

« New Constraints

i

— 15 years of exponential | |
1,000,000 | |

clock rate growth has ended | |

|

|
|
|
|
|

100,000 :
* Moore’s Law reinterpreted: | | /
— How do we use all of those ;440 .
transistors to keep | |
performance increasing at
historical rates?

— Industry Response:
parallelism doubles every 18
months instead of clock
frequency!

1,000

100

10

= Transistors (000)
¢ Clock Speed (MHz)

& Power (W)
& PerfiClock (ILP)

1 I \

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

0

1970 1975 1980 1985 1990 1995 2000 2005 2010

Multiple parallel general-purpose processors (GPPs)
Multiple application-specific processors (ASPs)

Intel Network Processor IBM Cell =
1 GPP Core 1 GPP (2 threads) _:

16 Ps (128 threads) | 8 ASPs 243

e Le - Picochip DSP
TToeosaans e 1 GPP core

N)

[Efdd[ddd]e~ 248 ASPs

[e] @@ trix [1P1]

|

188 Tensilica GPPs

i“__4-bit processor,
. 2312 transistors,

| ~100 KIPS,
1* 10 micron PMOS,
11 mm2chip You Are Here The Progessor IS the new
Transistor” [Rowen]

3D Packaging: Changing Paradigms

IBM Systems and Technology Group

The BlueGene/L MPICH2 organization (with ANL)

Message passing Process management

connections
Approach Comments Approach Comments
Distributed 3D stacks Disrut GPU across mutple Advanced 3D Package a9EroRR, sor 1 WUArpoRO fo NG o
Direction of Heat Extraction memory stacks wmmunllnmﬁh =
GPU: 200 Cores Assumes suffcint iner-stack PoRIIGToun) cististion and hezt romoval.
bandwidth can br provided in
(1/4 of total) poriorsriiiantid ol Roquires a planar routing densty groator than
o DRAMde—" currently provided in thin film carmors.
to detract from parformance,
Ié::!m;u on degree of memory
scatter
Interposers Substrate Dense Via Field
Incorporate interposers into a single
17-33 chip stack to help in " : Uso praximity connection or Through Silicon
powerfground distribution and heat Tiled Die Vias to croate memory banawidtn through
removal. overlapping surfaces.
Assumes Through Silicon Vias for OR
signal 10 throughout chip stack

Tile with high banawidth eage intarfaces, using
quilt packaging of a an added top metal
process. (Now, impact on tatency and VO
power).

Figure 7.5: Potential directions for 3D packaging (A). Figure 7.6: Potential directions for 3D kaging (B).

Vision of Photonic NoC Integration
o

photonic NoC QD

multi-core
processor layer

Courtesy: Keren Bergman, Columbia
19 Columbia University

Power and Programming Models

To Build a SW Roadmap & Plan:
I

7 What do we use N -
today? e
Core2 Quad ||
7 What we need
tomorrow?e
1 How we can fill in the
gaps?

Inventory Exercise...

g.;:
e

AR AR AR AR AR A AR AR ARRARRAA AR AR RRERRRANRRRANAN)

Broadly divide software
and functionality into
hierarchical categories:

|/O Storage
Math Libraries
Performance Tools

Etc.

Where it is run...

Service node, 1/O nodes,
compute nodes, login
nodes, etc

Example Snippets: ORNL XT3

L PR B C D E B G |
1 Software Requirements for HPC
2
3 Site: ORNL
4 System: Cray XT3 Note that this list is best viewed as a da
5 Submitted 8/25/06 (menu Data>>Filter>>Autofilter), and Pi
6 Contact: Jeff Vetter, vetter@ornl.gov
7
8 Site System Node Type:L1 Category :L2 Type L3 Function Package Provider
All App Support :Library IO & Storage HDF5 PAR NCSA
9 |ORNL iCray XT3
Al App Support i Library 0 & Siorage " HDFS SERIAL TNCSA
10 ORNL iCray XT3
11 ORNL Cray XT3 :All App Support iLibrary IYO & Storage :netCDF UCAR/Unidata
12 ORNL Cray XT3 :All App Support iLibrary IYO & Storage netCDF, parallel :ANL
Compute :iApp Support ilibrary Math PetSC ANL
13 ORNL iCray XT3
Compute iApp Support ilibrary Math Aztec Sandia
14 ORNL iCray XT3
15 ORNL Cray XT3 :Compute :App Support :Library Math BLAS AMD
16 ORNL Cray XT3 :Compute :App Support :Library Math FFTPack Netlib
17 ORNL Cray XT3 :Compute :App Support :Library Math FFTW MIT
18 ORNL Cray XT3 :Compute :App Support :Library Math LAPACK AMD
19 ORNL Cray XT3 :Compute :App Support :Library Math MUMPS CERFACS

LLNL BG /P

Site System :Node Type :L1 Category :L2 Type :L3 Function Package Provider

LLNL BG/P Service Prog Env Tool Infrastructure LaunchMON LLNL (Open Source)

LLNL BG/P Service Prog Env Tool Infrastructure MRNet University of Wisconsin
LLNL BG/P Service Prog Env Tool Infrastructure Dyninst University of Wisconsin
LLNL BG/P Service Prog Env Tool Infrastructure StackWalker University of Wisconsin
LLNL BG/P Service Prog Env Tool Infrastructure secure VNC Vaporware

LLNL BG/P Service Prog Env Tool GUI Tool Gear LLNL(Open Source)

LLNL BG/P Service Prog Env Tool GUI telitk Open Source

LLNL BG/P Service Prog Env Tool Gul X11 Open Source

LLNL BG/P Service Prog Env Tool GUI Qt TrollTech (Open Source)
LLNL BG/P Compute Prog Env Tool Performance Analysis Tau Paratools/Univ. of Oregon |
LLNL BG/P Compute Prog Env Tool Performance Analysis HPM Processor Vendor and Lint
LLNL BG/P Compute Prog Env Tool Performance Analysis PAPI UTK(Open Source)

LLNL BG/P Compute Prog Env Tool Performance Analysis OTF Paratools (Open Source)
LLNL BG/P Service Prog Env Tool Performance Analysis Vampir/VampirServ Dresden Univ

LLNL BG/P Service Prog Env Tool Performance Analysis VampirTrace Dresden Univ

LLNL BG/P Service Prog Env Tool Tool version selection dotkit LLNL(Open Source)

LLNL BG/P Service Prog Env Tool Editor emacs Open Source

LLNL BG/P Service Prog Env Tool Editor vim Open Source

LLNL BG/P Compute Prog Env Tool Performance Analysis mpiP LLNL/ORNL(Open Source!
LLNL BG/P Service Prog Env Tool Source Code Control svyn Open Source

LLNL BG/P Service Prog Env Tool Source Code Control ¢vs Open Source

LLNL BG/P Service Prog Env Tool Source Code Control git Open Source

LLNL Viz/Analysis:

:Package :Provider :Support Criticality
‘\ﬁslt ‘LLNL(Open Source) "LLNL 1
OpenGL Open Source Community 1
EnSight CEl Licensing 2
ImageMagick Open Source Open Source 2
Tecplot Tecplot, Inc. Licensing 2
IDL ITT Visual Informations System: Licensing 2
gnuplot Open Source Open Source 2
POV-Ray Open Source Community 2
RasMol Open Source Community 2
vmd UIUC(Open Source) UviuC 2
ParaView Open Source Community 2
NCAR NCAR(Open Source) NCAR 3
mplayer Open Source Community 3
Blockbuster LLNL({Open Source) LLNL 3
GIMP Open Source Community 3
xxdiff/tkdifffmeld Open Source Community 3

Where We Are Today:

We are not prepared for the changes coming

Hardware features are uncoordinated with software
development

(power mgmt, multicore tools, math libraries, advanced memory models, etc)

Only basic acceptance test software is delivered with platform
UPC, HPCToolkit, Optimized libraries, PAPI, can be YEARS late

Vendors often “snapshot” key Open Source components and
then deliver a stale code branch

Counterexample: A model that works — MPICH for BG /P
Community codes unprepared for sea change in architectures

Coordination via SOW /contract is poor and only involves 2
parties

No global evaluation of key missing components

International Community Effort

International collaboration is required because:
The scale of investment
The need for international input on requirements
Computational science projects are international

Europeans, Japanese, and Americans are each working
on portions of the software

The process must be open

Executive Committee:
Co-Chair: Jack Dongarra, Univ, of Tennesse / ORNL, US
Co-Chair: Pete Beckman, Argonne National Laboratory, US
Franck Cappello, INRIA, FR
Thomas Lippert, Julich Supercomputing Centre, DE
Satoshi Matsuoka, Tokyo Institute of Technology, JP
Paul Messina, Argonne National Laboratory, US

An Example Development Community

The Apache Software Foundation

Meritocracy in Action.

The Apache Software Foundation provides support for the Apache community of open-source software projects. The Apache projects are characterized by a

collaborative, consensus based development process, an open and pragmatic software license, and a desire to create high quality software that leads the way in its

field.

We consider ourselves not simply a group of projects sharing a server, but rather a community of developers and users.

Project
Bluesky
Cassandra
Click

Composer
Droids

Empire-db
ESME
Etch
Hama
Imperius
JSecurity
JSPWiki

Kato

Log4php
Lokahi
Lucene.Net
Olio
OpenWebBeans
PDFBox
PhotArk
Pivot

RAT

RCF

River
Sanselan

Sponsor A B c D G

Incubator
Incubator
Incubator
Incubator

HC,
Lucene

Incubator
Incubator
Incubator
Incubator
Incubator
Incubator
Incubator

o | R e o] e

Logging
Services

Incubator
Lucene

Incubator
Incubator
Incubator
Incubator
Incubator
Incubator
MyFaces
Incubator
Incubator

This page will give you everything you always wanted to know about the foundation but were afraid to

hatuinnn - F L"(Ln—-—‘M #amhin wha danidag what, how elections take

2008-01-12 416 [True | month -- 2008-07-22 - 0,08 .l------- what's the philosophy behind
2009-01-01 61| True month [False] 2009-01-02 (GO 1.1 [Faisel[Faise int. Come and see behind the
2008-07-21 [B28J] Faise group-3 2009-02-22 (G 2.3.4

2007-11-17 472 False group-3 [fflicHl EUS 2008-10-09 145 0,0,1 - 0/ [l Faise S [Ffl8) BN Faise Faise

o [e e R e 5 [R e

2008-07-08 (238l False group-1 2009-01-05 [S 1.1.4

2008-12-02 (Gl True . group-3 2008-12-05 88 0,1.-

2008-09-02 [{88l Faise group-3 [itiel 8N 2008-12-08 85 0,34 [0 SN
2008-05-20 [B87l False group-3 2008-11-18 105 0,1,3
2007-11-10 479 False group-1 2009-02-05 (28I 1.1.2
2008-05-20 [B8f False group-1 [fiftiel BN 2008-09-28 (156 | 0,0,2 [o) RSN RSN RS 08 [0 Faise Faise
2007-09-17 533 False group-1 [iftieH SN 2008-09-28 (156 | 0,0,1 [HE] 1 [T FERUISH) R0 8] [0 Faise Faise

2007-07-18

Anls Tha Aié

2004-01-31 False group-3

2008-08-19 - False group-2 n incorporated in the United

2009-01-26 36 True | group-2 -
2008-01-06 422 False group-3 [fitiel 8N 2009-02-22 - 33 . True |

2007-04-06 697 False group-1 2008-04-16 [324 0,0.0
2006-12-26 [{88 False group-3 2008-11-10 113 0,1,1

2007-09-09 541 False group-1 [fiftieH SN 2008-09-28 [156 | 0,0.4 [El 0 RSl

ects by supplying hardware,

Te
orcreateran Inaepenaentiegarentty to'wnicn companies ana inaviauars can donate resources and be
assured that those resources will be used for the public benefit

o provide a means for individual volunteers to be sheltered from legal suits directed at the

Apache Projects
HTTP Server
Abdera
ActiveMQ

22
o)

Archiva
Beehive
Camel
Cayenne
Cocoon
Commons
Continuum
CouchDB
CXF

DB
Directory
Excalibur
Felix
Forrest
Geronimo
Gump
Hadoop
Harmony
HiveMind
HttpComponents
iBATIS

0O ¢ ©0 0O 0O OO 0O 0O 0O 0O 0 0 0 0O 0O ¢ © 0 0 0 0O 0 0 0 o

Foundation

FAQ

Licenses
News

Public Record:
Sponsorship
Donations
Thanks
Contact

© 0O 0O 0 ¢ 0O 0 O

Foundation Proj¢
o Conferences
o Infrastructure
JCP

Legal Affairs
Security
Travel Assistar

o ¢ © ©

How it works
Introduction
Meritocracy
Structure
Roles
Collaboration
Infrastructure
Incubator
Other entities

0O ¢ © 0 0 0O 0O ©

Apache Foundation

Create a foundation for open, collaborative software
development projects by supplying hardware, communication,
and business infrastructure

Incubator projects can become Apache projects
800 “committers”

The ASF Infrastructure is mostly composed of the following
services:

the web serving environment (web sites and wikis)

the code repositories

the mail management environment

the issue/ bug tracking

the distribution mirroring system

A Plan Could Include:

Work with vendors to create the HPC equivalent to the ITRS
(Int’l Tech Roadmap for Semiconductors)

Get community working on software before machine becomes available

Community proposed unified roadmap for exascale software

|dentify missing components for future architectures and a plan
to address them

Develop models for working more closely with vendors

(support, acceptance tests, target features)
|dentify key application areas to drive development
Community software development models

Funding and organizational models (Apache, etc)

Achievable Outcomes

Improve the capability of computational science

Build and strengthen international collaborations and
leadership; deliver more capable, productive HPC systems

Build and improve R&D program developing new
programming models and tools addressing extreme scale

Strategic plan for HPC research

Open source HPC development guided by roadmap with
better coordination and fewer missing components

Joint programs in education and training for the next
generation of computational scientists.

Vendor engagement and coordination for more capable
software supporting exascale science

Possible Models

(from loose to tight collaboration)

|dentify needs, focus Int’| R&D attention on missing components

Coordinate features, delivery schedule, interoperability, and improvements across
international R&D teams

IESP community recommends funding for key areas

Provide forums for vendors and community to work together on roadmaps
Fund R&D and subsequent deployment of key components

Fund collaborative relationship with vendors and co-develop components
Test, integrate, and support internationally developed software components

Build integrated software that can pass acceptance tests on extreme platforms

Future Workshops and Report

3 workshops over the next year
1: Santa Fe, April 7-8
2: France, June 28-29
3: Japan in the early Fall

Broad engagement by the community
Initial reports in summer 2009

Final report for first year at SCO9
Planning for IMMEDIATE payoff

Could begin initial components of plan this year

www.exascale.org

& EXASCALE

HOME MEETINGS DOCUMENTS COMMUNITY

MAIN PAGE m DISCUSSION VIEW SOURCE HISTORY

The mission of the International Exascale Software WORKSHOP INFORMATION
Project (IESP) is to lay the foundation for exascale
computing by mobilizing the global open source software
community to combine and coordinate their collective
efforts far more efficiently and effectively than ever
before. The IESP will hold a series of three workshops to
organize and structure this community wide effort. The
first, invitation-only workshop will occur on April 7th and
8th in Sante Fe, New Mexico, US, with people arriving in
time for a reception on April 6th. Attendees will include
members from industry, academia, and government, with expertise in a range of critical areas.

Workshop Arrangements
Workshop Agenda
Workshop Charge
Executive Committee
Organizing Committee
Workshop Attendees
Whitepapers

Background Material

Thou Shalt Specialize or Commoditize?
The Japanese Situation Towards Peta
and Exascale

Satoshi Matsuoka, Prof., Dr. Sci.

GSIC Center, Tokyo Institute of Technology /
National Institute of Informatics

DoE IESP Workshop @ Santa Fe, NM, USA Apr. 6-8, 2009

The Ideal: Hiearchy of Deployments

Cyuzr Jelsnes [afugie

Natlonal CAUShip System

Dayalggganizige Agaliciton of
AdVanced I GHEPEROrMance
SUPEICOMPULEPIGIEG:

Grid Interoperability and
International Collaboration
W EGEE

W Teragrid

~ National Infrastructure MAHEG) Gl Wil f2yyzir
nstitute, University) \ a Ui

(niearUriiyasity Puslic ey Infraserictrs)

' r- ’ l l nmm” ' (Mt sttt of Inforszces)

environment for

Vec’ror Machines- NEC SX

ACOS/SX-1

SX-2 (1983): Bipolar, 4-wide,
1.3GFlops, single CPU

SX-3: (1989): Bipolar, 8-wide,
22GFLOPS(2x4CPUs)

SX-4 (1994). CMOS 8-wide 64GF/
hode (2GF x 32CPUs)

SX-5 (1998): 16wide, 128GF/node
(8GF x 16 CPUs)

SX-6 (2001): 8-wide x 2 clock, 64GF/ Smn S
hode (8x8CPUs), core of ES S :

SX-7 (2002): 8-wide x 2 clock,
282GF/node (9GF x 32 CPUs)

SX-8 (2004): 8-wide 2Ghz vector,
128GF/node (16GF x 8CPUs)

SX-9 (2007): 8-wide x 4 3.2 Ghz
102GF/CPU, 1.6 TF/node, 128GB/s
infer-node BW

2008/06/24 16:24:2%7cs » Sublist Generator

Rmax and Rpeak values are in GFlops. For more details about other fields, check the

Glory Days of w0500 June 1996, 40 NEC SXs
Vectors..just 12 @ & e

Japan NEC 2
24 jzgzg Marine Science and Technology ﬁé—év‘ZO 20 42.4 40
S 25 ‘rj\laa;;:al Research Institute for Metals ,S\Ié—ézo 20 42.4 40
y ea r 09 O 26]sgg;]a Central Research & Development ﬁé—év‘zo 20 424 40
30 s:;;}o;rfzalr:\desmspace Laboratory (NLR) i)é—éﬁ 16 34.42 32
C rav 7] 31 ‘rj\laa;ao:al Cardiovascular Center Elé-éa 16 34.42 32
NEé 40 41 ga;lszseﬁgnﬁgnﬁc Computing Center (CSCS) rS\‘)é-éiZ 12 25.8 24
- 49 élar‘r;oa%pahenc Environment Service (AES) E‘)égMMR 4 232 256
F U_J | t S U 3 3 (\ #2) 50];gg:“ University SRR 4 232 25.6
H I t aC h I 9 55 étar'r‘.‘oasapaj\enc Environment Service (AES) 32844 4 20 22
59 U;SFEI;%[E for Molecular Science ﬁ)é—CS:‘SAR 3 17.4 19.2
C M - 2 7 60 ja‘l';?ar?pncal Communication Lab ElééB 8 172 16
T Ot al 1 60 61 é[{;‘r’]oazpahenc Environment Service (AES) ﬁ)é—és 8 17.2 16
62 gggigrweleoro!oguca\ Institute EIEéS 8 172 16
- 63 ‘rj\laa;ao:al Geographic Agency E)ééS 8 172 16
x86 (Meiko) 3 w yemspec =
“ 136 gz:;:gyﬁ«erospace Laboratory (DLR) S)é-gv‘zsﬂ? 2 116 12.8
C reta ceo u S 137 .Taa;::al Institute for Fusion Science :)é—é;;‘&iR 2 116 12.8

7

Japan had ~30% performance share as a country

Rise of the Commodity Clusters: "The Scenario”

High Performance Commodity ~Rise and spread of ;Vr;\ilelsfgi(;?«yuls&igo; (Cel;?‘rers:

Compuﬁng CommOley Clusters and TSUBAME Ranger‘)

-High Performance x86 CPUs increase in Their' sSize
-Fast Commodity Interconnect : o

-Cluster Software

High-
Performance
x86 CPUs

Real- ‘rlme ‘rr'ackmg of ‘»
technology curve

SC Technology Curve
(x1.68 per Year

M simp

B Single Processor
SMP

[l Constellations
Cluster
MPP

O
o
3
[a]
=
o
o
"3\3(’?»
[e)
3
3
Performance

Tradtional SCs
Time

Cost/Performance
W
—+
v>3 |

Myrinet, Infiniband, etc.

The First Beowulf - Wiglaf (1993~4)
(NASA/CalTech)

- 16 processors

* Intel 80486 100 MHz

»+ VESA Local bus

- 256 Mbytes memory

+ 6.4 Gbytes of disk

* Dual 10 base-T Ethernet

+ 72 Mflops sustained, on
real PPM code

. $4OK

Did not even come close
March 15, 2% TOP5OO Slide Courtesy T:];rr;aAs?;rLrl ing - Caltech &

Early PC Clusters & Top500

+ The 15t WS Cluster ranked: June 1997 (The
9th Top500)
- UC Berkeley NOW, 344+th (10.14 GFlops)

*+ The 15t PC Cluster ranked: June 1999 (The
13th Top500) |
- Univ. Bonn, Parnass2 Cluster, 362nd (29.5 GFlops) §

+ The 1st US PC Cluster: June 2000
(The 15™ Top500)

- NCSA (Windows) NT Supercluster, 207th (62
GFlops)

+ The 15t Teraflop Cluster: Nov. 2002
(The 19t Top500)

- LLNL MCR Linux Networx Linux Cluster Xeon 2.4
GHz - Quadrics, 5t (5694 Gflops)

And this went to Petascale,
Despite all the Skepticism

/ : R

- TACC Ranger 1 — |

- The largest x86 Linux Cluster
~50,000 x86 cores

- 4th (326 TFlops) June 2008
(The 30th Top500)

* RR: the first #1 “commodity” cluster on
Top500 June 2008(The 30th Top500)

- The first Petaflop machine

- The first #1 machine to use IB
- The first #1 Linux machine

- The first #1 “heterogeneous”
SC (Cell and Op'reron?

From Computonik Shock to
Apollomodity Shock

+ 2002 The Japanese mputnik article here
Earth Simulator New
York Times "Computonik
Shock”

)
- TOP5OO #1 @ 3 5 8 The world’s fastest Eﬁ?'ﬂ?feﬁﬁ?ﬁ‘iﬁ;i':& ?23%;"?3

computer uses chips reinvest in high-performance

I computing.
TZI"C(F OPS based on one from “It’s a sign that we are main-
Sony ’s PIayStation 3. taining our position, said Peter
. 2 OO 4 5 U S B G / L J. Ungaro, chief executive of
- i Cray, a maker of supercompu-
. ters. He noted, however, that “the
>100T I k 1- h wrong,” said Michael R. Anasta- real competitiveness is based on
e r'a ' e e sio, a physicist who is director of the discoveries that are based on
o e the Los Alamos National Labora- the machines.”
G em I n l S tory. “This gives us a window into Having surpassed the petaflop
a whole new way of computing. barrier, LB.M. is already looking
We can look at phenomena we toward the next generation of su-
have never seen before.” percor.npun:ng. “"You dg these
- 2008 US Roadrunner
hitting Peta like Apollo

11 "commodity prevails”

"One small step for RR, one giant leap for
supercomputing”

Japan’s 9 Major University Computer Centers
(excl. National Labs) circa 2008 — a Grid at Pe{;

Hokkaido University

s Information Initiative Center

The 4 T2K + TSUBAME clustersi s

5.6 Teraflops
are national leadership machines

—__-————-—----
—
b1

cale by 2009

-

4

]
‘<2006 PACS-CS 14.5TFlops ~ __X’
e —— T2K=Fsukuba 95 Teratlops-=—"
-Kyoto University ~~~~(_ Tohoku University =
(' Academic Center for Computing N Information Synergy Center
«_and Media Studies /
S~ T2K-Kyoto x8667 Teraflops NEC SX-7

—————
- oy,

Kyushu University
Computing and
Communications Center

2007 x86 20 TeraFlops?
Fujitsu Primequest
Hitachi SR11000

Information Technology Center)

I2K-Todai x86 140 Teraflgps-=~
HITACHI SR17000 78§ Teraflops
() / Others (in institutes)

%

h National Inst. of Informatics
NAREGI Testbed

4 Teraflops
Tokyo {)nst. Technology

Global Scientific Information

2009 NEC ES2 2
(131TF), Fujitsu-

- =am@ Tomputing Center™ =~~~ _
Jaxa (135TF) 'NEC/SUNTSUBAME ™
2?2 o Osaka Universit ~84_Teraflops = 170 TFlops? ‘
201 1 '1 2 N LP % CyberMedia Center Y NagtﬁéUnTVél&‘ity ———————
Ry NEC SX-8 or SX-9 Information Technology Center
(1 0 P F) 49: 2008 x86 Cluster 35 Teraflops FUJITSU p,-imepowe,«2500?

11 Teraflops

11

The TSUBAME 1.0 @ Tokyo Tech.
Spring 2006-- ~80 Teraflops Peak

Unified IB network

Voltaire ISR9288 Infiniband 10Gbps
x2 (DDR next ver.) :
~1310+50 Ports

~13.5Terabits/s (3 Thits.bs £

Sun Galaxy 4 (Opteron Dual
astest core 8-socket)
; 10480core/655Nodes
21.4Terabytes
50.4TeraFlops
inux (SUSE 9, 10)
NAREGI| Grid MW

1"—,5——1A ‘
s A AR ol

v'r' !ﬂj;!{ g o

L

e

48disks

Storage o
1.0 Petabyte (Sun “Thumper”) ClearSpeed CSX600
0.1Petabyte (NEC iStore) SIMD accelerator

Lustre FS, NFS, WebDAV (over IP) 360 boards,
50GB/s aggregate 1/0 BW 35TeraFlops(Current))

12

T2K Open Supercomputer Alliance

= Primary aiming at design of common Open hardware architecture with
specification of new supercomputers.commodity devices & technologies.
= Now extending to collaborative worlke Open software stack with open-
on research, education, grid operationsource middleware & tools.
., for inter-disciplinary computatiorralOpen to user’s needs not only in

(& computer) science. FP & HPC field but also INT world.
R %@Tf
»
Kyoto Univ. Univ. Toky Univ. Tsukuba
416 nodes (61.2TF) / 13TB 952 nodes (140.1TF) / 31TB 648 nodes (95.4TF) / 20TB
Linpack Resulit: Linpack Resulit: Linpack Resulit:
Rpeak =61.2TF (416 nodes) Rpeak = 113.1TF (512+256 nodes)Rpeak = 92.0TF (625 nodes)

Rmax -50 5TF Rmax = 83.0TF Rmax =76.5TF

=
—

L oz

2008/06/24 16:24:2%7cs » Sublist Generator

Rmax @nd Rpeak values are in GFlops. For more details about other fields, check the
TOPS500 description.

From Glory Days to 155500 June 1996, 40 NEC SXs

N E T ° T . . % g\é\'{'r.;,/;l}}‘;wersitae! Stuttgart sx4m2 gy S
ear x ' nc l O n o000 l n 11 ‘TaEpcarTUChu Plant 32832 a2 &igs =
24 j:gg: Marine Science and Technology aéézo 20 42.4 40
1 O+ yea rs 25 \r;laaéiao:al Research Institute for Metals Eléé.'zo 20 42.4 a0
26 Iaozg;a Central Research & Development E[)éézo 20 42.4 40
-+ Japan as a country now only « o ggne v e
o 31 .rJ\Iaa[;Iao:al Cardiovascular Center '%)é_éAs 16 3442 -
has 4 /O Shar‘e - now bea-‘-en 41 Swiss Scientific Computing Center (CSCS) SX-4/12 12 25.8 24
Switzerland NEC .
by Frlance 49 él;‘c;%pahenc Environment Service (AES) S)é-gm‘iR 4 232 25.6
50 ipan s e SRR 4 232 256
° B ig Ir\o n veC-l-O r‘ & SMP SC 55 fétar?.‘%sa%henc Environment Service (AES) 22@;44 4 20 -
59 Lnas;;%le for Molecular Science 2)&?:‘34}? 3 17.4 19.2

now " n i C he” 60 JAaTsar?p“Eal Communication Lab a)ééB 8 172 16

Atmospheric Environment Service (AES) SX-4/8
L Canada NEC 8 72 6
[} Danish Meteorological Institute SX-4/8
Clusters too small for cost, = & =
National Geographic Agency SX-4/8
vendor inexperiences B S EE—
n n n Veritas DGC SX-4/6
p 111 United States NEC & {20012
German Aerospace Laboratory (DLR) SX-3/24R
136 7 2 116 12.8
“Cretaceous” et
National Institute for Fusion Science SX-3/24R
137 epan NEG 2 116 128

9:29¢s » Sublist Generator

“Paleogene” o 1500 Now.200Z,2.NEC SXs

2 entries found.

(Topsoo Jun 2008 - just 1 SX) 30 The Earth Simulator Center Elaérgvswulawr 5120 35.86 40.96

Japan

HWW/Universitaet Stuttgart SX8/576M72
200 Germany NEC 576 8.92 9.22

In Response: Japanese Petascales

* The Next Leadership Kobe, Japan
Petascale machine .
- > 10 Petaflops
- Specialized

- 5 NEC Vector, 5 Fujitsu SPARC
derivative

» Huge, Expensive ($1 billl)

—-— pret 1 .

Vs.

. Commodi‘rg effortse.g.
TSUBAME 2.0, T2K follow ons

- The ES vs. TSUBAME 1.0 battle

- The ES2 & Jaxa Fujitsu vs.
T2K&TSUBAME 1.2

- NLP vs. Gen 2 T2K&
TSUBAME?2.0?

TSUBAME Upgrades Towards Petaflops

" ’ Us >10P
Sustained Acceleration 5%,
Japanese NLP
>10PF (012-1Q)
()
10PF T //"i
T
LANL Roa N
i pB 84M // D) TSU 7.2,1’
y B /
BtueGenelt—qg Gg 57% 4 A7PF2|>2”$<"~0
360TF(2M3(200;1:/:/ " 70)
' 7 7.
100TF = ~ & 00 212
O/ : %;/7: 00&2/1
Earth Simulator 7 SUB,q '008} t°~U, ?
40TF (2002) '7'°B Ml?gs. 6’7~740
10TF4 (2006‘) Tr Te
Titech Ca
Cluste
- 1.3TF
1TF : : : 15
2002Mar 2004Mar 2006Mar 2008Mar 2010Mar 2012Mar

Biggest Problem is Power...

Peak Watts/

Machi CPU Cores Watts 2o MFLOPS/ cpy Rafiecf.
acnine ores aTtTs

GFLOPS TSUBAME

Watt Core

TSUBAME(Opteron) 10480 800000 50400 6300 76.34
TSUBAME2006 (w/360CSs) 11200 810000 79430 98.06 i 72.32
TSUBAME2007 (w/648CSs) 11776 820000 102,200i 124.63 % 69.63 1.00
Earth Simulator 5120 6000000 40000 667 1171.88 0.05
ASCI Purple (LLNL) 12240 6000000 77824 1297 490.20 0.10
AIST Supercluster (Opteron) 3188 522,240 14400 27.57 163.81 0.22
LLNL B6/L (rack) 2048 25000 57344 22938 1221 1.84
Next Gen B6/P (rack) 4096 30000 16384 54613 : 7.32 438
TSUBAME 2.0 (2010Q3/4) = 160000 810000 1024000} 1264.20 i 506 10.14

TSUBAME 2.0 x24 improvement in 4.5 years...? = ~ x1000 over 10 years

Circa 2004 My Prediction for a Petaflops Machine
in 2004 (as TSUBAME was being designed)

“Future AV Vector-Parallel” “Future PC Vector—
— Graphics

; “- '.i'}if

IBM/ Toshiba/ L or DSP

SONY Cell (Chip

Vector) + SMT/ |EE | ~1 TFlops @ 0.045
CMT

956GF—1TFlops b/lulticore SMT/CMT,
(@0.065-0.03) 50Gflops@0.065 1

100CPUs/Rack => A 100 Teraflops per Rack

GPUs as Commodity Vector
Engines---True Rebirth of Vectors

E.g., NVIDIA Tesla, AMD Firestream

- High Peak Performance 1TFlops
* Good for tightly coupled code e.g. Nbody

- High Memory bandwidth (>100GB/s)
» Good for sparse codes e.g. CFD

» High 3DFFT performance (>100 GFlops) due : |
primarily to memory bandwidth i GeFonce 8800GTS

-

- Looks very much like classic vector machines

* Many many registers, small cache, abundunt
multithread ~= long vectors

- Restrictions: Limited non-stream memory
access, PCI-express overhead, etc.
> How do we exploit them given vector

computing experiences?

TSUBAME 1.2 Evolution (Oct. 2008)
World’s first GPU Accelerated SC

 Storage
. 1.5 Petabyte (Sun x4500 x 60)
S — 0.1Petabyte (NEC iStore)
radioke Lustre FS, NFS, CIF, WebDAV (over IP)
sQGB/s aggregate I/0 BW

Sun x4600 (16 Opteron Cores)
32~128 GBytes/Node
10480core/655Nodes

Voltaire ISR9288 Infiniband x8
10Gbps x2 ~1310+50 Ports
~13.5Terabits/s :
(3Thbits bisection)

NEC SX-8i

10Gbps+External i f‘-wm% 10,000 CPU Cores
nified INWSENT" 300,000 SIMD Cores

network

NEW ‘ e ~900TFlops-SFP, 21.4TeraBytes

T e 50.4TeraFlops

HarpertOWITACSQ 80TB/s Mem BW(x2 ES) | \REGI Grid MW
90Node 720CPUBEEGEE - ,

8.2TeraFlops ”W]%'
NEW: co-TSUBAN
90Node 720CPU (Low Power)

B2 PCl-e
~T7.2TeraFlops

CIearSeed CSX600
SIMD accelerator
360 648 boards,
35 52.2TeraFlops

Nvidia Tesla T10P-one card per node, ~680 cards

High Performance in Many BW-Intensive Apps
10% power increase over TSUBAME 1.0 (130TF SFP / 80TF DFP)

But wait, we now have this in commodity...the
GPUs (Tesla FmeS’rream Larrabee, ClearSpeed)

65~55nm(2008)
=>15 nm (2016)

x20 transitors (30 bil)

20TF FMA SFP

10TF FMA DFP

Thread Processor
Cluster (TPC)

Thread Processor
Array (TPA)

Thread Processor

nVidia Tesla T].O 65nm 600“’\2 14 bil Tr “M S | F A FPUs”

jllllllllllllllllllllll\

“Powerful Scalar” !1..5_ T \ \
ARARRRARARRRRRRNARNNANNAS L !rl “ | .
‘ ; Y S

|_ " ' :F \
ANARAARARAARARAARAARANS H: e Yy . - 102 :
20GBytes/s ' Tleidnterdsa-4 GBytes/s \

l | Tesla Accelgrator' !

L2 2 B T B2 B B B T B B B B E B

s ; : _"\

6'n‘|t‘“ ‘esl s.

5

¥ e
stallation...

1
{
11

g« While TSUBAME in,Prodction Ser

SRR ANSAAARR AR R AR R R R

!y —

Historical 10 year Parallel---Commodity
x86 Clusters vs. GPU Clusters

* The 1st HPC GPU Cluster-2004 Stony Brook-U

- Zhe Fan eft. al. "GPV Cluster for High Performance
Computing”, SC2004

- 32-node Xeon 2.4Ghz + nVidia GeForce FX5800
- The 1st HPC GPU Cluster-2008 TSUBAME 1.2

- X86 Cluster GPU Cluster

1st Cluster 1993-4 (Wigraf@NASA) 2004 (Stony Brook)
1s* Top500 1999 (Bonne Parnass?2) 2008 (TSUBAME)
1st Tera/Peta 2004 (LLNL MCR) ?2? 2010-2011

1st Peta/Exa 2008 (Ranger (1/2)) ?2?2?2 2014-16

Extrapolating to Exascale
- 100MW power capacity => 1TFlop / 100W

» nVidia Tesla 10p@55nm is 1TFlop SFP/
~170W incl. 4GB memory circa 2008...
- 1-2TF DFP @ 100W w/8-166B in 2012-13@22nm

+ 10KW/m? power density => 10,000m?

- Save cooling energy via ambient cooling, PUE < 1.2

- Various power optimization innovations

* Network design to stay within 25% of system
power and cost

- 10TF Nodes => 100,000 nodes, hard to build full
fattree, bisection BW will suffer greatly

, !
In fact we can build a Exaflop

ouUa. oC in_c0U.1

@Tokyo---One of the Largest IDC in the World (in

Toyosu, Tokyo... Built in 2003)

Can fit a 10PF easy, 1 Exaflop in 2013

On top of a 55KV/66W Substation

| 150m diameter, 140,000 m2 IDC floorspace (x40 ES)

'& 70+70 MW = 140MW power -

i Can fit both Google/MS IDC or Any DOE center
Remember interconnect cost 25% at most

— —~ - And can run.Linux; Cloud/6rid-interfaces, and HPC
languages for accelerated & hybrid programming...(and
olsrthat—Jeff mentioned, which are all important)-

3) o 17 v)) L)

" Merger! ot _SGeCElters um,C}G;'HEI*V

Future Architecture Trends and their

Applications/Algorithms
The “h? (component density) vs. 1 (I/0 BW) problem "
+ Very Dense computation
- Vector/SIMD/Multithreading arch.
- Power consumption the issue
* Good absolute local memory BW
- 1TB/s per chip soon, fast/opto signaling, 3-D packaging
- but deepening memory hierarchy

+ Relatively poor node I/0O channel and NW BW

- (only) 40Gb/1006b soon, long distance signaling hard @
;5

- There might be breakthrus, (e.g. planar laser diode
emisson), but...

Very poor Disk Storage BW

- SSDs are just boosts, no exception to the
laws of physics

Can we make petaflops scale to exa
in "non-capacity capability app"?
» Capability --- latency matters, strong scaling

* =>» requiring 1~10KB 1us messages to be efficient =
computation loop less than 1 us.

=> Can only tolerate 1/1000 fluctuation i.e. both loop and
communicaiton will be 1ns, c.f. strong scaling code on a
petaflops machine

=> Ev%n with 3-D stencils expect 1/30~1/100 i.e. 10-30ns

Q
Q

5 O Are we being hypocritical

c 2 i ?

o £ just to get money*

» O

¥ 0 _

Peak Performance

A Typical "Weak Scaling Capability App”
- Capacity App in Disqguise -

/Ini tialize: \

Loop until computation gets done {

MPI AllScatter();
Do work within node for seconds,

minutes, hours..;,
MPI AllGather() ;

}

\\Einalize; 4//

--- And is grossly inefficient compared to say
simple workstealing parameter-sweep esp. if
load is unbalanced

So the world will mostly go ensemble
--- capability at core, capacity at large ---

Bar'o‘rroplc S- Model QM/MM Molecular

Ensemble climate Simulation
simulation

"How are we to judge sciences, in that using 100,000
cores in a single MPI app has more scientific
significance than 100,000 single-threaded app, as
they both require system scalability in the des:gnQ”

BTW, MW may need to scale better for "capacity” e.g. BQ systems

DOE SC Applications Overview

(following slides courtesy John Shalf @ LBL NERSC)

NAME Discipline Problem/Method Structure

CMB Analysis

AGCM

General Relativity

MHD

Vlasov-Poisson

DFT

LU Factorization

Molecular Dynamics

Latency Bound vs. Bandwidth Bound?

 How large does a message have to be in order to
saturate a dedicated circuit on the interconnect?

- N¥2 from the early days of vector computing
- Bandwidth Delay Product in TCP

1.9GB/s
7.3us 6.36B/s 46KB
5.6us 1.5GB/s 8.4KB
5.7us 500MB/s 2.8KB
1.7us 2GB/s 3.4KB

Bandwidth Bound if msg size > Bandwidth*Delay
* Latency Bound if msg size < Bandwidth*Delay

- Except if pipelined (unlikely with MPI due to
overhead)

- W/HW DMA a few 100ns but not much more

(Original slide courtesy John Shalf @ LBL)

calls <= buffer size

Collective Buffer Sizes
- demise of metacomputing -

Collective Buffer Sizes for All Codes

100 -

. i
T K9\5% Latency Bound!!!
60 =Don’t need all that
T global NW bandwidth¥
40 =Great news for weak

scaling code¥
=Bad news for strong
scaling codes

20 -

0 I T T I T I
1 10 100 1k 10k 100k 1MB

buffer size {(bytes)

(Original slide courtesy John Shalf @ LBL)

GPUs as Commodity Vector Engines---
True Reblr’rh of Vectors

Traditional : Unlike the conventional accelerators,

Accelerat
ccelerators GPUs have high memory bandwidth.

Since latest high-end GPUs support

Computation

double precision, GPUs also work
_as commodity vector processors.

—The target application area for GPUs is

—very wide.

Memory Access

= How do we utilize them easily?

Folding@Home Using GROMACS <3

NVIDIA

nano seconds of |
simulation per day Yy

"\VODCA

800
700
600
500
400
300
200
100

0

Fantastic but obvious speedups

The new JST-CREST "Ultra Low Power
(ULP) HPC' “ Project 2007-2012

Generalized Autotuning Scheme

ERAFLOP OF PERFORMANCE

ULP HPC ABCLibScript: Algorithm
A Selection
SIMD-Vector
. . 1ABCLib$ static select region start.—
(GPGPU, etc.) Bayesian Merging of Model and IABOLIbS saracite th ol sa_NB,ENpm)\
IABCLib$ select st b tart
Measurement WABOLES according sstmated
|ABCLib$ 2.0d0*CacheS*NB)/(3. 0d0“NPrC)\ cobt ons
Bayes model and distribution ' !W\
2 il
¥, NN(””%)/ of exe. fime IABCLYS - selcts E 3 o R
w|B.o? ~N(§Tﬁ\oz/i€0) ECLES accordn ®
! ' NAV el IABCLibS 0’cs*oNB/2d' o)
> o ~Inv-x*(v,0%) ar
* Measured distribution a o scloct rapion

Modeled ULP-HPG /0wl ok

HW, Middleware, et¢. ™" "2" R /Optlmlze
PowerIPe>K\

. :“iﬂlf\“ﬂ\l
LILA > ’

U
Modeled ULP-HPC
Applications

2016 TSUBAME
becomes 1/1000

Microsoft TCI HPC-GPGPU Project

(worwspggsearch P
Reséarch us f(x] crory

Advanced - :
Bioinformatics/ / Bioinformatics
. c\ Acceleration
Proteomics /g o '3.p All-to-All
PrategrRomking

Hybrid Massively Parallel
“Adaptive” Solvers +
GPGPU FFT and other
Acceleration Kernels

- Improving GPGPU
Programmability w/
Library/Languages
e.g. MS Accelerator
- High Dependability w/
large-scale GPGPU
Cluster
- Madel-based GPGPU-
CPULoad Balancing

Need x1000
acceleration
over standard PCs

N

SIMD-Vector
Acceleratio

i, Scalar
Multi-Core

K Coupled

NPC Acceleration

Towards Next
Gen Petascale
Personal
Clusters and
Desksides

All-to-all 3-D Protein Docking Challenge

P1 P2 P3 P4 PS5 ...

P1000

P1000+

Fast PPl candidate
screening with FFT | vy

"

1,000 x1,000 all-to-all docking
fitness evaluation will take only

1-2 months (15 deg. pitch)
with a 32-node HPC-GPGPU cluster (128
GPGPUs).
cf.

~ 500 years with single CPU (sus. 1+6p)

~ 2 years with 1-rack BlueGene/L

Blue Protein system

CBRC, AIST zg

(4 rack, 8192 ngdes)

Calculation Flow for 3-D AA docking

.......
nun®

.
4

candidate

Protm 1 *. docking sites
s voxel : cluster
- data - complex :J> _“j> analysis
convolutio (0
CUDA ' RV

Protein 2

Docking Confidence level

Calculation for a single protein-protein pair: ~= 200 Tera ops.

3-D complex convolution O(N3log N), typically N =256

X 200 Exa Ops for
Possible rotations R =54,000 (6 deg. pitch) 1000 x 1000’

Bandwidth Intensive 3D-FFT for GPUs

@ Tokyo Tech. [Nukada eft. al., SCO8]

Our 3-D FFT algorithm consists of the following
two algorithms

to maximize the memory bandwidth.
(1) optimized 1-D FFTs for dimension X,
(2) multi-row FFT for dimension Y & Z.

The multi-row FFT computes multiple 1-D FFTs
simultaneously.

Used for vector machines which provide high
memory bandwidth.

Bandwidth Intensive Approach

I A A A |
Input
Our 3-D FFT algorithm consists of the 4 stream

following two algorithms
to maximize the memory bandwidth.

(1) optimized 1-D FFTs for dimension
X, 4-point FF]

(2) multi-row FFT for dimension Y & Z.

The multi-row FFT computes multiple
1-D FFTs simultaneously.

Adapted from vector algorithms, This algorithm accesses multiple streams, but
assuming high memory bandwidth. each of them is successive.
Since each thread compute independent set of
small FFT, thousands of registers are required
Solution: for 256-point FFT, use two- pass 16-
point FFT kernels.

Comparison with CPUs
GFLOPS
90
60 I I |

Phenom Core2Quad Opteron CELLBE 8800GT 8800GTS 8800GTX GTX280
9500 Q6700 16core (PS3)

Performance of DP 3-D FFT on
o CUDA and TSUBAME

100
80
60

40

OpenMP ver.

20

0 l-l-lll

GTX 280 1node 2node 4node 8node 16 node 32 node 64 node
Tokyo Tech TSUBAME 912 CPUs

MPI version is used for computation with multiple nodes

Performance including Data
Transfer

The Worst Case:

GPU computes only FFT, and CPU
computes all the others.

Ex) simply replacing CPU library by 80
GPU

Ex) data come from 1/O devices

We have to transfer data between
host and device using PCI-Express
bus.

In the best case, the host CPU is used
only to control GPUs. 8800 GT 8800 GTS 8800 GTX

Main Flow Chart

Read geometry data of atoms of

Proteins from PDB, preprocess, and
transfer both to the GPGPU card.

(benerate 3D Grid data on the card.

for ligands rotate by 6 or 15
degrees increments

Conduct two forward transforms,

one backward transform, and an
element-wise multiplication.

Find the best docking position with

statistical clustering
P on GPGPU Card
sk—as much card in node as possible

- 128 8800G6TS GPGPUs
- ohe head node.

- Three 40U rack cabinets.

» Visual Studio 2005 SP1
» nVidia CUDA 2 .x

Heavily Acclerated Prototype
Cluster System Conflgum’rlon

+ 32 compute nodes

* Gigabit Ethernet network

* Windows Compute Cluster
Server 2003 SP1, planned
2008 migration

Performance Estimation for 3D PPD

Single Node
Power (W) | Peak (GFLOPS) 3D-FFT Docking Nodes per
(GFLOPS) (GFLOPS) 40 U rack
Blue Gene/L |20 5.6 - 1.8 1024
TSUBAME 1000 (est.) | 76.8 (DP) 18.8 (DP) |26.7 (DP) 10
8800 6TS *4 | 570 1664 256 207 10~13
System Total ! Only CPUs for TSUBAME. DP=double precision.
of nodes Power | Peak Docking MFLOPS/W
(kW) | (TFLOPS) (TFLOPS)
Blue Gene/L (Blue | 4096 80 22.9 7.0 87.5
Protein @ AIST) (4racks)
TSUBAME 655 (~70 ~700 |50.3 (DP) 175 (DP) |25
racks)
8800 6TS 32 (3racks) |18 53.2 6.5 361

BG/P vs. GTX280 would be even better for GPUs

45

Accelerating CFD on GPUs

(Prof. Takayuki Aoki, Tokyo Tech.)

Safety NIr

INT Explosion

Weather/

Animations Courtesy Prof. Takayuki Aoki @ Tokyo Tech.

Rayleigh-Taylor Instability

Heavy fluid lays on light fluid and x90

Eﬂfet?lglc?ﬂation: 512 x 512
0 oE oF
L + o+ = ()
Jaf ox dy
e pu | PV
2
pul p_|PU+P| o P“:
pv puy pv +p
e eu +p1/l €V+pV

88 G FLO PS using

GTX280

Phase Separation

Phase transition dynamics is described by the
Bgﬁﬁ?rﬁlﬁ'a%'?" &ﬂﬂ’tion:

P IH H : free
—w=LV2 — —CV*Y ﬁe__rg,}g_qu
ot o) P
Discretization: 9"y — Wiszy = Wiy 7O, =AW, W
ox* Ax?
84
axz(;lj/z = (Wi e~ 21Pi,j+l +P, 0

_2wi+1,j +41Pi,j —211),-_1,]-
+1P,-+1,,-_1—21P,-,j_1 +wi—1,j—1)

3-D Computation of Phase Separation
Mixture of Oil and Water:

158 GFLOPS using GTX280

Used register number = 46 x 1 6 056 X 256 x 256
> nvcce option —maxrregcount 32

for G80, 92

Real-time Tsunami Slmula‘hon

Collaboration with ADPC (Asian
Disaster Preparedness Center)

Early Warning System:

Sensor Data Real-time
Extrapolation » lgh CFD
Shallow-Water Eq. accuracy
oh dhu . ohv 0
Conservative Form: -
Assuming of dx 0y
hydrostatic balance hu 9 o1\ ohuy 9z
in the vertical + hu” +—gh” |+ =-gh—
L. ot Ox 2 oy ox
direction, N ; | ;
v oY, (hv2+—gh2)=—gh—z
2 50)))

3D =P 2D equation o " Tox o

Numerical Methods
of Tsunami Simulation

m 2-dimensional Problem : Directional-Splitting
Fractional Method

m Point Value Comp. : Characteristic-based Method
using Multi-moment Interpolation

m Integral Value Comp. : Conservative Semi-Lagrangian
CIP +IDO

m Run-up to dry area: thin water layer and
artificial viscosities

o1

GPU Performance

Speed Comparison

x-direction : y-direction=10:7

Current Speed-up

GPU :CPU=62:1

GPU - GeForce GTX280 (sp = 240, clock
1.3Ghz)

CPU — Xeon 2.4GHz 6MB Cache Memory

World-Wide Real-Time
Tsunami Simulator

. 9 GPU 600kmx600km
241 GPU 5000kmx5000km (500m mesh) (100m mesh)

Multi-GPU: Riken Himeno Benchmark

(Prof. Takayuki Aoki and Akira Nukada, Tokyo Tech)

RIKEN Himeno CFD Benchmark Himeno for CUDA

<+ < 64 > 4&
Poisson Equatioyy:. (Vp)= 0 64+2‘/ 1 block =
(Generalized coordinate) d 16x16x8
compute
’p 9’p 9’ 9’ 9° 9° region
]2)+ 129+ 129+oc p+|3 p+y p=p egio
0x dy 0z 0xy 0xz 0yz Block has
Discretized Form: 12842 256 thread
Pisjk = 2D s ¥ Picji Pijwik = 2D,k ¥ Dijog Dijwst = 2Pk * Dijic Total 256
Ax? + Ay2 + Ay2 blocks =
Pisi ek — Pici ek — Pivijoie T Picijoik 65536
T 4AxAy M threads
Pistjin — Pictjint ~ Pistjorx T Pict i x
+p
4AxAz
ry Pijrka ~ Pijak=1 ~ Pijoik-1 T Pijika —p
="
18 neighbor -
poi?lt access | @ "/. Boundary region usegd for

transfer

4 GPU node parallelization
so scale well mi*!+; »~
Y 4

(Sh""l"l ~l

-

_

Host

Open MP
Parallel

64x64x32

64x64x32

64x64x32

64x64x32

64x64x128

PCI
Express

e
*S

GPUs

[

de)

GeForce 8800
Ultra x 4

4GPU Parallel Performance

S Model [65x65x129]
1 GPU (no data transfer) 30.6 GFLOPS

(0.269sec)
2 GPU (16kB transfer) 42.5 GFLOPS

(0.193sec)x53_1 acceleration % 0.976 GFLOPS (8.431sec)

""""4"GPU"'(32kB'tra'h'sferRefeIE’ﬂQ GFLOPS ™"
M I\gﬂqugﬁ?g x257]
GPU (no data transfer) 29.4 GFLOPS (2.32
2 GPU (66kB transfer) 53.7 GFLOPS (1.275sec)
4 GPU (131kB transfer) 83.6 GFLOPS (0.819sec)

L Model [257x257x512]
1 GPU (no data transfer) @

2 GPU (262kB transfer)
4 GPU (524kB transfer) 93.6 GFLOPS (5.974sec)

C.f. NEC SX-8 6 CPU (96GF Peak) 38.3GFLOP

MFlops

Hirg

Multi-Node Himeno on TSUBAME

700, 000

600, 000

500, 000

400, 000

300, 000

200, 000

100, 000

0

Joint wark Tokyo Tech

NS0, NRE)

552, 387

153, 884 153, 707

1

289, 969 297, 581 307, 704

| 32GPUs 650GFlo

| fm.)

318, 787

ps<« |

o |

4 8 16 32
BXL 1GPU/node 153, 884 289, 969 346, 877
BXL 2GPU/node 153, 707 297, 581 363, 034 318, 787
OXXL 2GPU/node 307, 704 552, 387 650, 609

] a

faXa]
Urvo

axL 1GPU/node BXL 2GPU/node

OXXL 2GPU/node

Multi-GPU Parallel Sparse CG Solver
[Cevahir et. Al. ICCSO09]

- - - - L : ‘ i
R — M_lxed_._p_re_c__l_s,_l_o_n_.v_A__n.th.m.et| M\W\“ .
yo JA2GPY S A S '
—m— 1GPU %
) R CPU ;',' ||." r ‘I-
&10 ‘t,_..-.-,‘.fﬁ'._:.; — Jofrnndy '.s '.' ‘?;' Y
A N\ NN A/
o _‘._.I“ . l'.l f | n—m - -,.._- s - \ .
5 B oo, Bw SRR 1:_"‘)-?‘:.:"‘{ .. | [T k :.,':; :,A.A.A.Y.A.,__‘:y. .
| =
p =t ¢ + 0ttt 4+ + 4+
E 5892293 e ENEE 2T 52
o % (%] o -~ 2 ¥ A W o 5 & = — w ™ (=})
S < =5 1 EE 4 % g £ o5 o2 o2 XL - B
= Y 2 3 = ¥ £ S om = 5
E g G = n g g g "ﬁl bl =

14.5GFlops 4 GPUs (nVidia 8800 GTS) vs.
0.54GFlops 4 Core CPU (Phenom 2.5Ghz, DDR2-800)
Double Precision FP using mixed precision technique

(Sparse Matrix collection from UFlorida (size 1,440 to
1,585,478)

Portfolio of Tokyo Tech. GPU Computing
Base Technologies for HPC & eScience

- TSUBAME 1.2 (680 Teslas) & 2.0
+ Kernels(FFT, Dense/Sparse Matrix) I
» Parallel Algorithms(Large FFT, LINPACK, CG).

+ Task & Resource Mgmt (Heterogeneity, oS
Scheduling, BQ Scheduling, etc.)

+ Fault Tolerance (ECC, redundant computation,
GPU checkpointing)

» Languages (OpenMP on GPU, Accelerator, MP)

* GPU Low Power computing (power modeling,
measurement, optimization)

60

DUl maAA~Arelhir £rrnarm meramsanaclh +A AsarnlAaviva s/ 1N

Software-Based ECC for GPUs (N. Maruyama)
Possible Collab. w/MSR Vivian Sewelsen and HPC Cluster

Error checking

' GPU Global Memory
i, GP_U qc?mputmg wiite |,
sl reliabiliy Read | |Userares
s T % No ECCs on GPUs yet => Bit %‘;‘,"fl Writ
flip errors? e
@R | arge scale cluste|| @ Read | [Code Area

quite problematic 3\ 6‘

-

Software-based ECC on GPUs
Read : Read ECC data and check

Neo . Our CU DA version Write : Generate ECC and store alongside data
> ,memtest86+ 60 GPUs on .,
?5 jg RaCCOOH 2000 |- +gEtJJ N body Problem
= GPU Parit

q6 20 § 1500 [~ GPU ECCy o
50 & 1000 |— Only 7%
Q 500 overhead
& 10 . | | | ___W/ECC
2 0 -t -~ 1024 2045 ‘196 8192 1638

0 10 20 30 40 50 60 " X50 exec.

Number of Bit-Flip Errors time over
CPUs

Power Efficiency in 3-D FFD

GPU Computation Idle ‘Power = GFLOPS | GFLOPS/W
RIVA128 126 W 140 W 10.3 0.074
8800 GT On GPU 180 W 215 W 62.2

8800 GTS On GPU 196 W 238 W 67.2

8800 GTX On GPU 224 W 290 W 84.4

CUDA GPUs have four times
higher power efficiency than CPU
in high-performance FFT.

RIVA128 is an old, low-power GPU,

to measure pure power consumption

of host system (CPU, chipset, memory).
The interface is legacy PCI.

62

W]

electricity [

Himeno Size M Power
nt

200 T HimenoBM
—— CPU (whole:65.0's, init:2.12 s)
ol GPUCPUS0.0903, speed-upo111 | JACODI
180 - Jacobi part:GPU/CPU=0.0596, speed-up=16.8| 3 SPU
Av. Power 160W
160 7 Exec. Time:62.88s
* GPU
140 1= avg. electricity: B Av. Power:170W
Gru/cPU=106 Exec. Time:3.75s
120 |. ol e energy: -~ GPU/CPU
CPU=1.04E+04 1, GPU=9.68E+02 J Power:106%
100 e 20 30 40 0 60 70 E6n§;g/y: 17115.8
— 0. 0

elapsed time [s]

For extreme memory intensive CFD app GPU uses ,
only 6% of CPU energy

- 1. We can build an exascale

system---with all its problems "It /s the W/ill”

- 2. Capacity apps disquised as
capability will result in
significant loss of efficiency

- 3. The entire machine can be
more or less used for large jobs
but will have room left over for
capability

- 4. One would need ecosystem
and growth model to improve '
app to be more capability :
oriented as problem scales —— /’\ - <

- 5. Next generation Cloud and SC
centers will converge, with low
cost HPC networking and
commodity acceleration

Towards TSUBAME 2.0

Earth Simulator = TSUBAME 4years
TSUB Japanese NLP

x 40 Downsizing P25 SAlg >10PF(2012) o
S T “Pr, S0 UsS>10P ~O
~7H

(2011~1

US/EU US NSF/Do
Petascales (2010

TSUBAME = rgro,% (Peak)

(2008) o

Uk,,;. 9 K, O
1PF TTSUBAME 2.0 "o 7;,%, 08"

x40 downsizing

. plue@ne
again? 360TF(2005)
100TF -} r 0
SU @) 770
Earth Simulator SUBA 28GB Ty
7/ No.. Por,
1OTE 40TF (2002) & % Odlgg (7a e 7,
- 7
TR (7Q2 02008) Iy S 7 p
Titec 00¢g
Ca Grid KEkK 59TF
17 T ¥ 1.3TF BG/L+SR11100

2002 2004 2006 2008 2010 2012

66

Road to Exascale

2012 10PF (Japanese NLP SC etc.) !
2019 1ExaFlops (Leadership mpchinesb .

TSUBAME 4.0 > 100PF | !
I Desktop 1PF | !
| |
I I:/% -
100PF | 70;;’;%@ p
I (s
1PF]~~~ """ °7°7° Roags A
7.579R
gy
PP = = = g == m m m — o = — 8 — — o —
35-07?@7@0 ° I
A\fé’og;(: :
100TF . |. :
Earth imulator (; UME : : 7~ :
10TF o 0T %7 06) " 085 | : berB4M$ I
. (o] |
Lroc” KEKSOTF Gng, : | | Fesg M6
1TF 4 SSFASTF BGIL+SR11100 %00, A : | l "l?'e ! .
v 3 1 1
2002 2004 200 08 2{)10 2012 2b14 2(?16 20:18 2020
! !
: | |
I |
1 |

TSUBAME in Top500 Ranking

Jun 06 | Nov 06 | JunO7 | Nov O7 | Jun 08 | Nov 08 | Jun09
Rmax | 38.18 | 47.38 | 48.88 | 5643 | 67.70 | 77.48 2?2?
(Tflops) [HPDC
2008]
Rank 7 9 14 16 24 29 2?7?

» Continuous improvement for 6 times

———— Opteron ————
<= CS 360 ->—=i==== CS 648 ==

<:Xeon g
<= Tesla =»

+ The 2"d fastest heterogeneous supercomputer
in the world (No.1 is RoadRunner)

67

IDC Servers and Cluster SC---

the differences (or are ’rher'e7)
"l,n ,

The Same---the nodes
- Processors (x86)
- Memory (DDR DRAM)

A

- I/0 (PCI-e)
1 - 05 (Linux/Windows), MW
i - Differences
|||| 'l - Network (IB vs GbE) |
(< 10% of machine cost vs. 10-25%)
‘ - Parallel Storage ,
- Power Density
- Parallel SW Stack: (MPI, OpenMP, BQ, ...)
- Operations as a SC

Accelerators?

68

TSUBAME Network: ~1400 port

ExternaFat Tree IB RDMA & TCP- IP
Ethe __

ISecTion
2 88Tbps x 2

Ie mode fiber for

r' conhections

\

Vo
IS

X4600 x 120nodes (240 ports) per switch ~ X4500 x 60nodes (60 ports)
=> 600 + 55 nodes, 1310 ports, 13.5Tbps =>60ports 600Gbp#

Incompressible CFD
Application

Incompressible Navior-Stokes

Equation

V U= O Poisson equation

au 1 - V . un+1
—+u-Vu=——Vp+vAu Ap"' =

ot 0 At
Bl Advection Term: High-accurate

FDM

H Diffusion Term: (Suitablefod @tdler Center

BPWelesity Divergence: Staggered FDM (easy)

B Poisson equation: Red & Black MG (hard)
B Pressure Gradient: Staggered FDM/easy)

Types of Memory Access

IRERRRNNRN

Continuous Access
B A :

Random (Indirect) Access
FEM (Finite Element)

A[i] = A[IP[i]] + A[IP[i-1]]§o-So

Data Dependency X
A[i] = A[i-1] + A[i-2]*C;

Not Good

Poisson EquaTion solved by
MG(Multi 6rid), Red & Black method

B Algorithm
%ﬁlﬁration

. e SOR ===p MG-SOR
Jacobi

B Hardware
Acceleration :

GPU (CUDA) x50?

fi+1,j _2fi,j +fz'—1,j + fz‘,j+1 _2fz‘,j +fz',j—1 _
Ax2 Ayz i,j

Red & Black method

D O
s o
& D O
F [ny] D O
X & g 0O
3) ©
D O
. 0-0-6-60-6-60-06-0600606-006< O
Q0000000000 OCONOGOGFOS
® @ Dependency on 000
@0 QAL 0000000
® ® Continuousdata 000 0 0 @

FR [ny][nx/ FB /
2 00 @RB0 0000000000,
0000000000 OCONOGOGOS
000000000 OCDOCGCONOGIOGFS
0 00000006OGOCGCOOGOGOGOS

Two-Stream Instability
in Plasma Physics

Vlasov-Poisson Equation:

Jdof 9df ek of _0 (9_2(|) _ e(n,—n,)

—— 4+ V- :
ot ox m, dv 0x €0

00
(E=—a—x, ne=ffd\)

[: electron distribution function
n : electron number density

CIP Me".hOd for 2-dimensional Advection

Equation

of . of o, f

—~—+UY—+yv=—=
ot ox

fi,j+1-‘ ‘ ‘-fi+1,j+l

fi,j 9 ‘ ’-fi+1,j

fz‘n+1 = Fe;p(—uAx) = at’ +bE” + fx,iI% + /,

| 2 1 3
a= Ax? (fx,i'l'fx,i—l)_E(ﬁ_fi—l)a b=E(2fx,i+fx,i—1)_Ax2 (fi_fi—l)

120 GFLOPS using 8800GTS

x130

Two-dimensional Burgers Equation

GeForce 8800 GTS
40 GFLOPS

1024%x1024 W

ui,j + ui+1,j + ui,j—l + ui

velocity u at the v-point U = 77

O 4

Homogeneous Isotopic Turbulence

Burgers equation

Poisson equation

82p+82p_ 1 (au 8\/)

9> 2 +
x° dy” At{ox dy

Correction
a_u _ 1 op @ _ 1 op

g pax o pay

I%J

1024x1024

Compressible CFD Application

High-accurate numerical Scheme becomes
very important.

Numerical Scheme IDO-CF

Y. Imai, T. Aoki and K. Takizawa, J. Comp. Phys., Vol. 227, Issue 4, 2263-2285
(2008)

; j+Ax
fj—l P12 =[;_Axfd3 f] P2 =j: fd fj+1

J

@ @ @
- A_X > - A_x >
F(AX) = f/'+1 >
Four matching o F@dx=p P =, [Fdc=p,.
Lcj?‘r'l(ﬂi;iﬁl{]‘s : c= 2 3p_;+1/2 +3p_/—1/2 - 6fij _é f_;+1 _2fj + fj—l d=2 pj+l/2 - pj—]/2 _ fj+1 - fj—]
4 AX 4 Ax? Ax® 2Ax
%OFe'gfl_Clz%)l]‘_\}g - pj—1/2 fj+1 - fj—l
—F(0) = . _
0x Ax 2Ax
iF(O) 5 3012 +30,., —6F,Ax 3 Jia =21+ 1.
2 - 3 2
0x 2 Ax 2 Ax

2-D Computation of Phase Separation
114 GFLOPS using

GTX280

Mixture of Oil and Water:

512 x 512

'lpi—l,j+l' 'lpi+1,j+1

\ /)
| ;
w,-_z,j wi,j 1Pi+2,j \
@ O & O o (Y
II _—
‘wi-l,j-l‘ ‘wm,j-l

Thou Shalt Specialize or Not

HPC Architectures RIP...

Custom CPUs: Too many to be told...

Accelerators: Vector options on CM-5, Meiko-CS, Alliant
FX, Grape... (RIP)

Very small ecosystem---no scale of economy
Arcane programming environment
Quick catchup by the “killer micros”

Not many code ported for fear of deprecation

+ Specialized HPC Architectures Liveth(!)

- NEC SX, Fujitsu PrimeXXX, SciCortex
- Are they like birds evolved from Dinosaurs?

(e ®)
FUJITSU THE POSSIBILITIES ARE INFINITE

“Why HPC Architecture Must be
Custom Built in the Exascal Era”

2007-11-28

Slides Coutesy of Hisa Ando
(Former) Senieor Architect
Fujitu Ltd.

(Abridged and Translated by Satoshi Matsuoka)

83

Exaflop HPC Energy Consumption "

®In SCO07, Ray Orbach “Exascale by 2016”

®Energy Consumption at 90nm
m FPU: ~500pJ/ppPFoP
¢ (GRAPE-DR: 65W/256GFlops=250pJ/DP FOP)
m General Purpose CPU: 20nJ/Cycle
¢ 4FOP/Cycle => x10 power over FPU

®1 Exa Flops power requirement

m Circa 2006-7: 90nm technology: 500pJ x 1078 =
500x10° W

m Circa 2016- (conservatively) suppose 22nm
technology

& Gate capacitance 22/90 = x 0.24, Vcc 0.8V/1V=x0.8
& Power « CV2=0.24 x 0.82=x 0.15

¢ 1 ExaFlop FPU array: 0.15 x 500pJ x 1018 = 75MW(!)

o)
FUJITSU
84 THE POSSIBILITIE S ARE INFINITE

Why Special Architecture for Exascale? - '

® Total System Power ~= 1.5GW~2GW (!?)
m Extrapolate to gen. purpose CPU: 75MWx10 = 750MW

m Memory, power delivery loss, cooling, I/O and storage... incur
additional x2~x3 overhead

m > $100 million in Utility Bill(!)
® Save Power, save power, and save power:

m Objective: 1/30 power reduction

¢ Energy reduction of FPUs---low power design

¢ SIMD-parallel control of massive FMA FPUs

+ Powerful scalar processor---beat Amdahl’s law gz?v%au"a PP

® Claim (by Ando) such a processor cannot be general-
purpose (= for Commercial Apps)

® |.e., Exascale machine must be (made of) special-
purpose HPC architecture

o)
FUJITSU

85 THE POSSIBILITIES ARE INFINITE

Spemal Purpose Processor for Exascale .

Server
Processor

[—

128Fopx5GHz
= 640GFlops

65nm technology 22nm technology

AMD 4 Core Opteron 32 Cores
Chip 283mm?2 Chip 283mm?2
Core 26mm?2 Core3.5mm? Grape-DR
90nm technology
8 Core (28mm?) Suppose: D12FM+FA
+2048FMA (128mm?3) 16FMA/MmM?2
Cust L +16MB L2$/LM (35mm?)
ustom $ | +1O (60mm?) 22nm technology
HPC f v 25(FM-+FA)s/mm?
processor | 4096Fopx5GHz
= 20TFlops

22nm technology o
Chip ~250mm?2 FU]ITSU

86 THE POSSIBILITIES ARE INFINITE

* Equivalent to CACM .,
"Acceleration Again”
Key to Supercompu’riﬁb

AZL4

5 Articles, 4 from
Tokyo Tech on GPUs

HELIE R

(20091 Vol.50 No.2 #4528

PoeSL—%, B - f.i%
—ANTEDEII AL — &

FOM-Y TR F)T 8 e \/)
TU/RBORA-SK Y- CREBHLT— [()

Xen Summit Tokyo(Asia) 2008L #—k
bHZBOBNETIICSY) FHAZS HEIHASEORRERTIBEDHO
bryc3le i

iPHOM “Oj|9H

| A MEROER R

Information Processing Socie! yoUpa
http://www.ipsj.or.jp/

Technology and Architectures for
Future Large-Scale Computing
Systems

U.S. Department of Energy

ASCR High Performance and Leadership

i Computing Facilities

* NERSC

— 104 teraflop Cray XT4 with approximately 9,600 dual
core processors; will upgrade to approximately 360
teraflops with quad core in Summer, 2008

— 6.7 teraflop IBM Power 5 (Bassi) with 888 processors,
3.5 terabytes aggregate memory

— 3.1 teraflop LinuxNetworx Opteron cluster (Jacquard)
with 712 processors, 2.1 terabytes aggregate
memory

e LCF at Oak Ridge

— 263 teraflop Cray XT4 (Jaguar) with 7,832 quad core
2.1 GHz AMD Opteron processor nodes, 46 terabytes
aggregate memory

— 18.5 teraflop Cray X1E (Phoenix) with 1,024 multi-
streaming vector processors
— Delivery of 1 Petaflop Cray Baker in 2008

* Argonne LCF

— 5.7 teraflop IBM Blue Gene/L (BGL) with 2,048 PPC
processors

— 100 teraflop IBM Blue Gene/P began operations April
1, 2008

— 446 teraflop IBM Blue Gene/P upgrade accepted in
March, 2008.

TERATEC June 3, 2008 2

...............

AREnEaCr ~ | = o

FFs @ Argonne

uuuuuuuu

e ,ﬁﬁﬁ/ i

IBM Blue Gene/P=

160K cores, 80 TB RAM, 10 PB disk

Cray XT5 at ORNL > 1 Pflop/s in November 2008

el S — or

g [T

. e S— e—

Peak Performance 1,645 1,382

AMD Opteron Cores 181,504 150,176 31,328
System Memory (TB) 362 300 62
Disk Bandwidth (GB/s) 284 240 44
Disk Space (TB) 10,750 10,000 750
Interconnect Bandwidth 532 374 157

(TB/s)

The systems will be
combined after
acceptance of the new

XT5 upgrade. Each
system will be linked to
the file system through

4x-DDR Infiniband

Traditional Sources of
Improvement are Flat-

10,000,000

Performance
Lining (2004)

* New Constraints
— 15 years of exponential
1,000,000

clock rate growth has ended

100,000

 Moore’s Law reinterpreted:
— How do we use all of those ;00

transistors to keep

performance increasing at - 000

historical rates?

— Industry Response: #cores 100

per chip doubles every 18

months instead of clock
10

frequency!

, e

_ i
0

= Transistors (000)
¢ Clock Speed (MHz)
& Power (W)

\ @ PerfiClock (ILP)
! \ |

1970 1975 1980 1985 1980 1995 2000 2005 2010

— Multiple parallel general-purpose processors (GPPs)
— Multiple application-specific processors (ASPs)

Intel Network Processor IBM Cell
1 (\éVPP Core 1 GPP (2 threads)
16 ASPs (128 threads)) 8 ASPs

T TR picochip DSP
IEETTCTITT)
Gomm | eees e 1 GPP core

[Ffdg [fods [+~ 248 ASPs

1P| Inter-picoArray Interface
lows

1AP280

A Cisco CRS-1
Sun Nlagara 188 Tensilica GPPs
8 GPP cores (32 threads)
<2 Intel 4004 (1971):) .
4-bit processor, The PI’OCGSSOI’ IS the
¢l. 2312 transistors, ne
~100 KIPS, Transistor” [Rowen]

What’s Next?

Mixed Large ——
All Large Core and p——

Small Core
s
—

n - All Small Core ™ -

Different Classes of Chips
Home
Games / Graphics

Many Small Cores

T Business
Scientific
Many Floating- + 3D Stacked
Point Cores Memory

The question is not whether this will
happen but whether we are ready

Source: Jack Dongarra, ISC 2008

Outline of the Situation

Million core systems and beyond are on the horizon

Today labs and universities have general purpose systems
with 10k-200K cores (BGL@ LLNL 200K, BGP@Argonne
160K, XT5@ORNL 150K cores)

By 2012 there will be more systems deployed in the
200K-1M core range

By 2020 there will be systems with perhaps 100M cores

Personal systems with > 1000 cores within 5 years (I have
over > 150 64bit cores in my office now) plus 240 GPU cores

Personal systems with requirement for 1M threads is not
too far fetched (GPUs for example)

E3 Advanced Architectures - Findings

Exascale systems are likely feasible by 2017+2

10-100 Million processing elements (mini-cores) with chips as
dense as 1,000 cores per socket, clock rates will grow slowly

3D chip packaging likely
Large-scale optics based interconnects
10-100 PB of aggregate memory

> 10,000’s of I/0 channels to 10-100 Exabytes of secondary
storage, disk bandwidth to storage ratios not optimal for HPC
use

Hardware and software based fault management

Simulation and multiple point designs will be required to
advance our understanding of the design space

Achievable performance per watt will likely be the primary
metric of progress

Top Technical Challenges

Power Consumption

— Proc/mem, 1/0O, optical, memory, delivery
Chip-to-Chip Interface Scaling

— pin/wire count = 3D packaging
Package-to-Package Interfaces (optics?)
— Signaling rate, density, cost

Fault Tolerance

— FIT rates and Fault Management

— Reliability of irregular logic, design practice
Cost Pressure in Optics and Memory

— CPUs will be smaller fraction of cost

Looking out to Exascale

Concurrency will be Doubling every 18 months
Power and Memory costs dominate
1EF:
100P%

Novel technologies introduced 6
10P
1P

100TF
10TH

1TFE* >
., — l ad - Growth of massive parallelism within|chips

Growth fueled primarily by transustors on a chlp

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Systems Scaling Projections

Begin Full System Delivery (Yr)

Design Parameters
Cores / Node
Clock Speed (GHz)
Flops / Clock / Core
Nodes / Rack
Racks / Full System Config
MB RAM/core
Total Power
Flops / Node (GF)
Flops / Rack (TF)
LB Concurrency

Full System

Total Cores (Millions)
Total RAM (TB)
Total Racks
Peak Flops System (PF)

2004

BG/L

2

0.7

4

1024
64

256
2.5MW
5.6

o.7
5.E+05

0.13
33.6

64
0.37

2007

BG/P
4
0.85

4F

1024
72

512

4. 8MW
14

14
1.E+06

0.3
191
12
1

2012

25PF
8-24
1.6-4.1

8-32"

100-1024
128-350
1024-4096
8MW-20MW
128-640
200-400
M-2M

3M-1.2M
2,000-4,400
128-350

25

2015

300PF
32-64-128
2.3-4.8
8-32
256-1024
128-400
1024-4096
20MW-50MW
640-2000
400-1200
10M-100M

T™M-10M
3,000-10,000
128-400

300

2019

1200PF
96-128-500
2.8-6.0

16-64
256-1024
256-400
1024-4096
30MW-80MW
2000-6000
1600-4800
400M-1000M

4M-30M
5,000-25,000
256-400
1200

ITRS Roadmap for Logic Devices

ae

INTERNATIONAL
TECHNOLOGY ROADMAP

FOR

SEMICONDUCTORS

2008 UPDATE

OVERVIEW

_ Units | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020

Feature Size nm 90 78 68 59 52 45 40 36 32 28 25 22 20 18 16 14

Logic Area relative | 1.00 | 0.80| 063 | 051] 039 032] 025 | 0.20 | 0.16 | 0.12 | 0.10 | 0.08 [0.06 | 0.05 | 0.04 | 0.03

SRAM Area relative | 1.00 | 0.78] 061 | 048] 038 0.20]| 0.23 | 0.18 | 0.14 | 0.11 | 0.09 | 0.07 [0.06 | 0.04 | 0.03 | 0.03

50/50 Area relative | 1.00) 079] 062 | 0.49] 038] 030 0.24 | 0.19] 0.15 | 0.12 | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.03

High Performance Devices

Delay ps 087 | 074] 064)] 054)] 0.51] 040] 034 | 029]| 0.25| 0.21 | 0.18 | 0.15| 0.13] 0.11]| 0.10 | 0.08

Average Device Capacitance relative | 1.00 | 0.87 | 0.76 | 0.66 | 0.58 | 0.50 | 0.44 | 040 | 0.36 | 0.31 | 0.28 | 0.24 | 0.22 | 0.20 | 0.18 | 0.16
Circuit speedup: 1/delay relative | 1.00 | 118 | 1.36| 161 | 1.71 | 218 | 256 | 3.00 | 348 | 414 | 483 | 580 | 6,69 | 7.91 | 8.70 | 10.88
B B 1 o e et et B e e

Vdd volts 110 110 1.10)] 1.00} 1.00} 1.00}| 1.00 | 0.80 | 0.0 | 0.90 | 0.80 | 0.80 [0.70 | 0.70 | 0.70 | 0.70

Vdd/Vt ratio 564 | 655| 667 | 6.10| 422 | 6.62| 6.85 | 6.08 | 539 | 5.49 | 4.82 | 4.10 | 3.50 | 3.48 | 3.41 | 3.37

_Power -Denshy @ Circuit §peedup relative | 1.00| 129 | 165 1.77| 213 | 295 395 419 | 552 | 7.41 | 7.54 | 10.19[10.17| 13.91|17.12] 23.47
*ower Density @ Max Clock relative | 1.00 | 143 | 217 | 231 | 297 | 3.93 | 523 | 539 | 7.00 | 9.75 [10.01) 13.39] 13.30] 17.98] 23.61] 30.33
ralatho 10000 8670 756 .0 5490 47810 41307 096310 238 0208 01470190 00900081 L0072 .0 062

Low Operating Power Devices

Delay ps 152 133 | 117 | 1.03] 090| 079 0.79 | 0.61 | 0.53 | 0.47 | 0.41 | 0.36 | 0.32 | 0.28 | 0.24 | 0.21
/CITCUIt speeaup: vaeiay | relaive | Uo7 | Vb0 | U784 | UBE | U997 | T.TU| T.TU | 143 | 1.68 | T.89 | 212 | 282 | 272 | 30T | 3.63 | 4.4)

vdd volts 090]| 090]| 080)| 080]| 080)] 070 0.70 | 0O.70 | 0.60 | 0.60 | 0.60 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50

Vdd/Vt ratio 313|297 | 281 295| 290 | 3.10 | 3.00 | 3.03 | 233 | 240 | 239 | 2.10 | 2.09 | 2.07 | 2.06 | 2.03

Power Density @ Circuit Speedup | relative | 038 | 048] 048] 059 077 073]1 083)| 1.21 [116 | 147 | 1.86) 166 | 211]| 2.79 | 3.64 | 4.56

Note: units of "relative" represent values normalized

to those of t

he 2005 high performance technology

Figure 6.1: ITRS roadmap logic device projections

1.E«10 -

1.E+00

1.E«08

The Exascale ¢

1.E+07

GFlops

1.E+06

- n. ‘.-A B
1.E+05 d—;:—‘ﬁ-—‘—*

*

PP 1

MPEP

1/1/08 1112 11116

¢ Top 10 Rmax
« = = = +RAmax Leading Edge
. — Rpeak Leading Edge

© Exascale Goal

Aggressive Strawman - 20MWY

i EVOlUtionary Light Simglistically Scaled Power Unconstrained
e e = Evolutionary Light Simplistically Scaled 20MY Constrained
——&— Evolutionary Heany Simplistically Scaled Power Unconstrained
—ay, — Evolutionary Heany Simplistically Scaled 20MW Constrained
e EVOlUtionary Light Fully Scaled Power Unconstrained
i = Evolutionary Light Fully Scaled 20MW Constrained
——pi— Evolutionary Heany Fully Scaled Power Unconstrained

—x% — Evolutionary Heany Fully Scale 20MW Constrained

Figure 8.1: Exascale goals - Linpack.

111720

Darpa
Exascale
Study

Concluded that it will be a

Major challenge to get to
Sustained Exaops performance
Levels by 2020

ExaScale Computing Study:
Technology Challenges in
Achieving Exascale Systems

Peter Kogge, Editor & Study Lead
Keren Bergman
Shekhar Borkar

Stephen Keckler
Dean Klein

Steven Scott

Allan Snavely
Thomas Sterling

R. Stanley Williams
Katherine Yelick

September 28, 2008

ith Dr. William Harrod
2 Program Manager; AFRL contract number FA8650-07-C-7724. This report is published in the

Govemment’s approval or disapproval of ifs ideas or findings

NOTICE

ification:

‘way obligate the U.S. Goverment.
or other data

any rights or permission:
‘manufacture, use, or sell any patented invention that may relate to them.

PUBLIC RELEASE. IMITED.

Processor Parallelism

1.E+06

1.E+06

1.E+04

1.E+03 -

1.E+02

1.E+01

1.E+00

Total System Concurrency

=
m e En
20060 a 6
o og
W ') osg_g_g_‘_si
solssgal CEERR RS aﬁsgeoo
4]
§§oooo o o ® 8 338
00 000 g o og §
o
o nmm 02 © 0 g glo
<><><><8> v
°°°<><>
o
00 0 0
1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/06 1/1/07 1/1/09

© Top 10 = Top System

Figure 4.13: Processor parallelism in the Top 10 supercomputers.

Thread Level Concurrency

Thread Level Concurrency

100.0
53 3ol°
g8 zyamogQn $438838-28¢8
10.0 05‘0098‘08
* O B 2
® o 0 <><><>§§ ©°§§§§;§§°
.°°°‘OO..DDDDDDDg §§§88 g%%g%%
* o ¢
1.0-—5—9*—9@—9—5—2—&—8-—8%—8—3—@—9—8—8 & 980 ©
0o ®° REYeo _ leeeolooo
- *e 0
o
0.1
1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07

¢ Rmax © Rpeak ® Rmax Top System = Rpeak Top System

Figure 4.15: Thread level concurrency in the Top 10 supercomputers.

1/1/09

Parallelism and Locality Trends

Easy to)
paralielize but Just plain
hard to localize hard to
1t (# Woak Scaling EP Apps

Z—Sclence goihg like this X B Molecular Dynamics

Desktop Applications
Sparse Graph Algorithms
¥ High-order DataBase Search
® Ordered Summation
+ HPL
wet® s Coupled Physics
A ====WRF + Cloud and Eco model
: 3"6 Muttigrid
Single Physics
L] Commercial going this way slowly WRF today
Non-uniform fields & grids
' ' GUPS

04 06 08 1 Future of Desktop Apps
Graph Algorithms

o
o

o
»
l
D
=

o

'
®

~

o
no

Inverse of Data Locality

o
o &
/

Easy to -
pa,a"es“yze and Seriality - Coupled organism models

localize

N

Figure 5.16: Future scaling trends

Applications Assumptions

Departmental Class

Data Center Class

Range “Sweet Spot” Range “Sweet Spot”
Memory Footprint
System Mem- O(100TB) to O(1PB) 500 TB O(1PB) to O(1EB) 50 PB
ory
Scratch ~ Stor- O(1PB) to O(100PB) 10 PB O(100PB) to O(100EB) 2 EB
age
Archival Stor- | >0O(100PB) to O(100PB) 100 PB >0(100EB) 100 EB
age
Communications Footprint
Local Memory Expect low spatial locality
Bandwidth
and Latency
Global Mem- | O(50TB/S) to O(1PB/s) 1PB/s O(10PB/s) to O(1EB/s) 200PB/s

ory Bisection

Bandwidth

Global Mem-
ory Latency

Expect limited locality

Storage Band-
width

Will grow at faster rate than system peak performance or system memory growth

Table 5.1: Summary applications characteristics.

Power Constrained Clock Rate

Clock = Power_Density/ (Capacitance_per_device * Transistor_Density * V2 _,)

100

£
14
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
---#---- Peak on Chip - Hi Perf ---++--- Peak on Chip - Low Power
emge= Power Density Limited - Hi Perf Power Density Limited - Low Power
st Tach & Power Density Limited - Low Power

Figure 6.3: Power-constrained clock rate

Gflops per Watt
(0.1 = 100)

1.E+02
O I
=

1.6001 n
g .= n - ,/"’
= P 4 *
e sy, . N
8. I.E+00 ‘4 /‘r" |

o -
& 3 ’__;,1-"/
= I--A- A AT
O 1E0 * e - e =
A v Bl T S x

: RS e
oo /\o&I,y’/. &

1.E-02 A S :

t\c‘ J,
Ul o~ @
Cd V’ .
e
./
1.603 oy
1192 1196 11100 1/1/04 1108 1112 1116 1120
A Historical ¢ Top10o =eee- Top System Trend Line
O Exascak Goal O Aggressive Strawman # Light Node Simplistic

—&— Heawy Node Simplistic +— Light Node Fully Scaled —»— Heaw Node Fully Scaled

Figure 8.3: The power challenge for an Exaflops Linpack.

Power and FPUs to Reach Exaops

60 N\ \ 450
H \ \ + 400
50 : s
. -\ \ 1as0 &
’ (1]
o L
= 40 ; 300 U
®
25 £ . g
E - - - 1250 o
30 5
5 & 4 200 %
Q -
2 20— ¢ 150 @
2 k5
B4] {100 =
10 P h |- - . o =
B A 50
I R
0 B e

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

—&— pJ/Flop - Hi Perf Si ——pJ/Flop - Lo Pwr Si
- =@ == Min # million FPUs/Exaflop - Hi Perf Si - -[=1- - Min # million FPUs/Exaflop - Lo Pwr Si

Figure 7.1: Projections to reach an Exaflop per second.

Interconnect Technology Roadmap

Technology Density Power (pJ/bit) Technology Readiness
(wires /mm)
Long-range on-chip | 250 18 £J/bit-mm Demonstrated
copper
Chip-to-chip copper 8 2 pl/bit. Includes | Demonstrated. Poten-
CDR tial for scaling to 1
pJ /bit
Routed interconnect n/a 2 pJ /bit roughly the same for
packet
router or non-blocking
circuit switch
in 2015 1 pJ /bit
Optical State of Art | 10 9 pJ/bit. NOT includ- | Demonstrated.
(multi-mode) ing CDR
Optical (Single mode) | 300 7.5 pJ/bit Assumes lithographed
in 2010
SOI waveguides
PCB-embedded
waveguide
does not exist
Optical (Single mode) | 300 1.5 pJ/bit At early research stage
in 2015
Optical Routing Add 0.1 pJ/bit (2010)
for each switch
Optical - temperature TEC cooler demon-
control strated
CNT bundles 1250 6 £J /bit-mm Undemonstrated

Table 6.8: Summary interconnect technology roadmap.

Heat Removal Approaches

Approach Thermal Performance Comments

Copper Heat Spreader Thermal conductivity = 400
W/(m.K)

Diamond Thermal conductivity = 1000 | Expensive
- 2000 W/(m.K)

Heat Pipe Effective conductivity = 1400 | Very effective
W/(m.K)

Thermal Grease Thermal conductivity = 0.7 -
3 W/(m.K)

Thermal vias with 10% fill fac- | Effective Conductivity = 17

tor W/(m.K)

Thermal Electric Coolers

Limited to less than 10 W /em?
and Consumes Power

Carbon Nanotubes

Excellent

Early work only

Table 6.9:

Internal heat removal approaches.

High-End Packaging Options

(assumes memory)

Approach Wires/mm or sq.cm Bandwidth/mm Comments
) Routable signal pairs per mm
m e.g. 2 wires/mm per layer * # layers * bit-rate
+— 1 mm per signal pair
Laminate 20 wires/mm/layer (2-4 signal 6 pairs/mm @ 30 Gbps 1 mil line/trace presents
(Ball Grid layers) = 180 — 720 Gbps/mm (1-4 practical limit.
Array) ~2,000 max total pin count signal layers) 1 mm BGA ball pitch
Package I/O: 500 pairs = 156
Tbps
Silicon 50 wires/mm/layer (2 signal 12 paifmm @ 30 Gbps 2 signal layers is
Carrier layers) = 360 — 720 Gbps/mm (1-2 practical limit.
Has to be packaged for VO signal layers)
~10-40 wires/mm vertically Total: 100 — 200 pair @ 10 Limited interconnect
around edge Gbps & 0.5 - 2 Tbps performance

3D IC with "ﬁ In excess of 10,000 vias per In excess of 100,000 Chip stack limited to 4-8
Through Silicon e sq.mm. Tbps/sq.cm. Really determined | chips, depending on
Vias —_— by floorplan issues thermal and other issues
—
Stacked o 1/mm on periphery 25 pairs total @ 10 Gbps 2 Not very applicable to
Packages = 250 Gbps high performance
0 systoems
Stacked Silicon Carrlers Vertical connections @ 20 um 62500 pairs @ 30 Gbps 2 Limited by thermal and
e R pitch = 250,000/ sq.cm 1900 Tbps / sq.cm coplanarity issues.
PNt
Stacked Silicon Carrlers Vertical connections @ 100 um | 2500 pairs @ 30 Gbps =& 75 Early demonstration only.
pitch & 10,000/ sq.cm Tbps / sq.cm Air cooled to < 117 W
- otal.

Figure 6.36: Representative current and future high-end level 1 packaging.

3D Packaging Examples

Through silicon vias forming
vertical data buses

optical layer

|
Fiber
connections

control and interface silicon

Approach

Comments Approach

Comments

Distributed 3D stacks Direction of Heat Exti
CPU: 200 Cores
(1/4 of total) &

4DRAMde—

Distribute CPU across multiple
memory stacks

Advanced 3D Package

Assumes sufficient inter-stack

bandwidth can br provided in
substrate

Lkely to detract from performance,

depanding on degree of memory
scatter

Advanced 3DIC

I orate interposers into a single

Dense Via Field

To avoid compiaxity of a 33-chip stack, this
approach, users the interposers for high density
signal redistruttion, as well as assisting in
power7ground distrubtion and heat romoval.

Requires a planar routing density groater than
currently provided in thin film carmiers.

ncorp

17-33 chip stack to help in
power/ground distribution and heat
removal.

Tiled Die

Assumes Through Silicon Vias for
signal /O throughout chip stack

Figure 7.5: Potential directions for 3D packaging (A).

Usa proximity connection or Through Silicon
Vias 1o croate mamory banawidth through
overiapping surfaces.

OR

Tile with high banawidth ecge interfaces, using
quitt packaging or a an adaed top metal
process. (Noie, impact on tatency and VO
power).

Figure 7.6: Potential directions for 3D packaging (B).

Secondary Storage Projections

(Scratch at 25x, Archive at 200x)

PB ﬁf Main Memory
0.006 0.5 3.6 50 300
Scratch Storage
Capacity (EB) 1.2E-04 0.01 0.15 2 18
Drive Count 1.0E401 | 8.3E402 || 1.3E4+04 | 1.7E405 | 1.5E406
Power (KW) 0.4E-02 | 7.8E400| 1.2E402 | 1.6E4+03 | 1.4E4-04
Checkpoint Time (sec) | 1.2E403 | 1.2E403 || 5.8E4+02 | 6.0E4+02 | 4.0E402
Checkpoint BW (TB/s) | 5.0E-03 | 4.2E-01 || 6.3E+400 | 8.3E+401 | 7.5E4+02
Archival Storage
Capacity (EB) 0.0012 0.1 7.2 100 600
Drive Count 1.0E402 | 8.3E403 || 6.0E405 | 8.3E4+06 | 5.0E407
Power (KW) 9.4E-01 | 7.8E401 | 5.6E4+03 | 7.8E404 | 4.7E405

Table 7.1: Non-memory storage projections for Exascale systems.

Disk Characteristics

Year Class Capacity (GB) | RPM | B/W (Gb/s) | Idle Power(W) | Active Power (W)
2007 | Consumer 1000 7200 1.03 9.30 9.40
2010 | Consumer 3000 7200 1.80 9.30 9.40
2014 | Consumer 12000 7200 4.00 9.30 9.40
2007 | Enterprise 300 15000 1.20 13.70 18.80
2010 | Enterprise 1200 15000 2.00 13.70 18.80
2014 | Enterprise 5000 15000 4.00 13.70 18.80
2007 | Handheld 60 3600 0.19 0.50 1.00
2010 | Handheld 200 4200 0.38 0.70 1.20
2014 | Handheld 800 8400 0.88 1.20 1.70

Table 6.6: Projected disk characteristics.

| 2006] 2007] 2008 2009] 2010] _2011] 2012 2013] 2014] 2015] 2016] 2017] 2018] 2019] 2020
Chip Level Predictions

Relative Max Power per Microproces

Cores per Microproce 2.00 2.52 4.00 5.04 6.36 X 25.43] 32.04] 40.37] 50.85

Flops per cycle per Corey——g:86 T e 400 s 4= b T e —) —r 8-66 8-06+=

Flops per cycle per Microprocessor 4.00 5.05 16.00 20.17 25.44 32.04 40.37 50.85] 64.07] 161.43] 203.40] 256.29 322.9_2 406.81| 512.57
Power Constrained Clock Rate 1.00 0.94 1.10 0.99 0.90 0.81 0.88 0.79] 0.71 0.80] 0.72 0.83 0.73 0.65 0.59
Relative Rpeak per Microprocessor 1.00 1.19 4.39 4.98 576 6.48 8.88 9.99 11.42 32.38] 36.79 52.86] 58.73 66.08| 75.51

Actual Rpeak per Microprocessor 960|] 11.44] 42.15| 47.82| 55.26| 62.16] 85.27] 95.93] 109.64] 310.82] 353.20] 507.46] 563.85| 634.33| 724.94

ITRS Commodity Memory Capacity Growth| 1.00 1.00 1.00 2.00 2.00 2.00 4.00 4.00 4.00 8.00 8.00 8.00] 16.00 16.00(16.00
uired Memory Chip Count Growth| 1.00 1.19 4.39 2.49 2.88 3.24 2.22 2.50 2.86 4.05 4.60 6.61 3.67 4.13 472

Relative Growth in BW per Memory Chip 1.00 1.00 1.00 2.00 2.00 2.00 4.00 4.00 4.00 8.00 8.00 8.00] 16.00 16.00] 16.00
BW Scaled Relative Memory System Power 1.00 1.19 4.39 4.98 576 6.48 8.88 9.99] 11.42] 3238 36.79] 5286 658.73] 66.08)] 7551
| _ _ Socket Level Predictions (""Socket” = Processor + Memory + Router)
BW Scaled Relative per Socket Router Power 1.00 1.19 4.39 4.98 576 6.48 8.88 999 11.42] 3238 36.79] 5286] 58.73] 66.08] 7551
Simplistically Scaled per Socket Power 1.00 1.05 1.34 1.18 1.21 1.24 1.16 1.18 1.21 1.31 1.35 1.52 1.28 1.31 1.36

Fully Scaled Relative per Socket Power 1.00 1.12 3.53 3.15 3.71 4.28 4.88 5.63 6.67] 20.77] 25.15] 44.44] 3532 42.11] 51.64
Simplistically Scaled Relative Rpeak/Watt 1.00 1.14 3.29 4.21 474 5.21 7.66 8.45 9.43] 2475| 27.20] 34.88] 4598] 50.26| 5542

Fully Scaled Relative Rpeak/Watt 1.00 1.06 1.24 1.58 1.55 1.51 1.82 1.77 1.71 1.56 1.46 1.19 1.66 1.57 1.46
Simplistically Scaled Rpeak/Watt 0.04 0.05 0.13 0.17 0.19 0.21 0.31 0.34 0.38 1.00 1.10 1.41 1.86 2.04 2.25

Fully Scaled Rpeak/Watt 0.04 004 0.5 0.06 0.06 0.06 0.07 0.07 0.07 0.06] 0.06 0.05 0.07 0.06 0.06
Board and Rack Level Concurrency Predictions

Maximum Sockets per Board| 4 4 4 4 8 8 8 8 8 16 16 16 16 16 16
Maximum Boards per Rack 24 24 24 24 32 32 32 32 32 32 32 32 32 32 32
Maximum Sockets per Rack 96 96 96 96 256 256 256 256/ 256 512 512 512 512 512 512
Maximum Cores per Board| 8 10 16 20 51 64 81 102 128] 323 407/ 513 646 814 1025
Maximum Cores per Rack| 192 242 384 484 1628 2050 2584 3254 4101] 10331] 13018] 16402] 20667] 26036 32804

Maximum Flops per cycle per Board| 16 20 64 81 204 256 323 407 513 2583] 3254 4101 5167 6509 8201

Maximum Flops per cycle per Rack| 384 484 1536 1936 6513 8201] 10336] 13018] 16402] 82650] 104142 131218] 165336] 208285] 262436

Board and Rack Level Power Predictions

Max Relative Power per Rack 1 1 1 2 2 2 4 4 4 8 8 8 16 16 16

Simplistic Power-Limited Sockets/Rack 96| 92 72 96 158 155 256 256 256 512 512 507 512 512 512

Fully Scaled Power-Limited Sockets/Rack 96 86 27 61 52 45 79 68 58 37 31 17 43 36 30
Simplistically Scaled Relative ak Rack 96 109 316 478 911 1001 2274 2558 2924] 16577| 18838] 26788| 30072 33831/ 38664
Fully Scaled Relative Rpeak per Rack 96 102 119 304 298 291 699 681 658 1197 1123 914 2554] 2410 2246

Sy
Max Affordable Racks per Systein] 155] 200] 250 300] 350] 400] 450] 500] 550] 600] 600] 600] 600] 600] 600
MaxCoroaporSyst—ﬁm—M-s-OE!e#. F=SEv05T ST EroSTo 2570 o OO0 SO e JUyoTE e OO U CFOO e . 0 .
Max Flops per cycle per System| 69520| 96882|3.8E+05| 5.8E+05| 2.3E.+06| 3.3E.+06| 4.7E+06| 6.5€+06] 9.0E+06| 5.0E+07| 6.2E.+07|7.9E+07| 9.9E+07| 1.2E+08
Simplistically Scaled System Rpeak (GF)| 1.0E+05| 1.5E+05| 5.4E+05| 9.8E+05| 2.2E+06| 2.7E+06| 7.0E+06| 8.7E+06] 1.1E+07] 6.86+07] 7.7 E+07] 1.1E+08] 1.2E+08] 1.4E+08| 1.6E+08
Fully Scaled System Rpeak (GF)| 1.0E+05| 1.4E+05| 2.0E+05| 6.2E+05| 7.1E+05| 7.9E+05| 2.1E+06| 2.3E+06| 2.5E+06| 4.9E+06| 4.6E+06| 3.7 E+06| 1.0E+07| 9.9E+06| 9.2E+06
Sy stem Power (MW 2.5 3.2 4.0 97| 11.3] 129] 290 32.3] 355] 77.4] 77.4] 77.4] 154.8] 154.8] 154.8

_ _ Maximum Rac% 155 200 250 300 350 400 310 310 310 155 155 155 78 78 78|
Simplistically Scaled System Rpeak (T.E+05| 1.6+ E+ TE+06| 2.6+06| S.E+ E+ E+ E+ E+ E+ E+ E+ E+ E+
Fully Scaled System Rpeak (GF)| 1.E+05| 1.E+05| 2.E+05] 6.E+05| 7.E+05| 8.E+05| 1.E+08| 1.E+06] 1.E+06] 1.E+06] 1.E+06] 1.E+06] 1.E+06] 1.E+06] 1.E+06

Figure 7.10: Heavy node strawman projections.

Aggressive Strawman

Level What Perf Power RAM
FPU FPU, regs,. Instruction-memory | 1.5 Gflops | 30mW
Core 4FPUs, L1 6 Gflops | 141mW
Processor Chip | 742 Cores 1.2/1.2 Interconnect | 4.5 Tflops | 214W
Node Processor Chip, DRAM 4.5THops 230W 16GB
Group 12 Processor Chips, routers o4 1 TIops 2. 0RKW 192GB
rack 32 Groups 1.7 Pflops | 116KW | 6.1 TB
System 583 racks 1 Eflops | 67.7TMW | 3.6PB

Table 7.3: Summary characteristics of aggressively designed strawman architecture.

Exascale System Class

Characteristic Exaflops 20 MW | Department| Embedded | Embedded

Data Cen- | Data Cen- A B

ter ter

Top-Level Attributes
Peak Flops (PF) 9.97E+02 | 303 1.71E+00 | 4.45E-03 | 1.08E-03
Cache Storage (GB) 3.72E404 11,297 6.38E+401 1.66E-01 4.03E-02
DRAM Storage (PB) 3.58E4+00 |1 6.14E-03 1.60E-05 1.60E-05
Disk Storage (PB) 358E+03 | 1,087 6.14E+00 | 0.00E+00 | 0.00E+00
Total Power (KW) 6.77TE4+04 20,079 116.06 0.290 0.153
Normalized Attributes
GFlops/watt 14.73 14.73 14.73 15.37 7.07
Bytes/Flop 3.59E-03 3.59E-03 3.59E-03 3.59E-03 1.48E-02
Disk Bytes/DRAM Bytes | 1.00E4+03 | 1.00E403 | 1.00E4+03 |0 0
Total Concurrency (Ops/ | 6.64E408 | 2.02E408 | 1.14E406 | 2968 720
Cyecle)
Component Count
Cores 1.66E+4-08 50,432,256 | 2.85E405 742 180
Microprocessor Chips 223,872 67,968 384 1 1
Router Chips 223,872 67,968 384 0 0
DRAM Chips 3581052 | 1,087,488 | 6,144 16 16
Total Chips 1020606 | 1,223424 | 6,012 17 17
Total Disk Drives 298,496 90,624 512 0 0
Total Nodes 223,872 67,968 384 1 1
Total Groups 18,656 5,664 32 0 0
Total racks 583 177 1 0 0
Connections

Chip Signal Contacts 8.45E408 | 2.57TE408 1.45E406 | 2,752 2,752
Board connections 1.86E4-08 5.65E4+07 3.19E+405 0 0
Inter-rack Channels 2.35E+406 7.14E405 | 8,064 0 0

Table 7.10: Exascale class system characteristics derived from aggressive design.

Systems Scaling Projections

Begin Full System Delivery (Yr)

Design Parameters
Cores / Node
Clock Speed (GHz)
Flops / Clock / Core
Nodes / Rack
Racks / Full System Config
MB RAM/core
Total Power
Flops / Node (GF)
Flops / Rack (TF)
LB Concurrency

Full System

Total Cores (Millions)
Total RAM (TB)
Total Racks
Peak Flops System (PF)

2004

BG/L

2

0.7

4

1024
64

256
2.5MW
5.6

o.7
5.E+05

0.13
33.6

64
0.37

2007

BG/P
4
0.85

4F

1024
72

512

4. 8MW
14

14
1.E+06

0.3
191
12
1

2012

25PF
8-24
1.6-4.1

8-32"

100-1024
128-350
1024-4096
8MW-20MW
128-640
200-400
M-2M

3M-1.2M
2,000-4,400
128-350

25

2015

300PF
32-64-128
2.3-4.8
8-32
256-1024
128-400
1024-4096
20MW-50MW
640-2000
400-1200
10M-100M

T™M-10M
3,000-10,000
128-400

300

2019

1200PF
96-128-500
2.8-6.0

16-64
256-1024
256-400
1024-4096
30MW-80MW
2000-6000
1600-4800
400M-1000M

4M-30M
5,000-25,000
256-400
1200

The Bottom Line

Levels of concurrency (10°=> 10°)

Clock rate of Core (1-4 GHz = 1-4 GHz)

RAM per Core (1-2GB now to 1-4GB)

Total Number of cores (200K = 100M)

Number of cores per node (8 = 64-512)
Aggressive Fault Management in HW and SW
|/O channels (>103 =10°)

Power Consumption (10MW = 40MW-150MW)
Programming Model (MPl = MPI + X)

Parallel Programming Models:
Twenty Years and Counting

* |n large-scale scientific computing today
essentially all codes are message passing based.

Add
mu

itionally many will use some form of
tithreading on SMP or multicore nodes.

* Mu

ticore is challenging programming models but

there has not yet emerged a dominate model to

aug
e The

ment message passing
re is a need to identify new hierarchical

programming models that will be stable over long

term and can support the concurrency doubling
pressure

Quasi Mainstream
Programming Models

C, Fortran, C++ and MPI
OpenMP, pthreads
(CUDA, RapidMind, Cn) = OpenCL

PGAS (UPC, CAF, Titanium)

PCS Languages (Chapel, Fortress, X10)
PC Research Languages and Runtime

L (Parallel Matlab, Grid Mathematica, etc.)

.E+ 08

.E+ 07

.E+ 06

.E+ 05

.E+ 04

.E+ 03

Chip Count Trends

B DRAM Chip Count
¢ Socket Count

ExaScak

ExaScak

B &
v r=1.22
cAGR=12
ASCIQ .
ASCIW his ~ g T Fores
ASCIRed I : ® Colim by Red Stom
% .
ASCIRed II Earth Smuktor
1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Figure 6.37: Estimated chip counts in recent HPC systems.

ciation

Member of the Helmholtz Asso

#) JOLICH

FORSCHUNGSZENTRUM

Computational Science and
HPC Software-Development
In Europe

Thomas Lippert / Bernd Mohr

Forschungszentrum Julich, JSC
and Gauss Centre for Supercomputing e.V.

1st Workshop of the International Exascale
Software Project (IESP), Santa Fé, April 7-8, 2009

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

o)

e |

—

" I}QFQI
lr"\il't

’;L\'

rh;

M e
A,
-!i‘?'!*&

e

RRRRRRRRRRRRRRRR

Thanks to

- Jean-Yves Berthou (EDF)

« Michel Marechal (ESF, Lincei Initiative, CSEC)

» Achim Bachem and all friends from PRACE

- Catherine Riviere (GENCI, PRACE)

- Peter Michielse (PRACE WP06)

» Herbert Huber (PRACE-STRATOS)

+ Wolfgang Nagel (Gaul’ Alliance)

- Stefan Heinzel (DEISA)

» Kimmo Koski (HET, COSI-HPC)

- Wanda Andreoni et al. (CECAM)

* Martyn Guest (Editor of HET/HPC-EUR-Scientific Case)
and many others

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 3

#) JOLICH

FORSCHUNGSZENTRUM

Mitglied der Helmholtz-Gemeinschaft

Science Fields & Drivers
in Europe

From
HET Scientific Case
PRACE Initiative

Lincel Initiative Report

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

HET: Scientific Case White Paper

#))0LICH

EQRSCHUNGCSZENTRLIN

Area

Application

Science Challenges & Potential Outcomes

Weather,
Climatology
and Earth
Sciences

Climate change

Quantify uncertainties on the degree of warming and the likely impacts by increasing the capability and
complexity of ‘whole earth system’ models that represent the scenarios for our future climate (IPCC).

Oceanography

Build the most efficient modelling and prediction systems to study, understand and predict ocean properties
and variations at all scales, and develop economically relevant applications to inform policy

Meteorology, Hydrology

Predict weather and flood events with high socio-economic and environmental impact within a few days.
Understand and predict the quality of air at the earth’s surface; development of advanced real-time
forecasting systems for early enough warning and practical mitigation in the case of pollution crisis.

Earth Sciences

Challenges span a range of disciplines and have scientific and social implications, such as the mitigation of
seismic hazards, treaty verification for nuclear weapons, and increased discovery of economically
recoverable petroleum resources and monitoring of waste disposal. Increased computing capability will
make it possible to address the issues of resolution, complexity, duration, confidence and certainty.

Astrophysics,
HEP and
Plasma
Physics

Astrophysics

Deal with systems and structures which span a large range of different length and time scales; almost always
non-linear coupled systems differential equations have to be integrated, in 3 spatial dimensions and
explicitly in time, with rather complex material functions as input. Grand challenges range from formation
of stars and planets to questions concerning the evolution of the Universe as a whole. Evaluate the huge
mount of data expected from future space experiments such as the European Planck Surveyor satellite.

Element. Part. Physics

Quantum field theories like QCD (quantum chromodynamics) are the topic of intense theoretical and
experimental research by a large and truly international community involving large European centers like
GSI and CERN. This research promises a much deeper understanding of the standard model as well as
nuclear forces, but is also to discover yet unknown physics beyond the standard model.

Plasma physics

The science and technology challenge raised by the construction of the magnetic confinement fusion reactor
ITER calls for a major theory and modelling activity. Both the success of the experiment and its safety rely
on such simulators. The quest to realize thermonuclear fusion by magnetically confining a high temperature
plasma poses computationally most challenging problems of nonlinear physics.

Materials
Science,
Chemistry
and
Nanoscience

Understanding Complex
Materials

The determination of electronic and transport properties is central to many devices in the electronic industry
and hence to progress in the understanding of technologically relevant materials. Simulations of nucleation,
growth, self-assembly and polymerization for design and performance of many diverse materials e.g.,
rubbers, paints, fuels, detergents, functional organic materials, cosmetics and food. Multiscale descriptions
of the mechanical properties of materials to determine the relation between process, conditions of use and
composition e.g., in nuclear energy production. Such simulations are central to the prediction of the
lifetime of high performance materials in energy technology.

Understanding Complex
Chemistry

Catalysis is a major challenge in the chemistry of complex materials, with many applications in industrial
chemistry. The knowledge of atmospheric chemistry is crucial for environmental grediction and protection
(clean air). Improving the knowledge of chemical processing would improve the durability of chemicals.
Supra molecular assemblies open new possibilities for the extraction of heavy elements from spent nuclear
fuels. In biochemistry, a vast number of reactions in the human body are not understood in any detail. A key
step for clean fuels of the future requires the realistic treatment of supported catalytic nanoparticles.

Nanoscience

The advance of faster information processing or the development of new generations of processors
requires the shrinking of devices, which leads inevitably towards nanoelectronics. Moreover, many new
devices, such as nanomotors can be envisioned, which will require simulation of mechanical properties at
the nanolevel. Composite high performance materials in the fields e.g. adhesion and coatings will require an
atomistic based description of nanorheology, nanofluidics and nanotribology.

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009 5

HET: Scientific Case White Paper Il

#))0LICH

EQRSCHUNGCSZENTRLIN

Area Application Science Challenges & Potential Qutcomes
. The use of increasingly sophisticated models to represent the entire behaviour of cells, tissues, and organs,
SyStems BlOlOgy or to evaluate degradation routes predicting the final excretion product of any drug. In silico cell.

Life sciences

Chromatine Dynamics

The organization of DNA in nucleosomes largely modifies the accessibility of transcription factors
recognition sites playing then a key role in the regulation of gene function. The understanding of
nucleosome dynamics will be crucial to understand the mechanism of gene regulation.

Large Scale Protein Dyn.

The study of large conformational changes in proteins. Major challenges appear in the simulation of
protein missfolding, unfolding and refolding (understanding of prion-originated pathologies).

Protein association and
aggregation

One of the greatest challenges is the simulation of crowded “not in the cell” protein environments. To be
able to represent “in silico” the formation of the different protein complexes associated with a signalling
pathway opens the door to a better understanding of cellular function and to the generation of new drugs.

Supramolecular Systems

The correct representation of protein machines is still out of range of European groups using current
simulation protocols and computers. The challenge will be to analyze systematically how several of these
machines work e.g., ribosome, topoisomerases, polymerases.

Medicine

Genome sequencing, massive genotyping studies are providing massive volumes of information e.g. the
simulation of the determinants triggering the development of multigenic-based diseases and the
prediction of secondary effects related to bad metabolism of drugs in certain segments of population.

Engineering

Helicopter Simulation

The European helicopter industry has a strong tradition of innovation in technology and design.
Computational Fluid Dynamics (CFD) based simulations of aerodynamics, aeroacoustics and coupling
with dynamics of rotorcraft play a central role and will have to be improved further in the design loop.

Biomedical Flows

Biomedical fluid mechanics can improve healthcare in many areas, with intensive research efforts in the
field of the human circulatory system, the artificial heart or heart valve prostheses, the respiratory system
with nose flow and the upper and lower airways, and the human balance system.

Gas Turbines & Internal
Combustion Engines

Scientific challenges in gas turbines or piston engines are numerous. First, a large range of physical scales
should be considered from fast chemical reaction characteristics (reaction zone thicknesses of about tens
of millimetres, 10), pressure wave propagation up to burner scales (tens of cm, 10-2 s) or system scales.

Forest Fires

The development of reliable numerical tools able to model and predict fire evolution is critically
important in terms of safety and protection fire fighting and could help in real time disaster management.

Green Aircraft

ACARE 2020 provides the politically agreed targets for an acceptable maximum impact of air traffic on
people and environment, while allowing the constantly increasing amount of air travel. The goals deal with
a reduction of exhaust gas and noise. Air traffic will increase by a factor of 3, accidents are expected to go
down by 80%. Passenger expense should drop (50%) and flights become largely weather independent.

The “Green Aircraft” is the answer of the airframe as well as engine manufacturing industry.

Virtual Power Plant

Safe production of high quality and cost effective energy is one of the major concerns of Utilities. Several
challenges must be faced, amongst which are extending the lifespan of power plants to 60 years,
guaranteeing the optimum fuel use and better managing waste.

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009 6

PRACE: Support of Science Communities 4 JULICH

FORSCHUNGSZENTRUM

European Organisations and Research Communities

EFDA

The European Fusion Development Agreement foresees a huge demand for HPC including
tier-0. It is interested in cooperation with PRACE regarding benchmarking and code-
scaling and provides the HPC-related requirements for Fusion community.

EMBL-EBI

The Euro Bioinformatics Institute within the European Molecular Biology Laboratory
foresees huge demands for HPC resources in the future and is interested in investigating
access policies to European tier-0 systems for life scientists.

ENES

The European Network for Earth System Modeling has contributed to the scientific case for
HPC in Europe and will continue to promote the involvement of the European climate
modelling community in PACE. ENES involvement includes porting of applications on
prototype systems of PACE and defining of facility requirements.

ESA

ESA is the European Space Agency. The Space and in particular Earth Observation
communities have very demanding HPC applications. ESA is pleased to collaborate with
PRACE on specific applications.

ESF

The European Science Foundation is interested to contribute to PRACE, in particular to
peer-review process dissemination activities and computer technologies beyond 2010.

MOLSIMU

MOLSIMU, a COST action on Molecular Simulations to Nanoscale Experiments, is offering
its support for PRACE by porting their major applications to the prototype systems
installed by PACE

Psi-k
Network

The Psi-k network is the European Umbrella Network for Electronic Structure Calculations.
Several groups within Psi-k are interested to port their ab-initio codes like CPMD, VASP,
SIESTA, CASTEP, ABINIT, and Wien 2k on the prototype systema of PRACE.

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009 7

#))0LICH

PRACE: Support of Research Infrastructures < ;..o

DEISA EU- DEISA currently deploys and operates the
i European Supercomputing Grid infrastructure to
PrOjeCt enable capability computing across remote
computing platforms and data repositories at a
continental scale.
_ EFU- HPC-Europa is a pan-European Research
H PC Europa U] Infrastructure on HPC providing HPC access and
PrOjeCt scientific support to researchers in challenging
computational activities.
HPC-Europa expresses its interest in cooperating
in the areas of access technologies and
integrated advanced computational services.
_ EU- OMII-Europe is the interoperability project in
OM" Europe U i Europe providing open standards based
PrOjeCt interoperability components on top of the four
major Grid middleware systems in the world.
EGI EU- The consortium of EGI aims at establishing a
i sustainable Grid infrastructure in Europe,
PrOjeCt coordinating national Grid initiatives.
Prop.

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009 8

Lincei Initiative (2007-2009) #) 0LICH

FORSCHUNGSZENTRUM

UBOPEAN | It

_E]EN_CE EUROPEAN COMPUTATIONAL

SCIENCE: THE “LINCEI INITIATIVE”:

—OLINDATION | FROM COMPUTERS TO

SETTING SCIENCE AGENDAS FOR EUROPE SCIENTIFIC EXCELLENCE

Computational sciences and computer simulations in particular, are playing an ever growing role
in fundamental and applied sciences. The aim of this Forward Look is to develop a vision on how
computational sciences will evolve in the coming 10 to 20 years. Based on a scenario of how this
field will evolve and on the needs of the scientific community, a strategy will be presented aimed at
structuring software and hardware support and development at the European level.

http://ccp2007.ulb.ac.be/FL-Lincei.pdf

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 9

Lincei Initiative: Steering Committee #) JOLICH

FORSCHUNGSZENTRUM

Doctor Vassilis Pontikis, Chair,

Commissariat a I'Energie Atomique, Saclay , Gif-sur-Yvette, France

Professor Carmen N. Afonso, PESC rapporteur,

Consejo Superior de Investigaciones Cientifica, Instituto de Optica, Madrid, Spain

Professor Isabel Ambar, LESC rapporteur,

Directora Instituto de Oceanografia Faculdade de Ciéncias da Universidade de Lisboa
Professor Kenneth Badcock,

Dept. of Engineering, The University of Liverpool, Liverpool, United Kingdom

Professor Giovanni Ciccotti,

Dept. of Physics, Universita "La Sapienza", Roma, ltaly

Professor Peter H. Dederichs,

Institut fir Festkorperforschung, Julich Research Centre, Julich, Germany

Doctor Paul Durham,

Daresbury Laboratory, Warrington, United Kingdom

Professor Franco Antonio Gianturco,

Dept. of Chemistry, Universita "La Sapienza", Roma, Italy

Professor Volker Heine,

Cavendish Laboratory (TCM), Cambridge University, Cambridge, United Kingdom

Professor Ralf Klessen,

Institute fur Astrophysik, Zentrum fur Astronomie der Universitat Heidelberg, Heidelberg, Germany
Professor Peter Nielaba,

Lehrstuhl fur Theoretische Physik, Fachbereich Physik, Universitat Konstanz, Konstanz, Germany
Doctor Simone Meloni, Scientific Secretary,

Consorzio per le Applicazioni del Supercalcolo per Universita e Ricerca - CASPUR, Roma, Italy

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 10

Lincei Initiative: Six Fields Addressed #) JULICH

Astrophysics
= |nstitut fur Theoretische Astrophysik, Heidelberg (DE), Dec. 1st-2nd 2006

Fluid Dynamics
= Daresbury Lab., Warrington (UK), Nov. 29th-30th 2006

Meteorology and Climatology
= Swiss Supercomputing Centre, Manno (CH), Jan. 27th 2007

Life sciences
= Chilworth Manor, Southampton (UK), Nov. 19th-21st 2006

Material Science and Nanotechnology
= Julich Research Centre, Julich (DE), Nov. 13th-14th 2006

Quantum Molecular Sciences
= Accademia dei Lincei, Rome, Nov. 25th-26th 2006

« State of infrastructure for scientific computing
* Needs in relation to future challenges, in 10-20 year timeframe

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 1"

Some EU Scientific and Engineering Codes A JULICH

(From Lincei Forward Look Report (for the ESF))

Name Scientific Area Brief Description

ABINIT Condensed Matter DFT+PW+Pseudopotentials
ESPResSo Condensed Matter coarse grained off-lattice

VASP Condensed Matter DFT+PW+Pseudopotentials
CP2K Condensed Matter DFT-(gausssian+PW)+classical
CPMD Condensed Matter DFT+PW+Pseudopotentials
Wien2K Condensed Matter Full-electrons Augmented PW
Quantum Espresso Condensed Matter DFT+PW+Pseudopotentials
Code_Aster Engineering Mechanical and thermal analysis
Code_Saturne Fluid Dynamics Incompressible+expandable

+heat transfer+combustion
OpenFOAM Fluid Dynamics Finite volume on unstructured grid
+Structural Mechanics

Salome framework for multiphysics Used in engineering

COSMO-Model Climatology, Meteorology =~ Operational Weather forecasting

and scientific research

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

Licensing

Free

Free

Licensed

Free

Licensed, free acad.
Licensed

Free

Free

22k downl.

Free

+ 25 groups

FORSCHUNGSZENTRUM

Users

~1000
~20 groups
800 1i
~100
>1000
~1100
~700

300 (EDF)

80 (EDF)

Free, fee for support ~2000

Free
+ 21 groups
Special agreement

80 groups

50 (EDF)

7 Centres

12

Importance Hierarchy

#))0LICH

FORSCHUNGSZENTRUM

IDEAS

Science/algorithms

>

CODES

(software)

>>

HARDWARE

(compuiter)

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009

13

Comments from FL-Lincei-Report #) J0LICH

FORSCHUNGSZENTRUM

« Current [application] software is very complex

« Typical size is 400000 lines of code and 2500 routines/classes

« Large number of variables pass through the code in obscure data flow
* Few strictly object oriented (OpenFOAM, C++, CP2K, FORTRAN95

« Will be confronted with a software sustainability crisis

« Will be very difficult to adapt most existing complex codes to the

coming massively parallel computers

« Structure of many of the codes strongly dependent on the parallel

programming paradigm adopted in the early stage of the development

* Current shift from hundreds to tens of thousands of CPUs will require a

change in the parallelization scheme

« Very difficult to implement in such very complex community codes

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 14

FL-Lincei-Report #) jOLICH

FORSCHUNGSZENTRUM

Findings
= Bottleneck is the support to software, effort mainly focused on
Hardware

= Less support is given to the writing, maintenance and dissemination of
sc. codes

= Scientific computer programs do not comply with best practices in
programming
= Successful efforts in all the technical areas required to support scientific
computing: hardware, system and application software
Recommendations

= National science funding agencies in Europe must undertake a
coordinated and sustained effort in scientific software development

= Set up a Computational Sciences Expert Committee (CSEC) attached
to ESF which would speak for the whole community of computational
sciences.

= |ts purpose would be to start setting up a durable plan for European
cooperation in each of the fields of science using computers

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 15

RRRRRRRRRRRRRRRR

an J. Bush, llian T. Todorov, CCSRC Daresbury, UK
DL-POLY3 classical molecular dynamics

~irst time on more than 1000 processors

Radiation damage in a fluoritized Zirconium pyrochlore
100 keV recoil of one Uranium atom after alpha decay

15 million particles, supercell very large
Forces: short range, van der Waals, Coulomb
Smooth particle-mesh Ewald algorithm - FFT

Implementation on BGL

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 16

Scaling DL_Poly3

#))0LICH

FORSCHUNGSZENTRUM

Substantial improvements by performance analysis tool Scalasca

18000

16000

14000

12000

10000

— =

8000

7=

6000
4000

Speed Up

//

2000

i

0

0

5000

Thomas Lippert / Bernd Mohr

|

10000

Processors

15000

IESP, Santa Fé, April 7-8, 2009

—— MD
—=— LInk

VDW

Ewald - Short Range
—— Ewald - Long Range
—— Other
— Perfect

Long range Ewald
scales with
O(Nlog N) ...

But MD dominates

17

Example 2: Engineering — Biomedical Flows A JULICH

FORSCHUNGSZENTRUM

Simulation of Blood Flow in a Ventricular Assist Device
Marek Behr, RWTH Aachen

B R a Julich Aachen
1 Research
VGlOCIty J Alliance

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 18

Code + Analysis tools - large Improvements

XNS CFD solver

= 3D space-time simulation of MicroMed
DeBakey axial blood pump

= 4 million elements

#))0LICH

FORSCHUNGSZENTRUM

iti i 1 T4 H €66 NI CUBE: epik_old_c01024.cube
[| P rt t g by M t g ph p t t g Fle View Help
arttonin els gra attionin] — =
paCkage fisj““j‘*uwﬂme 7| — i Peer percent i

| ,rg 16290.87 Execution
CE | 26

[2276

— [1552096736 Visits

= |ncompressible Navier-Stokes Eq.

= FEM, GMRES, 3 time steps, 4
Newton-Raphson iterations

Analysis by SCALASCA package
(Bernd Mohr, Felixn Wolf)

= Too many MPI_Sendrecv with zero-
byte transfers

[26,733.348 (40.7%) 6.5858+04

=] 0.00 hypo
[0 613253 <<initialization>>
=] 0.00 <<time step loop>>
[0.00 updatedt
~+—{2] 36.80 updatex
+—(ll 79841 updateien
#-[] 0.00 gene
1—[] 0.00 <<iteration loop>>
[000 genu
[0.00 genh
[] 0.00 newd
) 140313 ewdtimerstan
[0.00 ewdmoreloc =
@[] 0.00 blkins3dst
] 0.00 blkehs
o 8262 08 ewdscatter2 1p
t&—[Z] 0.20 ewdstatrhs
w—[] 0.00 ewdbsrgetdiag
#-[] 0.00 ewdmakesg
[0.00 ewdmult

+ O B8

=—{B] 7885 r

[0.00 ewdbsrmatvec
| 0.00 ewdcopy
|-+ 56.83 updated
(] 16513 recoverstress

+—{1] 165.33 checkd

+—[] 0.00 ewstimerstamp
0.00_ewdmsy
e

/

248933 (09%)

v
6.5852+04

I}
~ 5270e-01

[L[BRI T R

= Good speedup to 4096 processors
Still: strong load imbalance in GMRES
= process with highest rank overloaded

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

T LEIERREp NN EENERNCRERENRNNNENON

19

After Improvements

Scaling Workshop Blue Gene

Juelich

B ' ' I =g$ttebrrewg¥ﬁ2?15;)hpopl
e T M I e s e e B e
o

ot ; ; i ; i i ; i — ; ' ; ; i i ; i
tsthr 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475

Thomas Lippert / Bernd Mohr

ts/hr

IESP, Santa Fé, April 7-8, 2009

2020

’ oo
Example 3: Theoretical Particle Physics < JULICH

Fodor et al. 2008: Validation of Quantum Chromodynamics
Among 10 SCIENCE-breakthroughs of 2008

2,000
I ——()
1,500 ~4-z=
. =2 5.
2 —e— = T =
g D LRl 2h
~ 1,000 - ;
w - ——
@ - == N
=] — P
500 — e K — Experiment
< = Width
] ¢ QCD theory
|— T
0

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 21

80
70
60
50
40
30
20
10

0

Performance/TFlop/s

Code: Hybrid

Number of BG/P racks 0 JULICH
I 4 8 16

37.5% Peak

Improvements
through low-level
programming

Monte Carlo with GMRES

and BiCGStab Solver

Thomas Lippert / Bernd Mohr

4K 16K 32K 64K
Cores
IESP, Santa Fé, April 7-8, 2009 22

einschaft

Mitglied der Helmholtz-Gem

#) JOLICH

FORSCHUNGSZENTRUM

HPC Software
& Benchmark Codes

Disclaimer:

List of software is a selection and not comprehensive

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

HPC Software Challenges #) J0LICH

RRRRRRRRRRRRRRRR

Extreme scalability

= Exascale: number of cores beyond any reasonable,
manageable limit

- Extreme complexity

= Machine architecture gets more complicated instead of
becoming simpler (KISS!)

- Little to not existing fault-tolerance in existing base
software

= e.g. MPI, OpenMP, schedulers, ...

- Rapid grows in system size /change in HW
architecture

= SW developers cannot keep pace

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 24

EU HPC Software: Programming Models) JULICH

FORSCHUNGSZENTRUM

MPI

= Open MPI European partners HLRS, INRIA, Univ. Jena, Univ.
Chemnitz, TU-Dresden, BULL

= MPICH-V fault tolerance, MPI Madeleine (INRIA)
= HLRS, Bull, NEC, (ZIH, JSC) participating in MPI-3
OpenMP
= EU ARB members: EPCC, RWTH, (BSC?)
= BSC Mercurium compiler framework
Pragma-based task parallelism
= SuperScalar (BSC)
= Subject in future EU proposals (EU ITEA2 H4H, FP7 FET EXACT)
= HPMM (INRIA/CAPS)

Parallel Object-oriented
» Kaapi (C++) + PROACTIVE (Java) (INRIA), PM2 (LaBRI, INRIA)

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 25

EU HPC Software: Numerical Applications !JJU'-'CH
Numerical Middleware

= superLU (INRIA), MUMPS (ENSEEIHT)

= Scilab (Digiteo)

Benchmarks

= DEISA
= 14 full applications
= HPCC

= PRACE
= 20 full applications
= Various low-level

= EPCC micro benchmarks

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 26

Application Software Benchmarks: DEISA %) JULICH

FORSCHUNGSZENTRU

Astrophysics: GADGET, RAMSES

CFD and combustion: Fenfloss

Earth sciences and climate research: ECHAMS, IFS, NEMO

Life sciences and informatics: NAMD, 1QCS
Materials science: CPMD,
QuantumESPRESSO
Plasma physics: GENE, PEPC
Quantum chromodynamics: BQCD, SU3_AHiggs

DEISA benchmark represents major EU HPC applications

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 27

Application Software Benchmarks: PRACE #) JULICH

(see White Paper by Peter Michielse)

Application Application area

FORSCHUNGSZENTRUM

Application Application area
(to be considered)

QCD Particle physics AVBP Computational fluid dynamics
VASP Computational CP2K Computational chemistry,
chemistry, condensed condensed matter physics
matter physics GROMACS Computational chemistry
NAMD Computational chemistry HELIUM Computational physics
life sciences SMMP Life sciences
CPMD Computational chemistry, TRIPOLI4 Computational engineering
condensed matter physics PEPC Plasma physics
Code_Saturne Computational fluid RAMSES Astronomy and cosmology
dynamics CACTUS Astronomy and cosmology
GADGET Astronomy and cosmology NS3D Computational fluid dynamics
TORB Plasma physics

ECHAMS Atmospheric modelling

NEMO Ocean modelling

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009 28

Porting Codes

#))0LICH

FORSCHUNGSZENTRUM

Application MPP-BG

MPP-Cray

SMP-TN-x86 | SMP-FN-pwrb

SMP-FN+Cell

SMP-TN+vector

QCD

VASP

NAMD

CPMD

Code_ Saturne
GADGET

TORB
ECHAMS
NEMO
CP2K
GROMACS
NS3D

In progress

AVBP
HELIUM In
TRIPOLI 4
PEPC
GPAW
ALYA

rogress

In progress

SIESTA

BSIT

Table 4: Summary on porting efforts for benchmark codes and prototype architectures.

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009

29

EU HPC Software: Tools | O JULICH

System / cluster tools
= Benchmarking: JuBe (JSC)
= Resource allocation: OAR (INRIA)

= System monitoring: LLview (JSC)

= Cluster middleware: ParaStation (ParaStation-Consortium:
ParTec, JSC, Karlsruhe, Heidelberg, Wuppertal)

Grid Middleware
= UNICORE (UNICORE forum, JSC, ...)
= GLite (CERN, LHC)
= dCache (DESY)
= DIET: grid RPC system (INRIA, CNRS, LIP/ENS Lyon, ...)

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 30

EU HPC Software: Tools Il A 0LICH

FORSCHUNGSZENTRUM

Programming tools
= Debugging: DDT (Allinea)
= MPI debugging: Marmot (ZIH —TU-Dresden / HLRS)
Performance
= OPT (Allinea)
Paraver/Dimemas (BSC)
KOJAK/Scalasca (JSC)
Vampir (ZIH-TU-Dresden)
Periscope (TU Munich)
= SlowSpotter/ThreadSpotter (Acumem)
European tool integration projects
= EU ITEA2 ParMA project (17 partners, FR, DE, ES, UK)
= German BMBF SILC

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 31

Existing Working Collaborations #))0LICH

FORSCHUNGSZENTRUM

- MPI standardization and Open MPI project
* OpenMP standardization
* Global Grid Community

- Example: Performance tools community
= Voluntary US participation in EU APART WG (1998-2004)

Common Dagstuhl seminars (2002, 2005, 2007, 2010)
CScADS workshops (2007, 2008, 2009)
Collaborating collaboration projects

= POINT (UO, ICL, NCSA, PSC)

= VI-HPS (RWTH, ZIH, JSC, ICL)
New: DOE ASCR funding for non-U.S. partners!

= PRIMA (UO, JSC): 2009-2012

= “PTP++” (IBM, LANL, ORNL, JSC, Monarch): 2009-2012

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 32

Collaboration and Funding #) JOLICH

FORSCHUNGSZENTRUM

Lessons learned
= Collaboration projects need
= Strong leadership + Funding
= Examples of failures: PTOOLS, OSPAT,

= Bottom-up, technology-driven, friendship approaches work
much better than top-down, politically-driven, mandated ones

= Top-down provides funding

= Need combined approach: bottom-up meets top-down and
long-term commitments of funding agencies

Proposal

= Local (US, EU, Asian) funding programs need to allow to
fund additional global partners

= New global funding for networking (coordination,
dissemination, synchronization efforts)

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 33

exampleeU scalasca ('3 4))0LICH

- Scalable Analysis of Large Scale Applications
* Follow-up project to well-known KOJAK project
- Installed on many leadership class systems (EU, US)
+ Successfully used on 65536 cores
- Integration with TAU and Vampir toolsets
- Approach
= |Instrument C, C++, and Fortran parallel applications
= Based on MPI, OpenMP, SHMEM, or hybrid
= Collect event traces (or callpath profiles)

= Search trace for event patterns
representing inefficiencies in parallel

= Categorize and rank inefficiencies found
http://www.scalasca.org/

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 34

Trace analysis SMG2000@64k Scalasca ,

B ep 2000 b b ace 0 e pbe (]
File View Help
Metrics | Call Tree | Flat Profile | System Tree Topology View
Absolute /| |Selection percent /|| |Peer percent /|
=] 0.00 Time =[] 0.0 <<SMG.Solve>> S
=[] 774251.79 Execution =] 0.0 HYPRE_StructSMGSolve
l =] 0.00 MPI ={_] 0.0 hypre_SMGSolve 14
#-{_] 0.00 Synchronization #{_] 0.0 hypre_StructlnnerProd
=] 0.00 Communication ~=-{_] 0.0 hypre_SMGRelax 13)
=-{_] 280382.14 Point-to-point {7 0.0 hypre_SMGRelaxSetup
| =0 #=-[_] 9.7 hypre_SMGResidual 2
~—{] 0.00 Late Receiver ~=-{_] 0.0 hypre_SMGSolve
#-{_] 555.40 Collective =-{_] 0.0 hypre_SMGRelax
-] 0.00 File /O -] 0.0 hypre_SMGRelaxSetup gensn
~—{] 0.00 Init/Exit =] 4.5 hypre_SMGResidual
[] 0.00 Overhead =[] 0.0 hypre_CyclicReduction 10
[l 79215893252 Visits =[] 0.0 hypre_lnitializeIndtComputations
=-{_] 0 Synchronizations =-{_] 0.0 hypre_FinalizeIndtComputations .9
=[] 0 Communications =[] 0.0 hypre_FinalizeCommunication
=] 0 Point-to-point] 14.8 MPI_Waitall
] =[] 5734992540 Sends [T] 0.0 hypre_SMGSetStructVectorConstantValues
=[] 5151849133 Receives #{_] 1.7 hypre_SMGResidual
| =|_] 583143407 Late Senders +&-] 0.1 hypre_SemiRestrict
={_] 0 Collective =-{_] 0.0 hypre_Semilnterp
[[] 524288 Exchange &[] 0.0 hypre_|nitializeIndtComputations =
[] 0 As source L=-{"] 0.0 hypre_FinalizelndtComputations
[T] 0 As destination ={_] 0.0 hypre_FinalizeCommunication
-=-{_] 0 Bytes transferred ——[] 31.5 MPI_Waitall
=] 0 Point-to-point [] 0.0 hypre_StructAxpy .4
LD 4853229516000 Sent [] 0.0 hypre_SMGAxpy
[] 4853229516000 Received ~—{] 0.0 hypre_SMGSetStructVectorConstantValues 3
={_] 0 Collective @] 3.7 hypre_SMGResidual
[[] 274877906944 #{_] 0.3 hypre_SemiRestrict 2
[] 4194304 Incom ={_] 0.0 hypre_Semilnterp
=l 23979.58 Computat E {7 0.0 hypre_Init
={_] 0.0 hypre_Final¥ "
={_] 0.0 hypre_Finali
m]33.7 MPI_Waital B B
——{] 0.0 hypre_StructAxpy
[] 0.0 hypre_SMGAxpy
[] 0.0 MPI_Allreduce)
793,530.24 M eas u red ﬂ| 267,051.666 (33.7%) Reg io n «4.075 * 50.1%: Syste m Stru Ctu re 5 szu;uu
tree or topology

=< metrics
_

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 35

CLUSTER

Exa m p I e E U PARTEC COMPETENCE

ParaStation Cluster Middleware

ParaStation V5:

e Multi-core aware cluster operating and management software

e Open source - GPL licensed

e ParaStation Consortium: ParTec, Forschungszentrum Julich,
Universities of Karlsruhe, Heidelberg, Wuppertal

e Deamon based

e MPI-2

e Grid Monitor (full awareness of complete cluster status)

e IB, Ethernet, Myrinet, just everything

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

ParaStation Research

PARTEC | COMPETENCE

(Projects funded by Federal Ministry of Education & Research) CENTER

ISAR project (2008 — 2011)

Integrated system and application analysis for massive parallel
computer

Members:
Uni Munich, Leibniz Compute Center (LRZ),
Compute Center Garching (Max-Planck), ParTec, IBM

D-Grid 2, (2007-2010) Paralll Tooks L / Adninsiatons Forend I
- - —_— - Applicat.ion I Archive
German Grid initiative

Correlation
Agent

(funded by BMBF)

Periscope FETy
Database

T

HPC HPC
Agent 10
Agent Agent

10 System

ee-Clust project (2008 — 2011) & &

Energy efficient cluster computing A:;?:;s. o

Members: e Goals

Uni Heidelberg, TU Dresden,

Research Centre Julich, ParTec e Scalable cluster OS

e Fighting OS-jitter

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

Mitglied der Helmholtz-Gemeinschaft

#) JOLICH

FORSCHUNGSZENTRUM

Plans for Exascale Activities and
Initiatives in Europe

1. EESI (International HPC Software Coordination and
Development)

2. COSI-HPC Proposal (HPC-Software - Coordination)

3. Lincei Initative (Comp. Science)

4. CECAM (Comp. Science)

5. PRACE (ESFRI-Infrastructure)

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

Establishing the

o 't le European Exascale
* Software Initiative

Contribution by

Jean-Yves Berthou, EDF R&D

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 e_pr

| Context: International Exascale Software Project

SC08 (nov. 2008) : DOE/NSF/DOD launched the
International Exascale Software Project (IESP)

Plan to build an international partnership that joins together industry, the HPC
community (CS and Apps), and production HPC facilities in a collective
effort to design, coordinate, and integrate software for leadership-class
machines.

Specifically, engagement in the following activities should be started:
*Build international collaborations in the areas of high-performance
computing software and applications.
*Development of open source systems software, I/O, data management,
visualization, and libraries of all forms targeting tera/peta/exascale
computing platforms,
*Research and development of new programming models and tools
addressing extreme scale, multicore, heterogeneity and performance,
«Cooperation in large-scale systems deployments for attacking global
challenges,
«Joint programs in education and training for the next generation of
computational scientists. ¢
*\VVendor engagement to coordinate on how to deal with anticipated scale.” ‘; Ny

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 eth

.....
.........
.........
A .

European Exascale Software Initiative (EESI)

Main goals

« Building and promoting European position inside the IESP initiative

+ |dentifying Grand Challenge applications, from academia and
industry, with a strong economical, societal and/or environmental
impact that will benefit of Petaflop capacities in 2010 and Exaflops in
2020

 |dentify critical software issues for Peta-ExaScale systems

« Building a European/US/Japan program in education and training for
the next generation of computational scientists

« Output : Proposition of a strategic research action agenda for Peta-
Exascale Software and Grand Challenge applications at the European
level coordinated with US and Japanese agendas Ny

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 qu

European Exascale Software Initiative (EESI)
Preparatory phase Project Proposal — 12 months

Establish a European position inside the IESP initiative
o Promote and represent the European position
o Influence on decisions and actions
o Synchronize European agenda with other international agenda

Contribute to the International dialogs between US and Europe and
Japan and Europe and be a bridge between some EU organizations
including the European commission and IESP

|dentify main HPC European actors both at end users level and at
academic level

Define and implement the organization and governance rules of EESI
|ldentify main European HPC existing or planned projects

Built a first European and international vision of the on-coming HPC
challenges and work to achieve -

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 eth

European Exascale Software Initiative (EESI)
Preparatory phase Project Proposal — 12 months

Submitted to ICT 2009.9.1 International cooperation a) Support to Information Society policy dialogues
and strengthening of international cooperation

Thomas Lippert / Bernd Mohr

Partners Country Contact Title
EDF (leader) France Jean-Yves Berthou EDF R&D Information Technology
Program Manager
Jean-Frangois |Hamelin EDF R&D Information System Director
GENCI, FR France Catherine Riviere Chairman and CEO of GENCI
Virgine Mahdi
INRIA France Frank Cappello Director of the jomnt INRIA/NCSA
laboratory
EPSRC UK Jane Nicholson |High End Computing & E-Science
Program Manager
Forschungszent |Germany |Thomas Lippert Director of Institute for Advanced
rum Julich Simulation, Head of Julich
GmbH Supercomputing Centre
Bernard Mohr
BSC Spain Mateo Valero Director of BSC
Sergl Girona Operations Director BSC
NCF Netherland |Patrick Aerts Director of NCF
S
Peter Michielse Deputy Director of NCF @
& =
Atrrtic France Thierry Bidot é’;

IESP, Santa Fé, April 7-8, 2009

European Exascale Software Initiative (EESI)
Preparatory phase Project Proposal — 12 months

us

IESP, Executive Director, J. Dongarra

U. Urbana-Champaign, Deputy Director for Research, B. Gropp

U. Urbana-Champaign, Professor, M. Snir

Japan

Tokyo Institute of Technology, Professor & Director Research Infrastructures Division
GSIC, Satoshi Matsuoka

Europe

PRACE, Current Chairman of the Initiative Management Board, Jane Nicholson
European Science Fondation, the Physics and Engineering Sciences Unit, Science
Officer, Dr Thibaut Lery

European Network for Earth System modelling, Chairman of the Scientific Board, S.
Joussaume

TERATEC, Chairman, C. Saguez

ORAP, Chairman of the Scientific Council, JC André

Daresbury Lab., Acting Director CS & E dpt., R. Blake

CERFACS, Director, JC André

Industry/Editor

TOTAL, Scientific Director, JF Minster

SNECMA, Vice President Engineering & Technology, P. Thouraud

NAG, Chief Tech Officer/Vice President HPC Business, M. Dewar/A. Jones & D

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 eDF

. European Exascale Software Initiative (EESI)
Implementation phase (draft)

Building a research agenda and directions for future

|dentifying Grand Challenge applications, from academia and
industry, with a strong economical, societal and/or environmental
impact that will benefit of Petaflop capacities in 2010 and Exaflop
around 2020

|dentify critical software issues for Peta-ExaScale systems

Building a EU/US/Japan program in education and training for the
next generation of computational scientists

Proposition of a strategic research action agenda for Peta-Exascale
Software and Grand Challenge applications at the European level
coordinated with US and Japan agendas

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 eth

ere,
Cic! .

ooooooo
...........

European Exascale Software Initiative (EESI)

Implementation phase — 18 months (draft working program)
Input from EESI| Preparatory Phase : identification of keyplayers (End user communities,
techno. providers, ...)

. : Phase7
Phase 1: Phase 2: Phase 3 : Phase 4. Ifizzﬁsin& Wghastet?. i :
Grand workshop 1 working group workshop 2 Workingg synthesis Public
challlegges initial work Groups Results
)

TO T0+3 T0+4 TO+10 TO+11 T0+14 T0+17 7%~

3 mon_ths 1 month 6 months ;1 month | 3 months 3 months 1 month

,-..
*e

€). COSI-HPC

‘ ;@ (proposal, lead by CSC-Finland)

« The Coordination for Software Initiatives in HPC (COSI-HPC) project
Is designed to promote key elements in an innovation and service
ecosystem around the future European Petascale computing research
infrastructure (RI).

- Set of actions aimed at coordinating activities in the area of software
engineering and software services for large-scale computing,
targeting the planned European Petascale facilities as well as future
Exascale systems.

« Coordination of existing and future research and industry initiatives
such as PRACE, DEISA, PROSPECT, and STRATOS

oAnalysis of HPC software activities in Europe
oBuilding up a software community for HPC

oAddress future software challenges o

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 QDF

12
Lincel Initiative

_
‘ . Contribution by Michel Marechal

F—
EUROPEAN COMPUTATIONAL ES F . E S 1
SCIENCE: THE “LINCEI INITIATIVE”: . uro p ean Science
Computational sclences and computer simulations In particular, are playing an ever growing role

FROM COMPUTERS TO
SETTING SCIENCE AGENDAS FOR EUROPE SCIENTIFIC EXCELLENCE F I I . l I . t
In fundamental and applied sclences. The aim of this Forward Look Is to develop a vision on how by °
complnatlonal sclences will evolve In the coming 10 to 20 years. Based on a scenario of how this a O I I a e S e a rC l | n I n
Tield will evolve and on the needs of the sclentific community, a strategy will be presented aimed at
str UCYU”H(J software and hardware support and development at the European level
L] | L] L] E

Computational approaches are becoming an
Increasingly Important tool In modam sclencea.
Computational sckenoas have reachad such a level
of Importance as to now be consldered the third
pliar of sclenca, after experimental and thecretical
approaches.

The complexty of the modem codes has causad a
franstion. A few years ago, each computationd
goup had ts own "home-brewed” software. At
preeent, an Increasing nuTber of groups rely on
the avallabliity of such oodes. In the field of
computational sckencas Bumpe ks playing a kading
rale, ako thanks to the avaliablity of these codes.

80 members in 30 countries
mimmimnEe peececeme http://www.esf.org

X-ray) do for expermental resaarch. reports and to orgarise the day-by-day Ite of the
Inttiative:

Tha alm of this Foresrd | ook 1= to dauson a wkion

A Forward Look has been set up by ESF Panel of 12 high level
computational scientists has produced a report

http://ccp2007.ulb.ac.be/FL-Lincei.pdf

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 48

Recommendations (l)

+ National science funding agencies in Europe undertake a coordinated
and sustained effort in scientific software development, including
documentation, updating, maintenance and dissemination.

« This necessarily implies the means for training and cooperation.

- Restructure and federate, within an European-scale infrastructure,
existing and expanded activities on scientific software and other forms
of cooperation and dissemination in Europe through European
Computational Collaborations specific to each scientific area.

- This would be guided by active research scientists and deliver the

nnnnnnnnnnnnnnnnnnnnnnnnn

One such example:
e CECAM upgrade

European Computational Science e (m u H-_i nOd e, m u Iti_d iSCi pl i neS
Forum: The “Lincei Initiative”:
xcellonce S CECAM is organizing code developpers in

condensed matter
2009

http://www.cecam.org/

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 49

- Recommendations (ll)

- To achieve those goals, it is proposed to set up a Computational
Sciences Expert Committee (CSEC) attached to ESF which would
speak for the whole community of computational sciences.

« Its purpose would be to start setting up a durable plan for European
cooperation in each of the fields of science using computers.

» |t would address the policy issues involved, and work with national and
European organisations to optimize the development of scientific
computing in Europe.

European Science Foundation

ESF Is now

P T considering
establishing CSEC

Trom computers to scientific

2009

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 50

—
‘ | zcecam G

3 Centre EuropéendeCalcel . KoL
. Atomique et Moléculaire

Scientific software development: a new CECAM initiative

On March 30-31, 09, the director (Wanda Andreoni) and vice-president (Paul
Durham) of CECAM convened a meeting at CECAM Headquarters in Lausanne of a
group of scientists with the aim of reflecting upon the possible role CECAM could
play in enhancing European scientific software development and support

= Alessandro Curioni (IBM Research Zurich)

= Stefano de Gironcoli (SISSA, Trieste) CECAM (Centre Europeen de

= Mauro Ferrario (University of Modena) Calcul Atomique et Moleculaire)

= Xavier Gonze (University of Louvain) 'S @ Europear? organization devoted

- Christian Holm (Uni tv of Stuttaart to the promotion of fundamental
ristian Holm (University of Stuttgart) research on advanced

= Wim Klopper (University of Karlsruhe)

: . . , computational
" Mike Payne (University of Cambridge) methods and to their application to

= Bill Smith (Daresbury Laboratory) important problems in frontier
= Godehard Sutmann (Research Centre Jiilich) | areas of science and technology

= Doros Theodorou (University of Athens)
= Other scientists will be invited to join the group.

\

\\ -
f***

\ PARTNERSHIP
FOR A /VANCED\COMPUTING
\ SN EU’ONTE

| e r
Towards the High-End HPC Service for

European Science
Thomas Lippert, PRACE Project Coordination@FZ-Julich

e-infrastructure
Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

i

Computational science infrastructure in
Europe

The European Roadmap for

Research Infrastructures is the
ESFRI first comprehensive definition

at the European level

European Strategy Forum
on Research Infrastructures

Research Infrastructures are
one of the crucial pillars of the

BUROAEAN FOAD MAP European Research Area
FOR RESEARCH
INFRASTRUCTURES
Report 2006 A European HPC service:
= Horizontal

= attractive for research
communities

= supporting industrial
development

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 53

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

ESFRI Vision for a European HPC service

= Need European HPC-facilities at top
of an HPC provisioning pyramid tier-0

— Tier-0: 3-5 European Centres
— Tier-1: National Centres tier-1
— Tier-2: Regional/University Centres / o \
ier-
= Part of the Creation of a -
European HPC ecosystem Renewal every 2-3 years

Construction cost 200 — 400 Mio. €

— HPC service providers on all tlersAnnual running cost 100 — 200 Mio.€

— Grid Infrastructures
— Scientific and industrial communities
— The European HPC industry

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 54

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

HET: The Scientific Case §

= Weather, Climatology, Earth Science
— degree of warming, scenarios for our future chmate
— understand and predict ocean properties and variations
— weather and flood events

= Astrophysics, Elementary particle physics, Plasma physics
— systems, structures which span a large range of different length and time
— quantum field theories like QCD ->LHC, FAIR
— ITER

= Material Science, Chemistry, Nanoscience
— understanding complex materials, complex chemistry, na
— the determination of electronic and transport properties

= Life Science

— system biology, chromatin dynamics, large scale protein dynamic
association and aggregation, supramolecular systems, medicine
= Engineering
— complex helicopter simulation, biomedical flows,

gas turbines and internal combustion engines,
forest fires, green aircraft

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

lGcs — cenc 1

Gauss Centre for Supercomputing

Principal Partners

. UNIVERSIDADE DE COIMBRA !
ng Centre o

.LL\
QD
\

S\leN

General Partners

New Partners - since May 2008

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009

e

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

First Industry Seminar attendees

s‘ PORSCHE

@ dceeverms ToTaL
CH] Alcatel-Lucent K REPsOL
‘,“ ArcelorMittal - ;

R ‘BAE SYSTEMS. ==
€DF

BNP PARIBAS
A

<75 N Rabobank
) \% PHILIPS X4 ,.a &;E’RDROLA @ o/p Schering-Plough

-« P - -Systems- AkzoNo eI ’/ @ AIRBUS @ sonran
: ph () Snecma MEinuwrecH [BY
nag Eni §D ﬁ mitrionics x foundgybay Phiips

Llppert/ Bel ¥ GrOupC' SAFRAN th -0, cuvy

PRACE Initiative

PRAC E General RIS

P rOjeCt Partners ¢

ore

Further PRACE Activities

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

\

PRACE Project
= PRACE is horizontal ESFRI project

— Mission to serve the scientific communities at large
— Need to cooperate with communities

= Software for the Multi-Petaflop/s age

— Only few of today's applications are scalable to hundred-thousand
CPU-cores

— PRACE seeks to gain knowledge in Petascaling to educate and
support its future users

— An additional European effort is needed — international
cooperation should be sought for Exascale challenges

= Exascale data services for scientific communities

— Support efforts to agree on community standards for storing,
annotating and retrieving their data, provide reliable data services

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 59

IN EUROPE

PARTNERSHIP
FOR ADVANCED COMPUTING

PRACE Project

* Prepare the contracts to establish the PRACE
permanent Research Infrastructure as a single
Legal Entity in 2010 including governance,
funding, procurement, and usage strategies.

« Perform the technical work to prepare operation of
the Tier-0 systems in 2009/2010 including
deployment and benchmarking of prototypes for
Petaflop/s systems and porting, optimising, Peta-
scaling of applications

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 60

PARTNERSHIP

FOR ADVANCED COMPUTING
IN EUROPE

\

WP6

Software enabling
for Petaflop/s
systems (RTD)

Prepare key applications to use
the future Petaflop/s systems
efficiently; capture
requirements for WP7 and WP8
and create a benchmark suite.

WP7

Petaflop/s
Systems for
2009/2010 (RTD)

|dentify potential Petaflop/s
systems for PACE that can be
installed in 2009/10 with
prototypes deployed by WP5.
Prepare the procurement process
including acceptance criteria.

WP8

Future Petaflop/s
computer
technologies
beyond 2010
(RTD)

Start a permanent process to
identify technologies for future
multi-Petaflop/s systems of the
Rl and work with hardware and
software vendors to influence
the direction they are taking.
Establish PRACE as a leader in
HPC technology.

Gauss
Centre

Thomas Lippert / Bernd Mohr

IESP, Santa Fé, April 7-8, 2009

61

PARTNERSHIP
FOR ADVANCED COMPUTING *
IN EUROPE ., *

WP6: Software Enabling for Petaflop/s
Systems

* Create an application benchmark suite

« Capture application requirements for
Petascale systems

* Port, optimise and scale selected
applications

« Evaluate application development
environments of the prototypes

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 62

PARTNERSHIP
FOR ADVANCED COMPUTING

IN EUROPE

\

PRACE WP8: STRATOS

« STRATOS is a deliverable of PRACE WPS:
Create sustained platform for technology watch
and development for PRACE

« Hardware

— Identifying and developing components of future multi-
Petaflop/s hardware

e Software

— Plans for Exascale software development within STRATOS

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 63

Areas of Contribution to IESP #) 0LICH

RRRRRRRRRRRRRRRRR

European Science and Engineering Communities
= Coordination with science drivers

= |dentify application codes and enabling HPC
software

Performance Tools

Programming Tools

Benchmark Codes

MPI, OpenMPI standardization
Scalable Cluster OS
Grid/Cloud-Integration-Middleware

Thomas Lippert / Bernd Mohr IESP, Santa Fé, April 7-8, 2009 64

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
Al Gara
Jean-Yves Berthou

Mitsuhisa Sato
Peggy Williams
Vivek Sarkar
Ann Trefethen

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
Al Gara
Jean-Yves Berthou
Mitsuhisa Sato
Peggy Williams
Vivek Sarkar
Ann Trefethen

IBM Research

Evolutionary Software Areas for Exascale:

« Extend current program models through single node threading of
messaging. Eliminate “per task” scaling terms in messaging layer to
allow for higher “flat scaling”.

* Allow for mixed programming models to coexist. We need a bridge
to new programming models that is not an all or nothing proposition.

« Enhance job flow to enable many concurrent capability scale jobs.
(similar to the emerging approach at LLNL) This is likely to be a
common early usage model for Exascale.

» Open source can be a very good thing for vendors and end users
but we need to find a way share the responsibility and risk.

» Educate young people in parallel programming.

Alan Gara © 2009 IBM Corporation

IBM Research

Revolutionary Software Areas for Exascale:

« Storage class memory is coming: Technology will offer 1000x less
latency but there are many other dimensions to this. Need to think
through the possible directions to use this technology.

» Systems are transitioning to being power optimized. Application
developers are still focused on performance optimization regardless
of power. In a world where there is a power budget, software should
play a role in optimizing performance through optimization of Perf/
Watt. (with total power being a hard facility constraint)

* Reliability: This is not an issue of what will we do when systems can

not be made reliable. This issue is making the best trade-offs
between hardware, system software and fault tolerant applications.

Alan Gara © 2009 IBM Corporation

IBM Research

Actions we can take

« Value of storage class memory: Need to have the HPC community
united in articulating the value proposition associated with storage
class memory. The critical break points in terms of bandwidth, density,
cost and latency need to be understood to help guide the technology
development.

» Power : This is somewhat a mindset change. Applications will
eventually need to think of their computing resource as a total energy
budget and they need to optimize within this. Fortunately much of
performance tuning also drives toward energy efficiency... but not
always. Tools and reports that detail the energy usage need to be
accessible to users.

* Reliability: The realistic adoption, cost and risk of fault tolerant
algorithms must be assessed and these should be traded off against
hardware cost and risk. The systems can not move in a direction that
“might” be acceptable from a reliability perspective. This makes a
software solution very difficult.

Alan Gara © 2009 IBM Corporation

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
Al Gara
Jean-Yves Berthou

Mitsuhisa Sato
Peggy Williams
Vivek Sarkar
Ann Trefethen

eeres
. .
0t%0eols,
- *e

“::40' Improve existing open source software for extreme scale

1.1 compilers/performance analysis tools for achieving mono-processor high
performance, specially with accelerators (Larrabe, GPU, Cell, ...)
Goal : more than 30% of the peak performance

1.2 Efficient, “easy to use”, portable and fault tolerant implementation of Libraries,
Languages/compilers for mixed parallelism : MPl/OpenMP/’cuda/Open CL like”
languages

Goal: one million cores (heterogeneous, hierarchical and massively parallel)

1.3a Algorithm/solvers and data structures adapted to heterogeneous/hybrid, multilevel

and hierarchical massively parallel machines.
Example: Dealing with non-structured irregular meshes for CFD computation on GPU

Goal:
=> No global communication involving the complete system(avoiding MPI_ALL-
REDUCE, MPI_BARRIER,... on 1 million threads)
=> exhibiting different kind of parallelism (MPP, SIMD, ...)
=> enabling fault tolerance techniques implementation
=> enabling efficient O (data restructuring?)
1.3b Open Source scientific libraries sharing a single generic interface, targeting one
million cores (heterogeneous & hierarchical)
Target: PETSc, SuperLU, ScaLAPACK, HyPre, MUMPS, PaStiX, ... & -

7 April 7, 2009 EDF R&D EDF

.....
. .
e Wt

Three important software areas where *revolution™ is
“EET required to achieve scaling

2.1 Parallel visualization and remote/collaborative post-treatment tools

2.2 Parallel meshing, automatic hexahedral meshing, mesh healing, CAD healing for
meshing and dynamic mesh refinement, hierarchical meshes (AMR like)
=> Dealing with x10"% cells mesh before 2015 (x10'2 in 20207?)

2.3 Unified multiphysic/multiscale Simulation Framework and associated services, adapted

to massively computing
=> mutualizing within a single platform pre and post-processing, calculation distribution and

supervision, code coupling tools etc.
=> standardize integration of multiple solvers (“standard” for interoperability of scientific

software components)
= standardize data exchange (common data model for mesh and fields) and associated

services (mesh projection, data interpolation, .. m
VISU

T
T
i

| mOOO!]

Integration
Study ‘
- ®» =
Figure 10. The Salome platform, www_platform-salome. org ‘ ‘

8 April 7, 2009 EDF R&D

eeres
. .
0t%0eols,
- *e

How do we get it done to develop community-supported
“:gpen source software to address these 6 areas, what is
needed?

Some issues related to Open Source

Developing Open Source software, some conditions that may help to succeed and to
keep going:
 one active leader and the recognition by key players
* A roadmap and a validated business model (at least for the leader)
* An ecosystem of partners for the software development, diffusion and associated
services (installation, deployment, maintenance, specific developments)

Using Open Source software, some issues to be aware of: how they are supported,
deployed, visibility of the roadmap, associated risks (as an example, moving from Qt3 to
Qt4 cost 400 days of development to the SALOME project).

Suggestion:
» Identification of existing HPC Open Source software (cf.P. Beckman list)
* Promotion of an international HPC source forge for Open Source software diffusion?

9 April 7, 2009 EDF R&D EDF

eere.,
-.'_.--'.'.....

How do we get it done to develop community-supported
“:gpen source software to address these 6 areas, what is

needed?

Need for International Task Forces on:

1. Parallel visualization tool. The community should focus on a small number of tools. VISIT and Paraview seems good

candidates

Remote and collaborative post-treatment tools

Meshing tools. Need for an international joint effort between academic, commercial companies and end users

4. Common data model and associated libraries.Providing an international standard model for mesh and fields exchange
and services(localization, projection, interpolation, arithmetic operations, ...)

5. Supervising and code coupling tool. Unifying the software developments often driven by end users communities (climate,

WIN

energy, ...)
6. Uncertainties Quantification. Uncertainty analysis framework, Uncertainties referential (methodologies and tools, Open
Turns)

~

Algorithm/solvers and data structures, solver interface
8. Fault tolerance. Need a joint effort involving OS, compilers, middleware/libraries, numerical solvers/algorithm
researchers and engineer communities

Research policy:
« Identifying existing projects and research actions, roadmaps, cost
= Need for a consolidated international roadmap for HPC software
» ldentifying grand challenge applications as driving forces
= Need for an International End User Forum structured around large
communities (Climate, Health, Energy, Transport, Defense, ...)

Identifying funding schemes: US/EU(or national)/Japan co-funding, single country funding \uﬂh

third parties participation?
10 April 7, 2009 EDF R&D EDF

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
Al Gara
Jean-Yves Berthou

Mitsuhisa Sato
Peggy Williams
Vivek Sarkar
Ann Trefethen

3 important software areas where *evolution™ is required

= TO improve existing open source software for extreme scale

= I would propose “standard” development effort for making a steps for next
evolution to exa-scale

= 3 areas
=« Programming language/interface for distributed memory
= We should make “standard” for state-of-the-art programming languages
= PGAS and remote memory interface
= Global views such as Chapel and HPF

=« Fault tolerant model and APIs
= Problems are in reality more than 10,000 cores (100TF)
= Application people want some “standard” solutions in reality
= e.g. MPI 3 effort is going on ...

=« File I/O model for large scale systems
= Data becomes more and more important.
= We need “standard” model for I/O and file systems in hundreds thousands nodes
= e.g. MPI 10, Grid distributed file system ...

XMP project 12

3 important software areas where *revolution™ is required

= To achieve scaling ... (for exa-scale)

= I would propose software supports for platforms from “weak-scaling” to
“strong scaling”
= Exascale machine !'= embarrassingly parallel machine!
= Complexity from arithmetic unit, cores, SMP nodes, network to systems.

= 3 area

= Unified programming model for a high performance node such as multicore,
many cores, accelerator (GPGPU, FPGA, ...)

= Data localities, scheduling, ...

= Programming model for compos-able and scalable software
= Module programming in parallel software
= High level programming lang. such as functional prog., dataflow prog., tele-scope lang.
= For multi-physics simulations, ...

= Fault tolerant / dependability in exa-scale systems
= Model, Cost, Programming, Algorithms, ...
= FT will still be important and hard problems.

XMP project 13

How do we get it done?

= We should promote standard development
effort of APIs between several levels and
components of existing software (for
“evolution”)

= For end-users, education, ...

= For development of higher-level software
technologies

= Improvement of technologies by defining
clear APIs

= e.g. MPI, OpenMP, ...

= We should encourage the exchange ideas
(for “revolution”)

= Diversity is important

XMP project

A software
research/development
process model

New problems are defined
(from new hardware
and demands)

divergence
v

Many ideas are
proposed

convergence
v

Standard development

activity

v

Deployment for
application end-users

14

Proposal for “Parallel Programming Languages” area

= Many parallel programming languages have been proposed, but ...
= Many people still use MPI ...

= OpenMP is now “standard” for programming multi-cores
= What about distributed memory programming?

>

= NOTE: Restrict us parallel extension of
existing languages (C/F95) for end-users.

< MPI
= NOT HPCS languages and Java- ‘§ GAS
based. o £
e &
= How about PGAS (UPC and CAF)? e ey
= Local view parallel programming g HPF
= Already standard? L,

>

H . P - t
= Global view parallel programming rogramming cos

= We should learn from HPF history —
= Locality, efficient communication ... X MP

= Any way to Combine to local view http://www.xcalablemp.org
XMP Iorojeoprogramming? 15

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
Al Gara
Jean-Yves Berthou

Mitsuhisa Sato
Peggy Williams
Vivek Sarkar
Ann Trefethen

s~/
Where is evolution required?
= MP

" |t's portable
" |t's ubiquitous
" Jtisn’t going away

®" Thread Packages

" Stable, portable, general user-level
®" Enable easier implementation of OpenMP
® Allow oversubscription of HW threads

® Operating System

" Extremely lightweight with global functionality (memory management,
communication, etc.)

" Heavily multithreaded locally for latency tolerance

April 09 Slide 17

N~
Where is revolution required?

® Software to enable reliable systems built with unreliable parts
Infrastructure to enable application resiliency

Programming Models

System Software

APls

® Finding and Expressing parallelism
® User perspective (how to code it)
® Compiler perspective (how to render what the user has expressed)
" Make extremely fine-grain, massive, uthreading practical and effective
" Exploit heterogeneous concurrency (computation, communication, 1/O)

® Programming Tools
" Intelligently collect data
" Provide space efficient format for data storage
" Collapse, reduce, filter data

April 09 Slide 18

How do we get it done?

® Define the overall architecture

® Can we converge on a common architecture?
" Establish well-defined interfaces between SW layers
® Dedicated architects throughout the effort

® Establish a community for key projects
® Dedicated maintainers
® Research + Industrial partnerships with funding for both
® User community participation

® Avoid “Design by Committee”
®" HPF, Ada are examples to avoid
" Respected leaders make the tough calls

April 09

i

Slide 19

How do we get it done?

® Focus on the full SW life-cycle, not just the initial development
® Test and integration
® Maintenance
® Management of the rate of change

®" Provide a common exascale test and integration platform

® All components tested at scale on a reference platform

® Strong focus on:
" Mainline testing
" Error-path testing
" Edge-condition/interface testing

® Resolve Differentiation Needs vs. Commonality Needs
® Hardware has been commoditizing over time
® Can common SW provide opportunities for vendor differentiation?

April 09 Slide 20

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
AI G a ra Acknowledgments

= DARPA Exascale Software Study team members
J e a n _Yve S B e rt h O u = Habanero Multicore Software Research project at Rice
= Sponsors and donors: AMD, BHP Billiton, DARPA, IBM, Intel, Microsoft, NSF,
NVIDIA, Sun

Mitsuhisa Sato o
Peggy Williams
Vivek Sarkar

A n n T r'e fet h e n DISCLAIMER: The views, opinions, and/or findinns contained in this presentation are those of the authnr(s) and
should not be interpreted as representing the official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency or the Department of Defense.

This work was supported in part by the National Science Foundation under the HECURA program, award number
CCF-0833166. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the authoe(s) and do not necessarily reflect those of the National Science Foundation.

Context for ExaScale Software Study (in progress)

= Characteristics of Extreme Scale systems:
= Massive multi-core (~ 1000 cores/chip)
= Performance driven by parallelism, constrained by energy

= Three system classes --- Exascale Data Center, Petascale Departmental, Terascale
Embedded

= Key Software Challenges: Extreme Scale software need long-term research
that goes beyond industry efforts in cloud computing
and manycore accelerators

™ Software-hardware co-design will be critical to the
" Resilience success of future Exascale systems
= Software stack:

= Application frameworks & Tools

= Programming models and languages
= Libraries

= Compilers

= Runtimes for scheduling, memory management, communication, performance monitoring,
power management, resilience, storage (including metadata access)

= QOperating & Storage System — persistence support &
b

% RICE 22

= Concurrency
= Energy

Three Software areas where Evolution is Necessary

1. Performance Analysis Tools iy
= Extensions for multithreaded code
= Extensions for calling contexts
= Progress under way in SciDAC centers such as CScADS & PERI

2. Node Compilers
= Adjust and adapt to proliferation of new multicore processors
» Extend auto-tuning techniques with online & offline learning
= DARPA AACE program will provide a major boost to this area

3. MPI + Dynamic Parallelism

= MPI Communicators are founded on fixed process structures

= Process structures will need to change dynamically to address
needs of emerging HPC applications (adaptive/unstructured grids,
coupled models) and archltectures (manycore) 8}

Three Software areas where Revolution is Required

1. Fine-grained Asynchronous Parallelism

= Weak scaling and bulk-synchronous parallelism will not deliver billion-way
concurrency needed in Exascale systems

= |nstead require unified abstractions of asynchrony and concurrency for multi-
core & cluster parallelism

= Subsumes threads, shared memory, message-passing, active messages, ...

2. Locality Models

= Data movement will be major contributor to energy consumption in Exascale
systems

= Need locality models that enable programmer, compiler, and runtime to
manage data movements across multiple levels of memory hierarchy

3. Software-Hardware co-design for Exascale systems

= |ESP effort should identify software interfaces that are critical bottlenecks,
and drive vendors to provide hardware support for software-hardware co-
design of these interfaces

, RJC'E Examples to follow N ‘jn

Example Opportunities for Software-Hardware Co-Design

*= Dynamic parallelism with fine-grained tasks (async, spawn, ...)
= Hardware support for scheduling data structures

Distribution and co-location of tasks and data (places, locales, ...)
= Hardware support for virtual-to-physical translation and inter-place data transfers

Collective and point-to-point synchronization with dynamic parallelism
(barriers, phasers, ...)

= Hardware support for intra-node & inter-node synchronization and communication
Producer-consumer parallelism (single-assignment vars, futures, ...)

= Hardware support for full-empty bits
Isolation and mutual exclusion

= Transactions, fine-grained locks

Data parallelism
= Vectors, SIMD, SIMT

. \
AN RICE 25 ‘j“

Candidate items for Software-Hardware Interface

= Memory hierarchy configurations
= Cache sizes & geometries, hardware vs. software cache coherence
= Register file sizes and data widths

= Memory access patterns
= Address ranges that should bypass cache
= Address ranges that require hardware coherence
= Address ranges for which coherence will be managed by software

= Address ranges with values that are guaranteed to be read-only (immutable) for certain application
phases

= Network bandwidth partitioning for different forms of data movement and
communication
= PGAS, RDMA, Message passing, Stream processing, ...

= Other network reconfigurability parameters
= Topology, Packet size, ...

= Power management
= Frequency scaling, Voltage scaling, ...

= Performance profiling
= Lightweight profiling, Identification of events to be counted and sampled, ...

= Resilience
= |dentification of threads with lower resilience requirements e.g., for which software can perform error

“ ‘v‘ RICE detection and recovery 26

x

From Powerpoint to Action

Directed research needed for all 6 topics (and more)
= Revolutionary areas --- let a thousand flowers bloom
= Users will vote with their feet (and noses)
= Evolutionary areas --- opportunities for consolidation starting with performance tools

Application drivers
= Application stakeholders should contribute sample applications and/or SSCA'’s ---
requires effort, but will pay great dividends
Platform drivers
= Platform stakeholders should contribute to development, testing and integration for their
platform --- requires effort, but will pay great dividends
Coordination

= Follow best practices of successful open source projects --- open development,
continuous integration, continuous testing, customer focus, community involvement,
meritocratic leadership, ...

= QOpen source participation in selected areas can be strategic to vendors too

= For example, see IBM Systems Journal special issue on Open Source Software, Volume 44,
Number 2, June 2005 for open source experiences by a range of IBM project

= Software-hardware co-design — don't let software play second fiddle to hardware! Al

Software Barriers for HPC

Moderator
Pete Beckman

Presenters
Al Gara
Jean-Yves Berthou
Mitsuhisa Sato
Peggy Williams
Vivek Sarkar
Ann Trefethen

N

Developing a high performance computing / numerical analysis roadmap

UK Roadmap activity

Leveraging work in the US and Europe together with UK specific workshops and
discussions groups have lead to barriers for software development that fall into
five themes

1. Cultural Issues

. some people won’t share...
2. Applications and Algorithms
. Need to bring application and algorithm development closer
. Need new algorithms for new architectures
3. Software Challenges
. Engineering, portability, programming models,
4. Sustainability
. Need better models for sustainability not only for UK efforts but those that we
depend on!
5. Knowledge base
. It would be good to know who is doing what and where
. We need to train more people with this cross cutting set of skills.

http://www.oerc.ox.ac.uk/research/hpc—nap

B

Evolution x 3

0 Communication libraries
= Cleverer

0 Numerical and visualisation algorithms and libraries and
tools {need both evolution and revolution}

O Integration of systems of models across scales and the
like are increasingly important — need to evolve support
for this — error propagation.

O Best practice software engineering....

OCIC

ILLY) 7
A 'O
"\ 03 /}
AN 2,

O

O

O

Portability

= Architecture dependent code-generation

Revolution x 3

= Dynamic adaptation

= Check out on one platform check in on another

Programmability

= Develop systems that let us drive the machine with the hood
down — better abstractions

Dependability

= On this scale things will fail — but it shouldn’t mean they’re

broken
Validation

= Garbage generated in milliseconds is still garbage

What can we learn from our formal methods colleagues?

Playing together

o Collaborative development of a roadmap for exascale software —
several such already underway at the national level

O We need better coordination at the international programme level
including mechanisms for collaboratively funded research and
development

O Integration of applications, numerical and system software — silos of
activity will not achieve our aims — US is better at than UK at this.

O Better models for sustainability

= Community support?

= |ndustry take-up

= Need to ensure exascale efforts are not for the few
0 Shared knowledge base required.

OCIC

Playing together

N A
m| Success stories include BLAS, LAPACK, MPI, GPNL (what is that library

called), PetSC

= Good requirements capture, careful design, well engineered, well
supported, used by many

O Support models:
= Community support with funding agency investments
= Vendor supported due to user requirements (eg MPI)

= |ndustry support through direct licensing (library that Rolls Royce using),
through integration into products, Matlab, NAG,

o Failures

= Too many to mention — badly designed and/or engineered, no industry
leverage.. Etc..

= Created for a single audience or application area (CCPs)

= Support model has relied on continuing investment from research
councils (much grid software)

= Tied to a particular

Playing together

0 Ongoing activity — apace development site
http://apace.myexperiment.orqg/

\
\
3

Science Drivers, Current HPC Software
Development, and Platform Deployment
Plans for the USA

Horst Simon
Lawrence Berkeley National Laboratory and UC Berkeley
IESP Workshop, Santa Fe, NM
AN A

-/ F‘Eﬂll 2 April 7, 2009
I l!cﬁ‘ H
& ENERGY

- Office of Science

RS
Acknowledgements

This presentation is a collection of
slides contributed by Pete Beckman,
Bill Gropp, Matt Leininger, Paul
Messina, Abani Patra, Rob
Pennington, Mark Seager, Ed Seidel,
Rick Stevens, Michael Strayer,
TOP500 team, Thomas Zacharia ...
and probably many others.

S

>

- -

|
IESP

State of HPC in the US

Application Drivers

 Platforms Plans

Software Development

Office of Science

Countries / System Share

1%
1%
2% 29

il United States
i United Kingdom
i France

i Germany

i Japan

i China

u ltaly

i Sweden

i India

il Russia

il Spain

i Poland

Continents

i Others
i Asia

swia)sAs

i Europe

Ll Americas

800¢
£00¢
900¢
500¢
¥00¢
€00¢
¢00¢
100¢
000¢
6661
8661
L661
9661
G661
661
€661

SUPERCOMPUTER SITES

Countries

500
.l Others
400
“JIndia
LI China
E 300 I Korea
a
e
;g,. ul |taly
200 M France
i UK
100 i Germany
i Japan
0 i us

1993
1994
1995
1996
1997
1998
1999
2000

SUPERCOMPUTER SITES

* 1,026 Tflop/s on
LINPACK reported
on June 9, 2008

* 6,948 dual core
Opteron + 12,960
cell BE

« 80 TByte of memory

 IBM built, installed
at LANL

£ a‘fb;

Office of Science

November 2008

The systems will be
combined after
acceptance of the new

Peak Performance 1,645 1,382 XTS5 upgrade. Each
system will be linked to

AMD Opteron Cores 181,504 150,17 31 ,328 the file system through
6 4x-DDR Infiniband

System Memory (TB) 362 300 62

Disk Bandwidth (GB/s) 284 240 44

Disk Space (TB) 10,750 10,000 750

Interconnect Bandwidth 532 374 157 © ENERGY

(T B/ S) Office of Science

(FY09 Request)

High End Social.
Computing High End [Human-Computer| High Economic, &
Infrastructure Computing Cyber Security | Interaction & Confidence Workforce Software
& Research & & Information Informaion Large Scale Software & Implicaions Design &
Applications | Development Assurance Management Networking Systems of I'T Productivity

Agency (HEC I&A) | (HECR&D) (CSIA) (HCI &IN) (LSN) (HCSS) (SEW) (SDP) Total

2098 257.4 786 63.1 2348 826 366 98.6 548 931.5
NSF Estimate

;22: sk 298.4 915 87.6 266.5 958 676 1120 70.8 10903
920 1244 2053 1090 530.7
DARPA 1425 106.8 184.9 1359 570.2
OSD and 2476 18.1 38.6 109.6 136.1 256 6.7 582.3
rm:?rl;_ H 249.6 156 7 92.9 114.1 269 7.8 547.5
ey 159.4 76.4 1.1 182.7 68.1 Za 108 46 510.7
1594 763 1.1 181.7 68.0 77 108 4.6 509.6
ORI 282.0 731 476 50 407.6
3346 73.1 522 50 465.0
NOX 93.5 15.5 29 22 137.1
726 17.8 18 272 119.3

o 539.4 03 6.5 1.3 42 72.
NASA 60.1 02 5.5 07 43 70.7
10.7 24 2038 118 58 49 56 62.0
) 10.7 24 258 11.8 58 49 5.6 67.0
398 50 448
AHEQ 398 350 44.8
St 8.4 143 13 43 283
8.2 157 09 4.7 29.5
K 15.9 1.9 0.5 29 16 228
18.0 19 0.5 29 233
SR 355 3.0 6.3
33 3.0 6.3
: 4.5 4.5
NARA 4.5 4.5
TOTAL (2008 Estimate) 1,044.1 268.7 798.5 4624 1248 118.7 7353 3.341
1,1424 ' 4918 79.8 791.2 483.0 138.5 13256 88.7 3,548

l TOTAL (2009 Request) *

OF
3Y
’

:nce

(FY09)

* High End Computing Infrastructure
and Applications $1,142 M

- High End Computing R&D $492 M

Office of Science

32nd |ist: The TOP10

Manufacturer Computer Cores

Rmax Power

[Tflops] [MW]
Roadrunner - BladeCenter 2.48

QS22/LS21

DOE/NNSA/LANL IBM USA 129600

Oak Ridge National Cray Inc. Jaguar - Cray XT5 QC 2.3 USA 150152
Laboratory GHz
NASA/Ames Research Pleiades - SGI Altix ICE
3 Center/NAS SGI 8200EX USA 512000 487.0f 2.09
4 [DOE/NNSA/LLNL IBM eServer Blue Gene Solution USA 212992 478.2] 2.32
Argonne National .
5 Laboratory IBM Blue Gene/P Solution USA 1638400 450.3] 1.26

Texas Advanced
6 [Computing Center/ Sun Ranger - SunBlade x6420 USA 6297 2.0
Univ. of Texas

7 |NERSC/LBNL Cray Inc. Franklin - Cray XT4 USA 38642 266.3] 1.15
Oak Ridge National

8 Laboratory Cray Inc. Jaguar - Cray XT4 USA 30976(205.0f 1.58
NNSA/Sandia National

9 Laboratories Cray Inc. Red Storm - XT3/4 USA 38208 204.2 2.5
Shanghai . Dawning 5000A, Windows .

e Supercomputer Center el HPC 2008 Gl 307201 180.6

- —

_(®
y-2500

SUPERCOMPUTER SITES

- DOE -SC
 DOE — NNSA
* NSF

D, U.S. DEPARTMENT OF

Office of Science

ST
',(/24
RIS

SSS

State of HPC in the US

Application Drivers

 Platforms Plans

Software Development

X U.S. DEPARTMENT OF

Office of Science

ey
N

Computing
Three Town Hall Meetings held April-June, 2007

Climate, Combustion, Fusion, Fission
Solar, Biology, Socioeconomic Modeling sl

Simulation at the

and Astrophysics Exascale for
. . Energy and the
Mathematics, Computer Science Enviromment

Algorithms, Software infrastructure and
Cyberinfrastructure

(‘ "’ US DEPARTMENT OF

Office of Science

B1.

B2.

B3.

B6.

B9.

reak Out Groups
(applications)

Improve our understanding of complex biogeochemical (C, N, P, etc.) cycles
that underpin global ecosystems functions and control the sustainability of
life on Earth.

Develop and optimize new pathways for renewable energy production and
development of long-term secure nuclear energy sources, through
computational nanoscience and physics-based engineering models.

Enhance our understanding of the roles and functions carried out by microbial
life on Earth, and adapt these capabilities for human use, through
bioinformatics and computational biology.

Develop integrated modeling environments that couple the wealth of
observational data and complex models to economic, energy, and resource
models that incorporate the human dynamic into large-scale global change
analysis.

Develop a “cosmic simulator” capability that integrates increasingly complex
astrophysical measurements with simulations of the growth and evolution of
structure in the universe, linking the known laws of microphysics to the macro
world. Develop large-scale, special-purpose computing devices and innovative
algorithm development to achieve this goal.

< - 4 A y”‘qﬁ U.S. DEPARTMENT OF
| D & ENERGY
Office of Science

B10. Manufacturing

v ﬁi | S
Nea

B4.

BS.

B7.

reak Out Groups
(technology)

Develop tools and methods to protect the distributed information
technology infrastructure: ensuring network security, preventing
disruption of our communications infrastructure, and defending
distributed systems against attacks.

Drive innovation at the frontiers of computer architecture and information
technology, preparing the way for ubiquitous adoption of parallel
computing, power-efficient systems, and the software and architectures
needed for a decade of increased capabilities. Accelerate the
development of special-purpose devices that have the potential to
change the simulation paradigm for certain science disciplines.

Advance mathematical and algorithmic foundations to support scientific
computing in emerging disciplines such as molecular self- assembly,
systems biology, behavior of complex systems, agent-based modeling
and evolutionary and adaptive computing.

. Integrate large, complex, and possibly distributed software systems with

components derived from multiple applications domains and with

distributed data gathering and analysis tools.

SR, U.S. DEPARTMENT OF

7 &)

QD % I
2 4

N Vi

Office of Science

(2008 — 2009)

 Climate, Nov. 2008

 Astrophysics, HEP, Experimental Particle Physics,
HE Theoretical Physics, Dec. 2008

* Nuclear Physics, Jan. 2009

* Fusion Energy, March 2009

* Nuclear Energy, May 2009

« Combustion, Nanoscience, Chemistry, August 2009
- Biology, Sept. 2009

« NNSA and SC Mission, Sept/Oct. 2009

E\»" %% U.S. DEPARTMENT OF
W ENERGY
TS

Office of Science

]
= Dt R

(2008 — 2009)

« Series of workshops organized as follow up by DOE-SC
(Paul Messina):

— To identify grand challenge scientific problems in [research
area] that can exploit computing at extreme scales to bring
about dramatic progress toward their resolution.

— The goals of the workshops are to

 identify grand challenge scientific problems [...] that could
ge aigled by computing at the extreme scale over the next
ecade;

 identify associated specifics of how and why new high
performance computing capability will address issues at
the frontiers of [...]; and

- provide a forum for exchange of ideas among application
scientists, computer scientists, and applied

mathematicians to maximize the use of extreme scale
computing for enabling advances and discovery in [...].

S2, U.S. DEPARTMENT OF

£k &)
1 3
R

Office of Science

Scientific and computational challenges Summary of research direction

Brief overview of the underlying scientific and What will you do to address the challenges?
computational challenges

Potential scientific impact Potential impact on SCIENCE DOMAIN
What new scientific discoveries will result? How will this impact key open issues in
SCIENCE DOMAIN?

What new methods and techniques will
be developed?

What’s the timescale in which that impact may
be felt?

S , U.S. DEPARTMENT OF

© ENERGY

Office of Science

PRDs for Climate Model Development

and Integrated Assessment
(from Warren Washington’s presentation to BERAC)

* How do the carbon, methane, and nitrogen
cycles interact with climate change?

* How will local and regional water, ice, and
clouds change with global warming?

* How will the distribution of weather events,
particularly extreme events, that determine
regional climate change with global warming?

« \What are the future sea level and ocean
circulation changes?

I
18

p’_—=, " Office of
~ Science

U.S. DEPARTMENT OF ENERGY

PRDs for Algorithms

and Computational Environment
(from Washington’s presentation to BERAC)

* Develop numerical algorithms to efficiently use
upcoming petascale and exascale architectures

 Form international consortium for parallel input/
output, metadata, analysis, and modeling tools
for regional and decadal multimodel ensembles

* Develop multicore and deep memory languages
to support parallel software infrastructure

« Train scientists in the use of high-performance
computers.

p’_—=, " Office of
~ Science

U.S. DEPARTMENT OF ENERGY

|
l'-:ﬁ
= Dt

Cosmic Structure Formation Probes of the Dark Universe

Develop precise predictions of structure formation
from the Hubble Volume to the scale of the Solar

Understand cosmic structure to enable the use the
universe as a probe of fundamental physics

System
Perform cosmological hydrodynamical simulations
with the dynamic range necessary to interpret future Develop spatially and temporally adaptive codes,
experiments algorithms, and workflows for simulations and data on

extreme-scale architectures.

Determine the equation of state of dark energy and Revolutionize High Energy Physics by discovering and
distinguish between dark energy and modifications of measuring physics beyond the standard model
General Relativity inaccessible to accelerators.

Measure the masses and interactions of dark matter

10 years

Measure the sum of the neutrino masses

Probe the fields responsible for primordial fluctuations

U.S. DEPARTMENT OF

JENERGY

Office of Science

Consensus view of Astrophysics
Simulation and Data Panels

* |dentify and support development of low-level
modules and libraries, isolating architectural
complexity (e.g., MPI, FFT)

* |dentify and support development of open-
source community application codes, but not
to the exclusion of other promising efforts

 Promote development of data models and
language for interoperable data analysis
(observatlon <=> S|mulat|on)

£ ap%)

Office of Science

workshop

* Physics of extreme neutron-rich nuclei
and matter

* Microscopic description of nuclear
fission

« Early universe

lar evolution

lar explosions and their remnants

) U.S. DEPARTMENT OF

&
2\ &/ '
2 /&

) S

Office of Science

PetaApps Solicitation:NSFE 07-559,
08-592 S

Applications ranged over, climate change, earthquake
dynamics and structural response, nanoscale transistor
models, supernovae simulations, high Reynolds number
turbulent flows, quantum chromodynamics ...

OMEN Benchmark for 2D FET on Kraken—XT5 and Ranger

10°

—o—0ld OMEN Ranger: pgi, gotoblas, 2.3 GHz
-u-0ld OMEN Kraken-XTS: pgi, acml, 2.3 GHz
—4—New OMEN Kraken—-XTS: pgi, acml, 2.3 GHz

16 Voltages
3 Poisson Iteratiors
16 Momenta
~1400 Energies
DD on 2 Cores

Walltime (s)

']

1) Renorm. Alg. (RA)
= 2) MUMPS s

4096 16384 65536
Number of Cores

25

PetaApps Solicitation:NSFE 07-559,

08-592

Solicitation sought proposals that
develop the future simulation, optimization and

B Pl 7
] . by 7 “'r‘\,m
analysis tools that can use emerging petascale P 6. e,
computing to advance the frontiers of scientific ?f‘f; o
and engineering research; 3 ;%

have a high likelihood of enabling future
transformative research;

133 distinct project proposals received;

18 awards ~$26M (50% funding from OCI,
50% from CISE, ENG, MPS)

~$30M investment planned for FY09-10

26

Computing (ASC) Strategy Goals

 Address national security
simulations needs;

fim
- Establish a validated predictive RORDI?
capability for key physical
phenomena;

« Quantify and aggregate
uncertainties in simulation
tools;

 Provide mission-responsive

computational environments.

AR, U.S. DEPARTMENT OF
Y ENERGY

Office of Science

State of HPC in the US

Application Drivers

 Platforms Plans

Software Development

X U.S. DEPARTMENT OF

Office of Science

ey
N

ﬁ
Oak Ridge’s Cray XT5

Breaks the Petaflop Barrier

o - |

e

N . —_— =\

=] =) = == -~ ;
H . £ ‘ ‘ it /
A VAN *

Peak Performance 1,645 1,382

AMD Opteron Cores 181,504 150,176 31,328
System Memory (TB) 362 300 62
Disk Bandwidth (GB/s) 284 240 44
Disk Space (TB) 10,750 10,000 750
Interconnect Bandwidth (TB/s) 532 374 157

o

|7‘=

IS P - wLnErGY

Argonne’s IBM Blue Gene/P — 556 TFs

Computing Center (NERSC)

« Located at Lawrence
Berkeley National Lab

— Cray XT4 Franklin
upgraded to 350 Tflop/s

— Data facility with up to
50PBytes capacity

« NERSC-6 Project

— RFP issued in
September 2008

— Installation 2009

Office of Science

S
ESnet

40 Gbps Core

po— ;

i

Jane-Novermb e 2008

Princeton Gets a 6,400 Percent Increase in
Bandwidth With ESnet Upgrades

B
ccrrectiors ko severci nrthsicre oo
Finceton Unvesty's Fonensl Conca.
rciudng he Finzeton Rlaima Physcs
Lot (FPPLL #he HIGh Sengy Fhvpaks (HEF)
SrouD witin the Pratict Cesatrmant of
Fanceton Uniesty, vd e Natonst
Ocecnis ond Mmoeshanc Adminktroton s
Fesstaticsl Bud Dmarmics Labsestory
=

Now 1etecichen ound e gobe
Zon Socen G26T Aon thase cence
13cRter wih NCIecIrg IDeest Ind sah
Sdty, helorg erctie imemational cd-
Iczoratons on barcivicihvirtershe conk
cohcrs ond espesmerh.

"t i o Gt Sxhievament.” a3yt
Thwew Sotter hecd of Glnet TWEL e
Secic ity of Ostng-ecioe nrrumaent:
273 npezomeuen, Icentel cesund
e worid e colsbarg o cony o

PR (3bcarm hem) od OFOL coe bt et o Princeice L sy Fasesl Cawpes

watk GIretd vz S s port dedicot Soute 142 South Bunraick then to
@2 s ond P e ter of mutn e
GIGStit Det sezond IDeeck.”

The Finceton networt uogode tosk n3n ookt of cretence n Mclean, V2
G eazecmant: IS produce Yemers SoStsamStel S martte 45 comciete.

FrAcSeTa where | horepsries
axou He Tret riortuciie fo (het's

On the Pirceton comoue. the FPLL

Ssu avourh of dte Ths Lograde Inks ord iresived uming e opte coting FraTat Correcon B row coestg ot

Pinceton’s phyvict L
S thesugh cur bt orc relictie

e Fonent Carrou W0 Giasti 1Deeck, 10 bllcn i Cer sec-
cuntite Prrcetsn. New Jesey. Siorg

ond. ignBconty condnued on poge 2

ESnet4 Provides Critical Link for US. Researchers Accessing LHC Data

Apzrocching he 1peed of Ight. miliors o protons wil colice
Sar 10530 when the Loige Hockon Collder (LHT) comer cnire
next peat T e e riee
national acientc communtty b ever Hed 1o nanage. Iclenire
Birzect the cutcome of thate “sEciont Inahure’ wil sivide
vohtie nsghs o he origini of mater nte

secznd —tre 20 rous
of SGhal Mtk Per 1ezond 124 e3ch 1D GGt ine.
The LS. which haciSer e Suizt G Franch boiden on the
Cutirs of Garawvs. il e e ot aiDetment 4 Ay Lite the
ovorced capctiiter of this retwok. whh correch OCE

Urhene

A houacrc of terechchan 3214 e Glote STdsW Swot
the e of 18 acTecmant. QUG the MOt se Smourt of doAT
1o tham & ro reGriEort taik Fortunciel. retwok engres ot
the LS. Desatrent of iregy't (DOD Snemy Soences Netwok
{5Zrat) formec this A4z cholerge resa 2gs and

* Scron the country ord colae-
orotce woddvice

“SZratd i Cre of e Mzt ot JTTIAC BT networks
wotterce” 13 Feve Sotte Cezatmant Headfor inet. “he
1erom @raBorrTant of 4203y It ey SMesmnt A2 92t o C few
yem ogn Wretd provices the HGHIDeed. sTheTel Ieictie c3n.

GIrats o new
@rough barcivicih 1o horsort mrdtcle theaTa of 10 gigah of

reziuty srcUs. ond et
Horm 1equ e 10 s art e Inharenty colstonthve. plotal
ratim of roce geice e ” ccndnsed on pope 3

ASAVAN

e s G| S By WAl 8 10 O
-

Acrcan e meniy, TEend Ta vosd e

DPEO I 984 100000 By pTwANg teictie

FEPFIEIN COVATDNS Bevewn ol 3
Weecch Paitora, In B US oad et

DU e G st SER e T —
— O -

g ———

Cors neworks: scalabl e to 20-60 Ghp & by 2006-2010, 200600 Gb pe by 2011-2012
T Natwork s of Cacarrber 2006

Leader in Networks for Science
— OSCARS
— PerfSONAR

Basodmbig o bl e il
CTALEE S AL b ek i
woanleml slmdnihm ol kit

— Dantelnternet2CanarieESnet

U.S. DEPARTMENT OF

'ENERGY

Office of Science

-~ ASCR
Facilities Strategy

* Providing the Tools - High-End Computing

— High-Performance Production Computing - Federal Plan
National Energy Research Scientific e e
Computing Center (NERSC) at Lawrence =
Berkeley National Laboratory

» Delivers high-end capacity computing to
entire DOE SC research community

— Leadership-Class Computing — Leadership WP s
Computing Centers at Argonne National —-—-
Laboratory and Oak Ridge National &

Laboratory

* Delivers highest computational capability @~ "%
to national and international researchers
through peer-reviewed Innovative and
Novel Computational Impact on Theory
and Computation (INCITE) program (80%
of resources)

* Investing in the Future - Research and
Evaluation Prototypes

Linking it all together - Energy Sciences
Network (ESnet)

World’s Most Powerful Computer.
= For Science!

=i

Office of Science

Capability

(logarithmic scale)

ineering

d Eng

1ence an

[|
[|

/\

q
h

—

|Sc

Computing

Track 1 System

UIUC/NCSA (21 PF sustained) *

Track 2 Systems Track 2d *_ -

PSC (?) t _______
UT/ORNL (~1PF) * __________
TACC (500+TF) * ________________

Track 3 Systems

Lead'\ng

FY’07 FY’08 FY’09 FY’10 FY’11

‘ m D) ENERG)

2 7 E N E RG
) S I
iSOk

Office of Science

System Attribute

Status

Vendor

Processor

Peak Performance (TF)
Number Cores/Chip
Number Processor Cores
Amount Memory (TB)
Amount Disk Storage (TB)
External Bandwidth (Gbps)

Systems

TACC UT-ORNL
Ranger Kraken
Installed Installed
Sun Cray
AMD Intel
504 ~1000

4 ?
62,976 ~80,000
123 ~100
194

10

<2) U.S. DEPARTMENT OF

@ ENERGY

Office of Science

System at NCSA

System Attribute Abe Blue Waters
Vendor Dell IBM
Processor Intel Xeon 5300 IBM Power7
Peak Performance (PF) 0.090

Sustained Performance (PF) 0.005 >1

Number Cores/Chip 4 multicore
Number Processor Cores 9,600 >200,000
Amount Memory (TB) 14.4 >800
Amount Disk Storage (TB) 100 >10,000
Amount of Archival Storage 5 >500

(PB)

External Bandwidth (Gbps) 40 >100

£, U.S. DEPARTMENT OF

2 /& I
) S

Office of Science

= (P

u ASC Continues with roadmap to exascale

Transformed
Past 2008-2018 Comblex
Program Goals: ,

9 Certify LEPs and RRWs ()near- Assess & certify without
Develop capability t s neighbors to the test base requiring reliance on
com?yb:gmg wego:s 03‘09 O UGTs.....past or future
with codes calibrated Transition to quantified 3D
to past UGTs predictive capability

Predictive Capability Strategy is inextricably linked to ASC Platforms Strategy:
Keystones of
Stewardship in

place

Pnnmpa_ll : Energy Boost Secondary
uncertainties: Balance Performance
ICW“QNMMCBOCOGOSO70809|O|I12131415!517131920212%24526
: : : : l ' % 1 |] 1 1 1 1 | 1 | | | % } % } = :
Wl <
RedStonn
Computing Pu le BGL
Power: 10 500
BG/L
360
Petascale systems Exascale systems

Terascale systems
ASC RoadRunner and Sequoia is the dawn of the petascale era for
predictive weapons science

\
Qw Sequoia Strategy

I
= Two major deliverables
e Petascale Scaling “Dawn” Platform in 2009
» Petascale “Sequoia” Platform in 2011

*essons learned from previous capability and capacity
procurements
 Leverage best-of-breed for platform, file system, SAN and storage
e Major Sequoia procurement is for long term platform partnership
e Three R&D partnerships to incentivize bidders to stretch goals
e Risk reduction built into overall strategy from day-one

= Drive procurement with single peak mandatory

e Target Peak+Sustained on marquee benchmarks
e Timescale, budget, technical details as target requirements
e Include TCO factors such as power

L

\

A To Minimize Risk, Dawn Deployment Extends the Existing
AsCPurple and BG/L Integrated Simulation Environment

ASC Dawn Simulation Environment

32

WAN other

Dawn Archive

1o 2 wis
Nodes 1,024
Dawn (ION) | BG/L
Compute
Nodes
(CN) Login 72

Nodes
(LN)

2.88 PB RAID Disk

Service
Nodes
(SN)

'S

10 Gigabit Ethernet Federated Switch

3.7 PB RAID Disk

10 GbE 1 GbE
———

15 Oct 2007, mks

Lawrence Livermore National Laboratory 1QCY09

132 GB/s Delivered BW

96 GB/s Delivered BW

= ASC Dawn is the initial delivery
system for Sequoia

= Code development platform and
scaling for Sequoia

= 0.5 petaFLOP/s peak for ASC
production usage

= Target production 2009-2014
= Dawn Component Scaling

e Memory B:F = 0.3

* MemBWB:F=1.0

e Link BW B:F =2.0

* Min Bisect B:F = 0.001

 SAN GB/s:PF/s = 384

* F is peak FLOP/s

39 LIL'

\
gl

Sequoia Target Architecture in Integrated Simulation

AsCEnvironment Enables a Diverse Production Workload

ASC Sequoia Simulation Environment
Lawrence Livermore National Laboratory 2010/11

32

WAN other

Archive
VIS

Sequoia
/0
Nodes

(ION) Dawn

Sequoia
Compute
Nodes
(CN)

BG/L

Login

Nodes
(LN)

132 GB/s Delivered BW
2.88 PB RAID Disk

Service
Nodes
(SN)

Purple GPFS

Peloton

Linux
Clusters

FH

Sequoia Targets

24x Purple on IDC

20x BGL on Science

512 GB/s Delivered Lustre BW
100% BW to 100 & 50% of CN

50% BW to 25% of CN

50 PB RAID6 Disk

576x IBA 4x QDR

1,254x10GbE

Sequoia SAN Federated Switch

A S
512 GB/s Delivered BW
50 PB RAID Disk

IBA 4x QDR10 GbE 1 GbE >

1 Feb 2008, mks Preliminary, for discussion purposes only

= Diverse usage models drive
platform and simulation
environment requirements

e Will be 2D ultra-res and 3D high-res
Quantification of Uncertainty engine

» 3D Science capability for known
unknowns and unknown unknowns

= Peak of 14 petaFLOP/s with option
for 20 petaFLOP/s

= Target production 2011-2016
= Sequoia Component Scaling
 Memory B:F = 0.08
e Mem BWB:F=0.2
e Link BW B:F = 0.1
e Min Bisect B:F = 0.03
« SAN BW GB/:PF/s = 25.6
* F is peak FLOP/s

w &

State of HPC in the US

Application Drivers

 Platforms Plans

Software Development

Office of Science

elivering

e So1tware roundation

Software Developed under ASCR Funding

Programming Development/
Models Performance Tools
Active Harmony BABEL
Berkeley Lab Checkpoint Restart
ARMCI (BLCR)
ATLAS Dyninst API
Berkeley UPC Compiler Fast Bit
Charm++ Goanna
Fountain HPCtoolkit
FT-MPI Jumpshot
Global Arrays KOJAK
Kepler MPIP
MVAPICH MRNet
OPEN-MPI Net PIPE
OpenUH OpenAnalysis
PVM PAPI
ROSE
ScalaTrace
STAT
TAO
TAU
Hpcviewer

Math Libraries

ACTS COLLECTION

ADIC
Hypre

ITAPS Software Suite

LAPACK
Mesquite

MPICH2
OpenAD
OPT++
PETSc
ROMIO
ScalLAPACK
Sparskit-CCA
Trilinos

System Software

Cluster Command & Control
High-Availability OSCAR HA-
OSCAR

LWK-Sandia

PVFS

ZeptoOS

Collaboration

enote

Visualization /Data
Analytics

BeSTMan

Parallel netCDF
Virtual Data Tool Kit

Miscellaneous

Libmonitor

Office of Scienci2

Software Issues (collaboration w. IBM)

« System software
— Scalable, jitter-free OS (AIX or Linux)
— Integrated System Console

« Software development environment and tools

— Programming N
* New models: MPI/OpenMP, UPC, CAF, GSM

Efficient compilers: C/C++, Fortran, UPC, CAF

Scalable debugger

Optimized libraries

Frameworks (e.g., Cactus)

— Performance tools

— Workflow management

* Reliability

— Virtualization

'
asdio7] via paypa3apuy

S2, U.S. DEPARTMENT OF

£ &)
3
N

Office of Science

PN Sequoia Distributed Software Stack Targets Familiar g8
4=® Environment for Easy Applications Port

llel Math |
OpenMP, Threads, SE/TM
Clib/F03 runtime

stre Clie
LNet

LWK, Linux

SLURM/Moab
RAS. Control Svstem

ork

L .

/\‘ Consistent Software Development Tools for Livermore Model

AscC from Desktop and Linux Clusters to Sequoia
T ———

Gnu build tools

0 ; aANS DO

) nce Compilers - R
C/C++/Fortran, Python

______MPI2--
)penNAl hreadSE/TIV
Programming Models

0
! @ Open Source* Seamless Environment

*Vendor, ISV components
are negotiable

45

There is no coherent Petascale
software plan across different
platforms and different agencies

; U.S. DEPARTMENT OF

Office of Science

Performance Development Projection

1 EFlop/s </\7/

16.9 PFlop/s

10 PFlop/s

1 PFlop/s

1.1 PFlop/s

100 TFlop/s

10 TFlop/s

1 TFlop/s 12.64 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s -

1994
1996
1998
2000
2002
2004
2006
2008

sooo —

SUPERCOMPUTER SITES

1995 “Building a computer 10 times 2007 “range of applications that would
larger than all the networked be materially transformed by the
computing capability in the USA” availability of exascale systems”

Modeling and
Simulation at the
Exascale for
Energy and the
Environment

Enabling
Technologies for
Petaflops
Computing

§56)

Thomas Sterling,
Paul Messina,
and Paul H. Smith

www.er.doe,gov/ASCR/ProgramDocuments/TownHall.pdf

Office of Science

We won'’t reach Exaflops with this approach

1.E+10
-
Exa flpps .2
1.E+09 —
.-~ Simplistjc
1.E+08 pem nfm "7 T R
Full
o 1E+07 gt |
w
O 1E+06
1.E+05
1E+04 == Y
1.E+03 -1—‘—* }
1/1/00 1/1/04 1/1/08 1112 1116 11120
¢ Top1ORmax == e eamaa Rmax Leading Edge —— — Rpeak Leading Edge

i EVOIUtiONENY Heawy Fully Scaled

From Peter
Kogge, DARPA

!_?
. L
I S

&

P sstar
X
2\ ﬁ
)
\irscig

Exascale Study

U.S. DEPARTMENT OF

ENERGY

Office of Science

Exascale Townhall: Software — Findings

“Effective use of exascale systems will require fundamental changes in
how we develop and validate simulation codes for these systems and
how we manage and extract knowledge from the massive amount of data
produced.”

- Exascale computer architectures necessitate radical changes to the software
used to operate them and the science applications. The change is as disruptive
as the shift from vector to distributed memory supercomputers 15 years ago.

 Message passing coupled with sequential programming
languages will be inadequate for architectures based on
many-core chips.

* Present code development, correctness, and performance
analysis tools can’t scale up to millions of threads.

« Checkpointing will be inadequate for fault tolerance at the
exascale.

 Fundamental changes are necessary to manage and extract
knowledge from the tsunami of data created by exascale
applications.

L
18] |

"= Office of Science

Exascale Townhall: Software - Challenges

Improve scientists’ and administrators’ productivity -
» Creation of development and formal verification tools e
integrated with exascale programming models =§

Improve the robustness and reliability of the system ' —= |
and the applications. = ‘
* New fault tolerance paradigms will need to be developed — -

and integrated into both existing and new applications

Integrate knowledge discovery into the
entire software life-cycle
« Application development tools, runtime steering,
post-analysis, and visualization

Develop new approaches to handling the entire data
life-cycle of exascale simulations
« Seamlessly integration into the scientist's workflow
« Automatically capture provenance
* Develop effective formats for storing scientific data

Office of Science

T ——
Observation #2

» Software environment evolved
naturally from Terascale to Petascale

— same system architecture
—only ~10X increase in parallelism

« Software environment must change

fundamentally in the transition from
Petascale to Exascale

— different node architecture
— massive parallelism (~1000X increase)

13 - 4 & AGER, U-S- DEPARTMENT OF
P ©ENERGY
Office of Science

about IESP

 Evolution or revolution?
* Program or project?

... to be discussed at the reception

i U.S. DEPARTMENT OF

Office of Science

Robert F. Lucas
Computational Sciences Division
Information Sciences Institute
University of Southern California
rflucas@isi.edu

Musings on the Path Forward to Exascale

In the hey-day of supercomputing, when Cray Research was the darling of Wall Street,
scientists and engineers in both the public sector, Universities and National Laboratories,
as well as those in industry used the same computer systems. Sometimes, they used the
same codes, such as NASTRAN, which was initially developed by NASA GSFC and
later distributed World-wide by independent software vendors (ISVs), like today’s MSC
Software. In other fields, such as nuclear weapons design, for which there is no
commercial market, government-funded scientists could still leverage the same rich
software ecosystem of operating systems, compilers, numerical libraries, and debuggers
as was available to their colleagues in industry.

The advent of distributed memory, message-passing systems dramatically changed the
above status quo. The codes that consumed the most supercomputer cycle time were
often highly specialized to the Cray architecture, and it was not practical, if even feasible
to port them. In Labs and academe, a new generation of capability codes was developed,
often from scratch, i.e., designed form the beginning to exploit the new systems. This
also required the development of a new software ecosystem with numerical libraries,
debuggers, etc. Passing the burden of orchestrating data distribution and communication
to the user (i.e., MPI) at least allowed most us to continue to use standard languages and
compilers on individual processing nodes.

While they were much slower to do so, industrial users have now also adopted distributed
memory systems. More and more of today’s mainstream commercial software exploits
thread level and even message-passing concurrency, though scaling of these codes is
usually quite limited. Thus, an automaker with thousands of CPUs will not launch a
handful of large capability computations, designed to explore some novel design, but
rather will launch a large ensemble of modest jobs (~32 processors), each evaluating a
small perturbation in their design space.

The divergence of public and industrial use of supercomputers had a deleterious impact
for all involved. The market for high end systems stopped growing, and many system
vendors left the market. Many users found that they could lower the cost of computation
over the course of the last decade, but could not increase the scale and fidelity of those
same computations [ref. Vince Scarafino, Ford Motor Company].

As we look forward to Exascale, there are reasons to believe that we will face a
transformation similar to that experienced in the early 1990s, when distributed memory
stopped being a curiosity, and went mainstream. The rate at which users and their tools
must expose additional concurrency is actually increasing, and by the dawn of the

Robert F. Lucas Page 1 3/16/2009

Exscale era could exceed 10°. Meanwhile, the ratio of Bytes to Flops could drop by
orders of magnitude as DRAM sees the end of its Moore’s Law growth earlier than logic
circuits. This in turn will almost certainly lead to a new memory hierarchy as technology
like Flash fills the void. Heterogeneous systems like RoadRunner may become prevalent.

An obvious question that arises is how do we learn from our past, and manage this next
transformation so that it is not as disruptive as the last one? The thesis of this white paper
is that we need to do so in multiple ways. First, we must evolve our systems and
software, whenever possible, in a manner that is predictable by users and developers.
There is more value in application software today than there is computing systems.
There are applications in use today that are forty or more years old (e.g., NASTRAN),
and these applications can be expected to grow over the course of the next decade. The
developers of these codes must be provided with a path to the future that allows them to
incrementally add new features and anticipate changes in computing systems. Note, the
transition from scalar to vector circa 1980 was evolutionary for most developers.

Secondly, we must remember that computer systems exist to solve problems for their
human users. Thus Exascale systems must be co-designed with the applications that they
will ultimately run. Building message passing systems was expedient for the system
architects, punting to application developers the hard problems of distributing and
coordinating the computation. As the level of concurrency approaches 10°, this will no
longer be feasible. We will not be able to tolerate unnecessary overheads in
communication and synchronization, lest Amdahl fractions preclude users from making
practical use of such systems. This author believes we should start an Exascale system
program with the scientific and engineering challenges it will be expected to solve. In
such a design, we must consider existing software to be an important boundary condition.

Finally, there is concern that the reliability of systems will begin to decline as we
approach Exascale. The scale of the systems and the number of components involved is
increasing. Worse, as VLSI geometries continue to shrink, the long-term reliability of
integrated circuits will decrease and they may become increasing vulnerable to transient
failures. Unfortunately, in mainstream science and engineering, the programming model
has always been that the system is reliable, and simple measures like checkpoint/restart
would be adequate for the rare exceptions. I firmly believe that every attempt must be
made by computer hardware and system software to continue to isolate software
developers and end users from any reduction in component reliability. Otherwise, we
will poison the ecosystem and can expect to see fewer and fewer users of capability
systems.

Robert F. Lucas Page 2 3/16/2009

BSC vision Towards Exascale

Jesus Labarta, Eduard Ayguade and Mateo Valero,
Barcelona Supercomputing Center — Centro Nacional de Supercomputacion
(BSC—CNS) and Universitat Politécnica de Catalunya
Nexus II Building, C. Jordi Girona 29, 08034—Barcelona, Spain.
{ jesus.labarta, eduard.ayguade, mateo.valero}@bsc.es.

What is scalability? We need to reach a view of our systems, where looking at them from
different distances still lets us have a self similar view, like looking at the earth form the
moon, a satellite, a plane, the top a mountain or standing on the ground. We need unified
views of our computing systems, where granularity is the main difference between the
levels we may focus at.

The current experience represents a single snapshot of different techniques at various
granularity levels. We use dataflow ideas in out of order processor design, decoupling
between logical and physical address space at the virtual memory level, synchronous
algorithms at cluster level, We should look at all good ideas, developments and
practices form the past and apply them in a broad scalable way, where granularity is the
only difference between levels.

Power, variance, resource (energy budget, processing power, storage, and
communication) sharing and management, and global complexity are important
challenges. Memory structure is a key issue, seen both form the point of view of the
model offered to the programmer and the actual hardware structure and support
mechanisms. Overlap between communication and computation and in general better
tolerance to latency is important to avoid the over dimensioning of communication
infrastructures that current practice seems to favor.

Facing these challenges, asynchronism and decoupling different conceptual levels is the
key to tackle a universe huge in scale and characterized by variance. We consider that the
programming model is Alexander’s sword to break the Gordian knot of multicore and
exascale systems. A proper programming model is the key interface that will allow the
separation at a coarse granularity level between the concerns of users and those of system
designers in the same way ISAs did allow such separation and progress in the past. The
only issue is that we still have for forge this sword and we will require strong interaction
of all levels to do it.

We need programming models that help decouple the way programs are written and
executed. At the programmer interface, we should be able to write ideas left to right, top
to bottom in a clean and concise way. Runtime should be able to execute them out of
order (right to left, top to bottom,...) in the way that the utilization of the resources and
thus global efficiency is optimized.

Ideally a single programming model with hierarchical capabilities should cover the whole
dynamic range from the single node to the exascale system. It is nevertheless foreseeable
that mixed approaches will be used in the near future, with a different model being used
for the cluster, node and accelerator/device level. In this situation, an issue that will have
strong impact on the programmability of our systems and the final performance is the
“compatibility” between the models at the different levels. Different models
have/promote different parallelization and synchronization structures. Very often in the
past, mixed models gave discouraging results due to a mismatch between the
parallelization structure at the coarse and fine grain level. Considering that properly
parallelizing an application (and we are really facing Amdahl’s law) is a global issue,
both programming model designers and application writers need to put special care in
ensuring that the interactions between the fine and coarse level result in positive
interference.

We consider that a clean specification of what are the inputs/outputs/accesses of a
computational block (task medel) is a proper boundary between a programmer who has a
good knowledge of the algorithmic interactions and the execution engine. The runtime
should be responsible of the scheduling issues: progressing as fast as possible along the
critical path; knowing which functional units (cores) are more appropriate for each task;
deciding where to issue task to maximize locality and minimize bandwidth requirements.
Mechanisms for the programmer to provide hints and additional information to the
runtime will be useful, but not a requirement.

We need to decouple memory as a logical address space to name objects from memory
as container to keep the values. Matching objects to the actual containers available should
be handled dynamically by the run time, in a much more flexible than what is today done.
We are used to a single level of such mapping being handled by hardware (caches,...)
and we will need to consider a hierarchical approach, where at coarse levels of
granularity this functionality is handled by the runtime.

Many of these ideas come from dataflow, yes, and they should be extensively used in our
execution engines. We do need syntactical ways to provide a smooth transition form
current practices to facilitate the adoption of such techniques by the huge community of
programmers who are scientist, but not computer scientist.

At the application level we do need to restructure our codes to clearly reflect the actual
access patterns. Many current applications have accesses to key global structures deeply
buried into the call tree. This is not only bad for the future exascaling of the code, it is
also bad for today’s maintenance and development of new functionalities. We envisage
that such application cleaning process will have to be undertaken by application
developers in their way to exascaling. This will have to be done while including in the
code the asynchrony and means to determine dependences between computations. What
would be important is to ensure that this is an only once effort, leading to applications
that can survive for some decades and can be upgraded and rapidly ported to the
foreseeable explosion of hardware platforms. This should be feasible in a portable,

modular and incremental way, possibly tuning some low level task description to
specific accelerator hardware but leaving the program structure and code unmodified.

At the application level it will also be important to work on new algorithms that are
more asynchronous in nature. It is hard to imagine programs with tens of millions of
threads synchronizing globally at fine granularity that will run efficiently and insensitive
to variance or noise. It will be necessary to study where the balance stands in terms of
computational complexity of an algorithm and the level of asynchronism that it has.

Load balancing is a key issue to achieve performance at high scale, which is frequently
underestimated. We tend to believe that our applications are more balanced than they
really are if their actual execution is measured in fine detail. Very often in current
practice we blame the communication subsystem when the real cause of the problems
comes from load imbalances or serializations. MPI, like a perfect gas, fills whatever
space you give it. We should look more at what and how we compute and a bit less at
how much time we spend in MPI. Dynamic load balancing techniques will have to be
used to solve the issue, irrespective of whether it is caused by the application itself, or
originates from variance in the devices or system software or from the shared usage of
resources. In the same way that having to continuously use force to enforce power is not
having real power these dynamic techniques should be always there, but only enforced
when needed.

Malleablility of applications is a feature that will be a requirement mostly arising as a
requirement of shared utilization of systems and the attempts to optimize the global
throughput of systems and quality of service/SLAs. Malleability, as the ability of an
application to change its parallel structure (change resources used) is a feature that will
have to be enabled/facilitated by programming models, although application developers
will have to follow a few methodological guidelines. The same techniques developed for
load balancing above will be needed in the runtime to achieve malleability. The only
difference is that in this case, the decisions will have to be coordinated with the OS
schedulers at the different levels (kernel threads, processes, jobs).

Fault Tolerance will certainly be a relevant issue as it will not be possible to ensure
functional operations of all the components of a system for the execution time of
applications. The failures may happen at different granularity levels (individual
functional units or cores, whole address spaces...) Techniques to tolerate these faults will
be needed. Depending on the granularity may be implemented in software or hardware
support may be required. Task based programming models as advocated above in
conjunction with transactional memory functionalities seem to provide a fair basis to
approach the issue. Faults if properly handled, recovered and isolated will result in
dynamic availability of resources, thus linking back with the load balance issue described
above.

Understanding the performance of our programs will be of great importance. We have
the feeling that performance tools and analysis practices are a bit in their infancy. Today
we essentially measure some aspects of system performance and report very global

aggregates that generally convey little information about the details, and unfortunately, it
is in the details where a lot of the performance of these systems will be gained or lost.
There is a need (and potential) for much more statistical processing of our data, use of
analysis techniques from other areas (i.e. signal processing, clustering) more extensive
use of models in order to actually provide insight to the analyst.

At BSC we have been working on the StarSs programming model, which we believe
addresses in a clean way many of the above stated considerations. Initial implementations
of the run time for SMP, Cell, GPUs are available. It can be integrated with other models
at large cluster scale (i.e. MPI) and still propagate to such an outer level many of the
benefits of the dataflow execution. Also further implementations of the basic model at
coarser granularity levels are being explored. We do believe that ideas from the model
can on one side guide and on the other highly benefit form architectural support,
especially in the memory subsystem design area. We are also involved in performance
tools, job scheduling, applications... We would like to contribute with our vision and
ongoing efforts to this holistic Exascale initiative.

Software Challenges for Extreme Scale Computing: Going from

Petascale to Exascale Systems
Michael A. Heroux, Sandia National Laboratories

1. Introduction

Preparing applications for a transition from petascale to exascale systems will
require a very large investment in several areas of software research and
development. The introduction of manycore nodes, the abundance of parallelism,
an increase in system faults (including soft errors) and a complicated, multi-
component software environment are some of the most challenging issues we face.
In this paper we address four topics we believe to be most the challenging issues
and therefore the greatest opportunities for making effective next-generation
scalable applications.

2. Parallel Programming Transformation

The first and foremost barrier to optimal use of extreme scale computers is the
required transformation of parallel programming strategies. There is mounting
evidence that optimal parallel applications for scalable manycore computer systems
will rely on MPI for inter-node parallelism, but will need to introduce large-volume
functional parallelism and SIMD vectorization. Vectorization is the job of the
compiler, with a little help from the programmer via pragmas and directives. The
real issue is that presently there is no obvious parallel programming model for
implementing the middle layer of parallelism. Current standards such as OpenMP,
Pthreads and UPC are not designed for manycore nodes. CUDA, RapidMind and
related products target manycore but are proprietary. OpenCL is an emerging
standard but is not really a user-oriented interface, and will likely not provide
optimal performance (e.g., in comparison to CUDA on GPUs).

However, even without an emerging programming model for manycore, there is a
vast amount of work required to prepare existing applications for manycore nodes.
Two major tasks are (i) reducing bandwidth requirements as much as possible,
primarily by introducing the use of mixed precision, storing data in 32-bit arrays
wherever possible, and (ii) rewriting low-level kernels as stateless functions with
large enough granularity to keep a SIMD core busy, and small enough that there is a
large volume of simultaneous function calls to execute.

Application developers can immediately begin refactoring software in anticipation
of manycore nodes, but a manycore programming model will need to emerge in the
near future.

In many areas of science and engineering, solving a single problem with given input
conditions, the forward problem, is sufficiently challenging, and higher forward
problem fidelity is the highest priority for scalable computing. However, as the
fidelity of the forward problem becomes sufficiently good, it becomes possible and
imperative to study parameter sensitivities, quantify uncertainties and
automatically compute an optimal solution over a range of parameter values.

All of these advanced modeling and simulation techniques quickly increase problem
size and parallelism—often by orders of magnitude—and large problems can easily
exceed the computing capacity of our largest systems. The simplest of these
approaches are “black box” in nature and do not require a true peta/exascale system
(instead requiring a cluster of tera/petascale systems). However, more advanced
methods (often called embedded methods) rely on a tightly coupled aggregation of
forward problems and require a true peta/exascale system. The challenge with
embedded methods is that they require the transformation of an application into a
“subroutine” because embedded methods need to call the forward solve as a
function. Most applications were not designed with this mindset, so this
transformation will be challenging.

If hardware fault predictions are accurate, exascale systems will have very high fault
rates and will in fact be in a constant state of decay. “All nodes up and running,” our
current sense of a well-functioning scalable system, will not be feasible. Instead we
will always have a portion of the machine that is dead, a portion that is dying and
perhaps producing faulty results, another that is coming back to life and a final,
hopefully large, portion that is computing fast and accurate results.

Our current hardware and software environments are not well prepared for this
kind of “stable” system. In fact, the only reliable, portable resilience mechanism we
have is checkpoint-restart. Although there have been many research efforts in fault
tolerance, much of this work has been focused on a single layer in the hardware and
software stack, without sufficient consideration of the whole set of requirements.
One of the biggest needs we have in resilient computing research is an increased
effort to include the full vertical scope of the software and hardware stack into our
design discussions. Furthermore we need a full-featured environment to probe the
system, make decisions based on system state and recover from system faults, both
hard and soft. Without a dramatic improvement in this environment, we face the
very real risk that application developers will reject exascale systems in favor of
smaller, more reliable systems that provide a better overall throughput.

Regardless of how unreliable a system is, from an application developer’s
perspective there has to be some way to perform reliable computations. This does
not mean that every computation must be reliable, but that certain, perhaps higher
cost, computations and their input and resulting data are highly reliable. Without

this kind of capability, it becomes extremely difficult to provide any kind of
verifiable result. An application needs the ability to declare certain ranges of data as
highly reliable. Furthermore, it needs to know that certain computations have
completed correctly or, if not, have the ability to react to faulty or interrupted
computations. If the runtime environment can provide these two features, we can
develop algorithms that will be reliable on exascale systems.

The CSE software community, by most accounts, has been slow to adopt formal
software engineering practices. Although a lot of high quality software has been
developed without formal practices, the demands of collaborative development,
multi-code environments and large collective teams require more attention to the
benefits that formal practices can provide.

Typically, single-physics CSE application and library software efforts naturally
involve a small team of researchers who work closely with each other on a daily
basis. However, advanced CSE projects require a coordinated effort of dozens or
more researchers who, although contributing to a larger effort, continue to work in
small teams on their portion of the project. The Trilinos project, as one example of a
“project of projects,” has used a kind of “federalist” approach to addressing these
competing realities. We have formally defined a “package” to be a collection of
related functionality developed by a small team with certain rights and
responsibilities in the larger Trilinos framework.

This basic approach has enabled a great deal of local autonomy in decision-making,
allowing us to tolerate and appreciate a variety software research and development
styles, and team cultures. We can handle modest redundancy in software
functionality and adapt to change in many ways. At the same time, this approach
also provides a global interaction that promotes a variety of desirable outcomes: (i)
cross-fertilization of ideas, techniques and tools across package teams, (ii) adoption
of “best practices” from one package across other packages, (iii) fostering of trust
among disparate groups (iv) software modularity that is naturally enforce by
package and team boundaries and (v) well-defined interfaces between packages for
interoperability.

One important factor that improves the effectiveness of the Trilinos architecture is
the constant focus on improving software engineering practices and processes. The
philosophy we promote is that we spend time on improving software engineering so
that we can spend less time on software development and maintenance and more
time on science and engineering. This emphasis has two major impacts on our
efforts: (i) better software engineering in the project makes for better software so
that package teams are willing to use each other’s software and (ii) discussions of
incompatibilities in practices and processes across packages can focus on the goal of
determining best practices and not decay into expressions of personal preference
that can be contentious and counter-productive.

The net result of this approach to software research and development is a large and
growing collection of inter-related tools where Trilinos as a whole has an identity
but, even more importantly, each package has its own identity within its community
of interest. It is worth noting that this kind of approach is also operative within the
TOPS-2 SciDAC project. The climate community uses the CCSM in a similar way, but
we are unfamiliar with its internal dynamics.

We believe an international effort to coordinate the efforts of many groups can
benefit from the kind of model the Trilinos project is using. This type of approach
will allow individual teams to simultaneously continue with their current efforts,
practices and culture while at the same time start contributing to a larger whole.

There are many challenges facing application development in the transition from
petascale to exascale. We believe the four issues above have the highest priority
and, if addressed, will greatly improve exascale computing capabilities.

Software and Exascale Computing
Bill Camp
Intel Corporation

Disclaimer: The views expressed herein are solely those of the author as a member of the
scientific community and do not claim to represent those of Intel Corporation in any way.

There is really only one software issue facing us in developing a robust exascale computational
economy: scalability. Because of scalability concerns, virtually none of today’s applications is
ready for exa-ops performance. We have increased system-level computing power about a factor
of 1000 every decade for several decades now; and we have had to grow systems to do so.
Since Moore’s Law is increasing device capability at less than half that amount per decade, we
have inexorably invested more money in ever larger systems. In 1997, the largest systems in the
world achieved terascale performance with fewer than 10,000 processors; and none of them were
multi-core. In 2007, the largest systems in the world achieved petascale performance but had
more than 10 times as many processors in doing so. We anticipate that exascale systems will
have around a million processors and that those processors will be MPPs themselves—having
O(1000) cores. Thus an exa-ops system will have around a billion virtual or real cores.

Scalability faces us in numerous disguises:
Scalability of
programmability, debug-ability, and optimization
interpretability
reliability
performance
the energy cost of software

arON=

Programmability, debug-ability, and optimization:

| have little to say about programmability except to note that there is no single magic-bullet
solution to this issue. As noted above, for reasons finding their roots in the physics of CMOS
semiconductors, any exascale application in the 2018—20 timeframe will involve O(109) threads.
No human being can program, debug or optimize directly this many threads. At the same time, no
new programming paradigms are credible at this point: it looks like we will use a combination of
distributed memory methods (gets & puts, message passing, and incoherent global-address
space methods) across the ensemble of processors possibly combined with shared memory
methods on-processor. High-level languages may allow us to express that parallelism more
effectively—or they may continue to just get in the way of successful parallelism. On the positive
side of the ledger, | am convinced that for data-parallel applications, we can use the same kind of
automation that has proven successful in areas like geometry and meshing: in data parallel
applications, create primitives and extend, replicate, map them onto complex graphical
representations to cover the domain of interest. In task-parallel applications, we can use self-
similar and hierachical approaches familiar from statistical physics: utilize self-organization
combined with automated hierarchy of control to manage complex work queues.

Interpretability:

| have even less to say about interpretability. We are already facing a gap between our ability to
generate data and our ability to make sense out of it. Just as terascale applications led ultimately
to petabytes of data and petascale applications are starting to generate exabytes of data,
exascale applications will generate yoddabytes of data. We will struggle to make interpretation of
that much data easy or even doable. Visualization is an obvious but less than desirable and
incomplete solution. The human visual cortex can deal with about a gigabyte at a time. So, we will
have O(10') times as much data as we can visualize effectively in a single image. And that
assumes that we find a way to deal with the storage and computing problems implied by such an

approach. Effective interpretation of such data sets will require advances in cognitive software to
turn data into information and information into knowledge and knowledge into insight.

Reliability:

This is an area that properly speaking spans the worlds of hardware and software. Until now, we
have separated software reliability from hardware reliability. The former has been the domain of
software architecture, software engineering, and mathematics; while the latter has been an
integral (some would say not integral enough) part of system architecture and design. At the
exascale we can no longer afford that separation. Hardware designers are struggling with how to
make systems a thousand times more reliable per bit-operation to keep us at the same level we
are at in today’s best systems. This is compounded by the fact that energy concerns are driving
us inevitably to sub-threshold logic. At the same time, the only reason to do exascale computing
is to address ever more complex issues. This will require ever more complex software. Software
complexity is the number one cause of unreliability in computation today—well exceeding even
hardware’s worst efforts! So, we can anticipate that without a radical change in how we handle
software resiliency and reliability, we are going to be worse off—much worse off than we are
today. One idea is that we build a much higher level of local check-pointing capability into our
software and hardware systems. For example, using raided non-volatile memory, we could
checkpoint state very often by moving copies of needed application state to nearest neighbor
nodes in the system several times a minute perhaps several times a second. Since non-volatile
memory is only drawing power when it is in use, this would have minimal energy implications.
Dynamically, we can pretty effectively protect correctness of state but correctness of logic poses
special challenges. State can be protected at about a 10% energy overhead. Logic correctness
requires more invasive approaches with some degree of redundancy that could well exceed the
10% overheads that we have learned to tolerate for state—current R&D focuses on residue
checking and redundant multi-threading. However, these have significant energy overheads; and,
due to the energy issues discussed below, we are going to be more limited than we should like in
protecting logic paths. This will require some degree of cooperation between software and
hardware—perhaps identifying at compile time certain critical regions which need stronger
correctness guarantees. In any case a serious problem that | believe must be overcome is posed
by the brittleness of today’s algorithms and applications. We are already generating terabytes to
petabytes of new state per second. At exascale we will be generating exabytes of state each
second; and a single wrong bit can vitiate the entire calculation. For many scientific calculations
we should be able to gracefully tolerate amny kinds of bit errors, indeed the loss of many kinds of
local resources. For example, in simulating materials, loss of a processor should not cause
inherent failure of the simulation. Think of real materials that are full of defects and faults. We
know that we will get for most macroscopic and many microscopic properties the same result for
quite different distributions of those defects. Why should we not be able to take advantage of that
in our simulations?

Performance:

To a large extent, performance is bounded by the product of the effective speed of the local
processor and the communications efficiency of the interconnect fabric. The speed of the
processor is largely determined by the ability to issue and retire instructions which in turn is
governed by pipeline efficiency and memory system overhead, latency, and bandwidth. Normally,
we are used to thinking that communications efficiency is dominant at scale; and that probably
remains true. However, due to energy concerns, the efficiency of the processor itself bears
special watching: we clearly cannot afford the powerful out-of-order cores supporting both
prefetch and speculative execution that characterize today’s processors.

From a software point of view, scalability is limited by load imbalance, algorithmic serial
complexity and parallel efficiency, communications overhead due to the communications
hardware, but also overhead due to the communications software architecture and
implementation. One should not dismiss the effect of the programming paradigm and its hardware

implementation. If we insist on a cache-coherent shared memory programming environment, we
should understand the cost of implementing such an environment in terms of coherency traffic,
synchronization overhead, and memory sub-system conflicts.

Load imbalance will arise from vagaries of the applications but also will occur due to loss of self-
synchronization caused by the run-time system, the resource manager, and the operating
system. Communications overhead must be diminished by aggressive overlap of communications
and computation. At 1 billion threads, if we wish to achieve significant parallel efficiency, we need
to keep serial fraction and communications overhead extremely small. If we assume that
communications overhead is negligible, Amdahl’'s Law tells us that the serial fraction must be
much less than 10°. For many weak-scaling problems this may well be achievable. To make sure
that communications overhead is also negligible, we must have a. w¢, be much less than unity,
where a. is the ratio of computational speed to communications speed and w, is the ratio of non-
overlapped communications workload in bytes to computational workload in flops. a is
determined by the architecture and is limited by cost and especially by physics. w. is determined
by the computational problem, the code architecture and the algorithmic approach. Unfortunately,
physics will prevent us from achieving the kind of balance we wish for in a.. We are left to
compensate for that in software.

William J. Camp, Ph.D.

Chief Supercomputing Architect
Supercomputing Architecture and Planning
Intel Corporation

505 301 5598
william.j.camp@intel.com

White Paper — Application Analysis and Porting in the PRACE Project — April 2009

Application Analysis and Porting in the PRACE Project

Peter Michielse

Netherlands National Computing Facilities Foundation (NCF)
The Netherlands

Email: michielse@nwo.nl

1 Introduction

PRACE, the Partnership for Advanced Computing in Europe', aims to set up a European HPC
ecosystem to facilitate scientific research, with sustainable access to Tier-0 HPC systems, including
system management and extensive application support. In order to become successful PRACE will
need to understand (among others) the software requirements for future Petaflop/s systems. PRACE
has identified the key scientific and technical categories of applications, through a survey of most
major European HPC systems and the applications that exploit these, carried out in early 2008. Final
goals in this part of the PRACE project are the construction of a benchmark suite, to be used both
within the current PRACE project and beyond, when actual Tier-0 systems will be purchased. Other
goals include insight in the optimisation and scalability issues with the selected applications, and
applicability of synthetic benchmarks and performance analysis tools.

2 Methodology within PRACE

Each benchmark application will be worked on under the responsibility of a so-called Benchmark
Code Owner (BCO). The BCO is a person who in most cases belongs to the staff of one of the PRACE
partners. The BCO will steer the actual porting, petascaling and optimisation, such that the benchmark
code will run on each of the designated hardware architectures for the underlying application. This
includes the scheduling of work among the contributing PRACE partners to the benchmark code, and
communication with the application owners on all aspects of the application: source code, dataset,
output, run scripts, etc. In particular, actual results will first be communicated to the application
owner, and through the public status of the deliverable report also to hardware or software vendors,
and the rest of the HPC community.

As said, the BCO and his or her coworkers are not only responsible for porting the code to the actual
platforms, but also for optimisation and scaling efforts. At this point in time in the PRACE project,
porting has been done, and initial proposals and estimates of effort with respect to optimisation and
scalability have been formulated by the BCOs.

3 Application Porting to Prototypes

PRACE conducted several surveys among both users of the top national HPC facilities in the PRACE
countries, as well as among system administrators of these facilities, in order to establish a
representative set of application areas and individual applications. These cover currently the most
relevant usage of the national systems in Europe. As a result a list of core applications and a list of
possible extensions was created. These are contained in tables 1 and 2. As many applications as
possible of the core list should be worked upon in the PRACE project, both to serve in a benchmark
suite and to investigate optimisation and scalability aspects.

' PRACE has been funded in part by the European Community under INFRA-2007-2.2.2.1 -
Preparatory phase for 'Computer and Data Treatment' research infrastructures in the 2006 ESFRI
Roadmap under Grant No INFSO-RI-211528. Website: www.prace-project.eu.

Peter Michielse — NCF — The Netherlands 1
[ESP Workshop, April 7-8, 2009, Santa Fe, NM, USA

© 2009 PRACE Consortium Partners.

White Paper — Application Analysis and Porting in the PRACE Project — April 2009

Application name Application area

QCD Particle physics

VASP Computational chemistry, condensed matter physics
NAMD Computational chemistry, life sciences

CPMD Computational chemistry, condensed matter physics
Code Saturne Computational fluid dynamics

GADGET Astronomy and cosmology

TORB Plasma physics

ECHAMS Atmospheric modelling

NEMO Ocean modelling

Table 1: The proposed list of core applications.

Application name Application area

AVBP Computational fluid dynamics
CP2K Computational chemistry, condensed matter physics
GROMACS Computational chemistry
HELIUM Computational physics
SMMP Life sciences

TRIPOLI4 Computational engineering
PEPC Plasma physics

RAMSES Astronomy and cosmology
CACTUS Astronomy and cosmology
NS3D Computational fluid dynamics

Table 2: Possible extensions to the core list of applications.

Another consideration has been the actual choice of promising architectures, to be assessed in the
PRACE project. For the work on applications, this set of architectures (which are production or near-
production systems) has been identified by PRACE in May 2008, and deployed as prototype systems
to different partner sites (see table 3). Also, for each of the applications, we have selected BCOs who
combine knowledge of the particular application, expertise with certain hardware platforms and access
to prototype architectures. For most applications, both from the core list as well from the extended list,
this has been successful. Contributors to a benchmark code typically qualify if they satisfy at least one,
and preferably two or even three of these aspects.

Architecture type Actual system Location

MPP-BG IBM BlueGene/P FZJ, Germany

MPP-Cray Cray XT5 CSC, Finland
SMP-FatNode-pwr6 IBM p575 Power6 NCF/SARA, Netherlands
SMP-ThinNode-x86 Bull — Intel Xeon/Nehalem cluster | FZJ, Germany and CEA, France
SMP-ThinNode+Vector | NEC SX-9 + x86 ... HLRS, Germany
SMP-FatNode+Cell IBM Power6 with Cell BSC, Spain

Table 3: Actual prototype architectures in PRACE.

Peter Michielse — NCF — The Netherlands 2
[ESP Workshop, April 7-8, 2009, Santa Fe, NM, USA
© 2009 PRACE Consortium Partners.

White Paper — Application Analysis and Porting in the PRACE Project — April 2009

Table 4 shows that all applications from the core list are usable as benchmark codes, on at least 3
target prototype architectures, complemented with 3 applications from the non-core list: CP2K,
GROMACS and NS3D. These are the first 12 rows of table 4. SMMP, RAMSES and CACTUS have
disappeared from the extended list, as it turned out to be that there was no PRACE partner that could
volunteer as BCO. Instead, GPAW (computational chemistry), ALYA (computational mechanics and
fluid dynamics), SIESTA (computational chemistry, molecular dynamics) and BSIT (computational
geophysics) have joined the application set, mainly to make sure that enough coverage of the SMP-
FatNode+Cell platform could be guaranteed. An additional advantage of this is that two other
application areas are introduced: computational mechanics and computational geophysics. Each BCO
and its contributors have started the work on the benchmark codes and hardware architectures.

Table 4 also shows the current porting status of the applications to the prototype architectures. Green
colors denote successful porting, yellow means that porting is in progress, and orange means that
porting has not started yet or stopped for the moment because of practical reasons (mostly lack of
human resources to do the work).

Application MPP-BG MPP-Cray SMP-TN-x86 |SMP-FN-pwr6 |SMP-FN+Cell |SMP-TN+vector|

QCD
VASP

NAMD
CPMD
Code_Saturne
GADGET
TORB
ECHAM5
NEMO

CP2K
GROMACS
NS3D

In progress
In progress

AVBP
HELIUM
TRIPOLI 4
PEPC
GPAW
ALYA
SIESTA
BSIT

Table 4: Summary on porting efforts for benchmark codes and prototype architectures.

In progress

4 Scalability expectations

Apart from porting efforts to the prototype architectures, initial insight in the potential for scaling to
petascale systems (and single-CPU optimization) has been obtained. Table 5° contains the scalability
potential of each of the benchmark codes, including an estimate on the amount of effort in person
months (PM). We have defined scalability to be in the range none via low, medium to high and have
assumed one core to deliver a minimum of 10 GFlop/s peak performance. The color codes mean:

None (red): No speed-up above 2500 cores;

Low (orange): Speed-up obtained up to 5000 cores;

Medium (yellow): Speed-up obtained up to 10000 cores;
High (green): Speed-up obtained for more than 100000 cores.

? Not all cells in table 5 have been filled yet, as initial analysis after porting is currently work in progress.

Peter Michielse — NCF — The Netherlands 3
IESP Workshop, April 7-8, 2009, Santa Fe, NM, USA
© 2009 PRACE Consortium Partners.

White Paper — Application Analysis and Porting in the PRACE Project — April 2009

Speed-up at a certain number of cores is defined as still improving execution time when comparing the
execution time on that number of cores to the execution time on half the number of cores.

From table 5, the following initial observations can be made:

* Within the set of computational chemistry codes (VASP, NAMD, CPMD, CP2K, GROMACS,
GPAW) the potential varies from low to high. At first sight, this may seem surprising, as they all
cover broadly the same application area, although individual codes may use different approaches.
It will make sense to investigate how low scaling codes may benefit from algorithms and
implementations used in highly scalable codes;

* The amount of effort estimated to improve scalability to medium or high seems to be reasonable:
on average around 4 to 5 person months. This will be carried forward in remaining PRACE work.

Benchmark code |Expected scalability |[Estimated effort |Comments and areas of attention

QCD high 0-1 person months

VASP high Depends on FFT and BLAS implementations

NAMD medium-high 8-10 person monthyInvestigate master-slave (3 pm), investigate shared memory (7 pm)
CPMD high 2 person months [Well parallelised already, some tuning needed

Code_Saturne medium 3 person months |Preprocessing stage and |10

GADGET medium-high 2 person months |Investigate potential OpenMP constructs and MPI implementation
TORB high 3-5 person months [Adapt code internals (up to now 999 processes is max.)

ECHAMS low-medium 2-8 person months|OpenMP optimisation, data output mechanism

NEMO low 3 person months [Domain decomposition load imbalance, solver implementation, MPI
CP2K low 5 person months [Load imbalance needs to be solved

GROMACS medium 8 person months [Optimise communication patterns

NS3D low-medium 1-6 person months|Very platform dependent - MPI AlltoAll implementation

AVBP medium-high 2 person months |Focus on MPI implementation (AllReduce area)

HELIUM medium 3-4 person months|Focus on MPI implementation (synchronisation constructs)
TRIPOLI_4 high 6 person months [Independent particles, Monte-Carlo approach, 10 to be modified
PEPC high 1 person month Data structure to be investigated

GPAW medium-high 3-6 person months|Implement SCALAPACK usage, parallelise over electronic states
ALYA medium-high 2 person months |Explicit solver ok, implicit solver requires effort, 10 to be modified
SIESTA medium 2-3 person months [Focus on MPI implementation

BSIT high 1 person month Embarassingly parallel, need to consider queue management system

Table 5: Expected scalability potential and estimated effort for benchmark codes.

5 Future Work in PRACE, Relation to IESP and Acknowledgements

As has been mentioned before, porting the applications to the target prototype architectures is work-in-
progress. Already a significant part of the sparse matrix has been filled. This work will continue to
complete the sparse matrix on applications and prototype architectures.

Another aspect is the fact that already ported applications will enter the stadium of petascaling and
optimisation. BCOs will remain responsible for the coordination of optimisation and petascaling
aspects.

With respect to the future final benchmark suite for PRACE, there is the issue of usage and licensing
of the application codes. This will need to be resolved with the code developers.

With respect to IESP, it seems to make sense to exchange experience and progress on many of the
applications, since these are used globally and possibly already improved by US and/or Japanese
efforts. Further, alignment of the efforts in PRACE on application scalability with efforts in the USA
and Japan, maybe including software developers and hardware vendors, is important.

This white paper is based on the PRACE project’s deliverable “Report on available Performance
Analysis and Benchmark Tools, Representative Benchmark”, dated November 28, 2008. Many people
from the project partners have contributed to this public document.

Peter Michielse — NCF — The Netherlands 4
[ESP Workshop, April 7-8, 2009, Santa Fe, NM, USA
© 2009 PRACE Consortium Partners.

INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009

The Application Perspective
- Seeking Productivity and Performance -

David Barkai

Abstract—In this note we propose two projects: (1) Creating a hierarchical programming model from current models, and (2) Extracting
application primitives from the ”13 dwarfs”. The first topic addresses the need for a unified and manageable framework for very large
scale concurrent execution. This is the productivity part - less complexity will drive better mapping of algorithms to architecture; which
will also contributes to better performance. The second topic focuses mostly on the processor and the node with the aim of laying the
groundwork for software and silicon optimized kernels. While it is understood that applications primitives are outside the scope of IESP,
the motivation for introducing it here is that it is a companion issue and that increasing the efficiency of each processor provides high

return for science - at all levels of system size.

Index Terms—programming model, manycore, multicore, clusters, applications, HPC, application primitives

1 SETTING THE STAGE

HILE the "moonshot” goal in front of us is prepar-
Wing for systems with peak exaflops, we must not
lose sight of the fact the all this is done so science can
accomplish more through computations. To this end it
is best to take the application perspective, and look for
ways to help the scientist or application developer get
more out of a given very large system. In this note we
suggest to take on the two "P’s” - Productivity and
Performance (leaving out the third "P” - for Power;
though with higher efficiency, another way of saying
‘performance’, a given computation gets done as fast on
a smaller system - and consumes less power).

There is a fortunate synergy now between the need
to address programmability on petascale and exascale
systems and these three drivers that are now central to
the future of high-performance computing (HPC):

« Almost universal adoption of clusters as a ‘standard’
architecture.

o Manycore processor chips in our future.

o Emergence of heterogeneous computing on or near
the processor chip.

The synergy derives from the fact that a standard model
that fits the above also suggests a hierarchical view of the
system; a view that offers hope for a more manageable
approach to dealing with the very high level of concur-
rency, of order 107 — 108, required for a full use of an
exascale system in circa 2018.

The ideas presented here are also influenced by the
work commonly recognized now as the “view from
Berkeley” [1], both with regard to extracting a cohesive
programming model and in providing a framework for

o David Barkai is with Intel Corporation, HPC division of the Digital
Enterprise Group, Hillsboro, Oregon 97124
email: david.barkai@intel.com

Revised April 17, 2009

addressing performance through a set of application
primitives.

2 THE CASE FOR A CONSISTENT AND LAY-
ERED MODEL

HE advent of multicore in all of our platforms

presents an opportunity, and motivation, to take a
fresh look at our programming model. Looking ahead
we have a 3-layer architecture from the user’s per-
spective: the chip - with multiple cores, caches, and,
potentially, attached accelerators; the node - multiple
processor chips sharing memory; and the system of
nodes governed by its distributed memory.

Today we have, essentially, two approaches to par-
allelizing applications: one for shared-memory systems
(OpenMP, for example), the other for distributed mem-
ory systems (where MPI is the most popular tool). Mul-
ticore on the chip adds another layer, but also impacts
the application’s choice of algorithm in that the way to
increase the performance from one generation to the next
is only through finer parallelism as the number of cores
on the chip increases, whence preference for algorithms
that scale better.

The time is right for a community-wide initiative
that will include the application writers, the software
providers, and the hardware vendors, with the goal to
define a programming model that will be integrated,
consistent, and seamless across the three architectural
layers, scalable from the node to the petascale and
beyond, and allow for application driven expression of
concurrency that will extend to dataflow and multitask-
ing, as well as parallel computations.

The discussion is framed with a strong emphasis on
the application’s perspective, as we believe this will
lead the application designer taking more responsibility
to map the implementation to the system, resulting in
higher productivity, and allowing the system and tools

INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009

software to do a better job in mapping the hardware. In
short, we will be closer to a desired balanced between
scientists’ productivity and a reasonable performance
relative to theoretical peak.

The desired programming model should comprehend
partitioning details at a finer level than just assigning
processes and threads to cores. It should allow visibility
to on-chip or socket-attached interactions. The conver-
gence to a single architecture makes it a good time for the
HPC community to take a fresh look at the programming
model when designing new implementations of numer-
ical and data-intensive applications. A typical cluster is
made up of high-volume off-the-shelf components for
processors, memory, boards, interconnect, storage, file
systems, etc. This is not central to the discussion here,
but for the fact that it provides greater motivation for a
‘standard” programming model.

There are two other challenges that large system users
have been struggling with and that have not been re-
solved yet:

o Scaling of applications effectively as they increase
in complexity, use higher resolution with larger
datasets, and run on an ever-increasing number of
processors and cores is, so far, a rare occurrence.

o Productivity - both in terms of the programmer’s
time, and in terms of output from the compute
system is still a panacea.

A holistic, integrated and consistent programming
model, constructed and presented from the application
writer’s perspective might help us move forward with
regard to the two challenges above.

3 WHAT MIGHT THE MODEL LOOK LIKE

HIS is an abbreviated version of a longer discussion,
and, therefore, statements may seem too blunt. My
apologies to the reader.

Discussions of programming models almost always
turns to languages for expressing parallelism and tools to
support parallel programming. We are skeptical that any
new language will gain a wide acceptance, and believe
the best course of action is to build on the tools that
current applications are most invested in. That would
be MPI used by Fortran and C/C++.

The need for hierarchical model, to better map the
application to the underlying architecture and for better
manageability of concurrency, led to various experimen-
tations in "hybrid” implementations - combining MPI
with OpenMP or other shared memory schemes. These
met with varying degrees of success (see [2], [3], [4], [5]).
It is stipulated that the use of OpenMP would not have
been required if we had ‘layered-MPI” to define such
a hierarchy to help manage the decomposition of the
application.

A layered model is also necessary in order to have any
hope of managing the level of concurrency that will be
in the 100’s of millions in the future exascale system.

Node - middle layer
“OpenMP style” domain

Fig. 1. Hierarchical view of the model

That said, we propose considering a hierarchical
model (conceptually drawn in Figure 1), that can be built
upon the following guiding principles:

e Do no harm. The expression of parallelism ac-
cording to a new or modified model should not
invalidate the huge investment put into existing
codes. This principle forces us to look at extensions
to, or evolution of, MPI. Given the much lesser use
of shared memory models it seems more natural to
build an integrated model from MPI.

« Balance productivity and performance - as ex-
pressed by the Berkeley team [1]. For productivity
the model is to present the application view, be
expressed in terms comprehended by a high level
language and in terms relevant to the scientist and
engineer. Let the compiler system (see below) deal
with the details - which also vary from one system
to another. And for performance’s sake give the
programmer the tools to associate computations
with data, and to specify flow and communication
patterns.

o The application writer knows best about how the
application works and there will be no automatic
parallelization any time soon. This has two impor-
tant implications: (1) The programming model has
to have 'hooks’ into all the architectural layers and
components. (2) The application writer can do a
better job partitioning the data and computation
than the compiler or middleware. Let the tools be
there to offer the help the system software will need.

o Integrated, layered model. It would have a set of
one or more MPI ranks per node, each may be split
into a set of MPI processes, preferably optimized for
shared memory, and allowing for each of those to
further split into a set of “fibers’ to be executed on
the same socket. It is this last, lowest, layer that can
be used to interact with special-function units or an
attached accelerator.

« Extensible. For large systems it may well be useful
to allow for some kind of system-level partitioning,
in addition to the layers described above. This will
divide the highest level into regions of MPI envi-
ronments working in tandem.

INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009

o Coherency. The implementation of the model has
to be adaptable to various degrees and regimes of
coherency. These may be dictated by the system in
use, or be a choice to be managed by the user.

o Robust runtime compiler system. When the system
is a cluster, compilers and runtime libraries that are
local-node-aware are not optimum. A complement
to any program such as the one outlined here has to
drive a considerably more runtime-robust compiler
system. A system that will pick up the allocated
resources (the cluster or a part of it) and execute to
it. This may include, for example, MPI operations
that might be presented as directives or pragmas.
This will allow skipping them when the job runs
within a single node.

The benefits of the vision expressed above are fairly
obvious: Common and comprehensive basis for appli-
cations design. Potential, and expected, higher perfor-
mance due to the integration of the support for dis-
tributed, shared, and on-chip operations.

The next two sections deal with aspects of perfor-
mance at the node level, likely to be dealt with in other
forums.

4 APPLICATION PRIMITIVES - KEY TO PER-
FORMANCE

HE topic raised here is not specific to exascale sys-
T tems, but very relevant to scaling and delivered
performance for real applications. We will have proces-
sor chips with billions of transistors, and looking out
towards the 2018 timeframe we can ask how best to use
them.

The model we propose to follow is that of signal and
image processing. Compact application primitives were
identified such that great performance improvement was
achieved with a combination of special function silicon
and libraries. Despite the greater complexity, diversity,
and dependence on bandwidth and latency of data
access, can such methods not be applied to HPC?

At the very least, this is worth investigating. A starting
point can be the first seven of the ”13 dwarfs” taxonomy
defined in the ”"View from Berkeley” [1], as they are
the ones corresponding to numerical simulations. To
remind the reader, these seven are dense and sparse
linear algebra, spectral and N-body methods, structured
and unstructured grids, and Monte Carlo. The problem
is that the broad brush definition of the application
categories is not actionable as it stands. To be able to
act on the taxonomy it would be most useful to identify:

1) The algorithms that are the most important (sparse

or N-body, for example, may employ a number of
different algorithms and methods).

2) The relative weight of the category/algorithm

within the general (high end?) scientific workload.

Setting aside the tasks above, for now, we can assess
the problem with another source. The NAS Parallel
Benchmarks (NPB) [6] are composed of several common

computational procedures. They are sure to feature in
several of 13-dwarfs categories. A nice feature of NPB
is that it reports the MOPS (millions of operations per
second) score, which for the numerical tests we discuss
here is, essentially, the rate of floating point calcula-
tions. This allows us to measure the "efficiency” of the
benchmarks compared to the ideal case where all data
access can be hidden or overlapped. To make a point
five are chosen: Multigrid (MG), Conjugate Gradient
(CG), FT (FFT), LU (Lower-Upper decomposition), and
BT (Block Tridiagonal). These were run, using the NPB
3.3 version, on 8 cores (a 2-socket node) of Intel’s recently
launched microprocessor, which has far superior mem-
ory bandwidth compared to previous generations of x86
architecture. Even with these very competitive times the
calculated efficiency, listed below, ranges from just over
4% to under 20%, averaging less than 12%.

MG
11.1%

CG
4.5%

FT
11.8%

LU
12.5%

BT
19.3%

These findings are not a great revelation to the HPC
community, but it gives us an idea of where to start
looking for improvements. We must not overlook the
fact that the performance efficiencies given above, due to
data access and communication between processes, are
prior to any effects of the network. These measurement
were done on a single (shared-memory) node.

5 CAN WE DO BETTER? - SAMPLE IDEAS

F course, the easy answer is to say “increase mem-
O ory bandwidth and cache size and lower latency”,
when the code is data access bound (as is true for
most codes), and “give us more floating point func-
tional units” when the code is compute-bound, as is
for dense matrix operations, for example. The latter
is relatively easy, but not particularly impactful. The
former is hard. We suggest, instead, to go back to
the image/signal/graphics processing analogy and look
for ways to optimize kernels, or what we might call
“numerical operators” - though we don’t forget the
real challenge is in data access. Here are some partial,
tentative, and somewhat random ideas.

Consider the computations derived from a stencil rep-
resentation after discretization. Figure 2 shows a simple
6-point stencil.

To compute a given grid point we need a set of values
which are not consecutive in memory. A cache line is
loaded for one or two useful values. But if we computed
along the index that is stored consecutively (say, the "i”
index) then all the values brought in with the cacheline
will be needed for computing the following grid points.
The programmer or the compiler can direct the order
of stepping through the grid. But there is no guarantee
that the needed cachelines will not be replaced. Will it
make sense to define a “stencil operator” as a macro
instruction, allowing for parametrized number of stencil

INTERNATIONAL EXASCALE SOFTWARE PROJECT, APRIL 7-8, 2009

(i,3+1,k)

(ik+1)

~

@ S (*= 1)

(i-1,3,k)

Fig. 2. A simple 3D stencil

points, and setting aside a buffer where these loaded
"vectors’ can be kept? - this will result with a streaming
of, say, 8 or 16 sets of computations before the buffer will
have to be re-loaded. This is not necessarily practical, but
illustrates how software and hardware can collaborate to
provide higher performance for a useful and common
sequence of operations.

Conjugate Gradient scores very low on efficiency
mostly due to repeated passes through all the data
with relatively small amount of computations done at
each such pass. Here there might be a simple pro-
gramming/algorithmic remedy. “Unroll” each iteration
to perform 2 or 4 iterations through simple substitutions.
We have done so in the past when the array did not fit in
memory. We can do it now because the processors got
so much faster. It is expected that this procedure will
increase the efficiency by 2-4 times. Can a compiler be
taught to unroll a loop in this iterative manner?

FFT performance is dominated by long distance com-
munications, clearly noticeable even within a node (see
FT above). The communication patterns are well struc-
tured and deterministic, though. Are there look-ahead
ideas that, with some specially reserved buffer space, can
reduce the shuffling of data, thus dramatically improve
performance?

These are just sample random thoughts. A more struc-
tured approach is needed to provide cost-benefit analysis
of where to place our efforts. An example of drilling in
from the applications, to the common kernels, and to
potential hardware support is the question of how best
to approach the need of Gather/Scatter for HPC in a
cache-based architecture.

Clearly, this short note does not do justice to the topic.
More work is needed.

6 CONCLUSION: PROPOSED ACTIONS

HE desired outcome of this discussion note is to
Tget the community at large to engage in creating
a cluster-based holistic, integrated, backward compat-
ible, application-based programming model. Whether
the ideas and directions suggested here are followed
is far less important than the getting together of all
stakeholders to address the need for such ”standard”
programming model.

This is a call to the community - applications writers,
software providers, and hardware vendors - to come

together to define and implement a 3-layer (cluster, node,
chip) programming model that:

o Extend MPI to allow layered, hierarchical, frame-
work to express parallelism on a very large cluster.
A single specification that defines the convention for
the integrated model, and possibly adds directives
that, for example, allow compilers to generate the
calls to MPI routines.

o Adds mechanism for expressing interactions among
cores within the processor chip. Allow extensibility
to attached accelerators (OpenCL?).

The goals above are broad and directional in nature. A
possible start can be to test the approach outlined here
using a (crude?) prototype of the model on a couple of
simple applications that span a cluster.

Just as important is setting goals for achieving higher
performance out of each of the nodes that make up the
total system. This, too, requires the HPC community to
work with the Industry to -

o First, define and prioritize encapsulated computa-
tional kernels.

o Second, work jointly to come up with creative ways
to combine software techniques, hardware capabil-
ities, and architectural features that will enable a
significantly higher efficiency of scientific codes.

The ideas presented here are far from even a proof of
concept. Their intent is to encourage the community to
create a more complete and more consistent framework
for coding on our future HPC systems.

ACKNOWLEDGMENT

The author wishes to acknowledge and thank several
Intel Corporation colleagues for helpful discussions and
constructive feedback: Henry Gabb, Tim Mattson, An-
drey Naraikin, and Rob van der Wijngaart.

REFERENCES

[1] K. Asanovic et. al., The Landscape of Parallel Computing Research: A
View from Berkeley, University of California at Berkeley, Technical
Report No. UCB/EECS-2006-183, 2006.
http:/ /www.eecs.berkeley.edu/Pubs/TechRpts /2006 /EECS-2006-
183.html

[2] Y. He, C. Ding, “"Hybrid OpenMP and MPI Programming and
Tuning”, Lawrence Berkeley National Laboratory, 2004.

[3] M. Su, I. El-Kady, D. A. Bader, S-Y. Lin, "A Novel FDTD
Application Featuring OpenMP-MPI Hybrid Parallelism”, Uni-
versity of New Mexico and Sandia National Laboratory, 2004.
http:/ /ieeexplore.ieee.org/ielx5/9250/29349 /01327945.pdf

[4] E. Lusk, A. Chan, "Early Experiments with the OpenMP/MPI
Hybrid Programming Model”, Argonne National Laboratory and
University of Chicago, 2006.

[5] H. Gabb, "Hybrid Parallelism: where’s the benefit?”, LCI Confer-
ence on High Performance Clustered Computing, 2008. [contact
henry.gabb@intel.com]

[6] NAS Parallel Benchmarks:
http://www.nas.nasa.gov /Resources /Software /npb.html

EDF White Paper
IESP Workshop, 6-8 of April 2009, Santa Fe, NM-USA

JY Berthou and JF Hamelin and Etienne de Rocquigny
EDF R&D, 1, Av du Général de Gaulle, BP 408, 92141 Clamart Cedex, France
E-mail: jy.berthou@edf.fr, jean-francois.hamelin@edf.fr, etienne.derocquigny@edf.fr

As an industrial user with very high stakes in the operation and maintenance of complex systems like
nuclear power plants, EDF has been engaged into simulation for many years. We have decided to
design our own codes in order to capitalize precious knowledge on our fleet of nuclear reactors, and
shorten the time to put this knowledge at work for the many engineering challenges that we have to
meet. Software in the millions of lines have been written and explain why we feel very much
concerned by the future requirements for Exaflops machines. We have already established the value of
running our codes on 100 Tflops / 30 000 cores computers which yield a much better understanding of
operating margins and in turn allow for a better optimisation of our power plants, increased safety and
performance, lower environmental impact and costs and extended lifetime of assets. We have also
recognized that some of our key industrial processes like waterflow within our nuclear cores or
production optimisation under uncertain future are still out of reach of Petaflop grade technology and
will require major changes in the way we write, validate, run and use simulation codes.

We therefore feel that Exaflops software should not only be thought as a way of tackling daunting
research problems but should also take into account the sometimes equally daunting requirements that
stem from an industrial usage perspective: this includes both the capacity to model very complex,
possibly coupled phenomena over extended spatial and time scales, mixed with capacities like
uncertainty quantification or data assimilation that are key to industrial acceptance. Our contribution to
this IESP workshop is not that of software specialists but of fairly active users already engaged in the
evolution of existing software for Petaflop/100 k cores machines. We will contribute the issues and
problems that we are already facing at this first level, and that must find solutions for the future. We
do feel that, whatever the hard changes that will probably have to be made on various software
aspects, the group should not loose sight that continuity paths have also to be found in order to make
those big changes acceptable and profitable to many. The context of simulation at EDF is detailed in
[Hame].

[Hame] “Jean-Frangois Hamelin and Jean-Yves Berthou, Getting ready for petaflop capacities and
beyond: a utility perspective, 2008 J. Phys.: Conf. Ser. 125 012001, July 2008”

1 Major software barriers as seen by an industrial user of HPC and propositions for
an international collaboration

One of the major difficulty will be to manage massively parallel systems, composed of approximately
millions of heterogeneous cores that will appear at the end of this decade. The challenge is particularly
severe for multi-physics, multi-scale simulation platforms that will have to combine massively parallel
software components developed independently from each others. Another difficult issue is to deal with
legacy codes, which are constantly evolving and have to stay in the forefront of their disciplines. This
will require new compilers, libraries, middleware, programming environments, languages, as well as
new numerical methods, code architectures, mesh generation tool, visualization tool:

We identified below what we think are priority research themes that could benefit of an international
collaboration.

1.1 Programming massively parallel computers
Possible joint efforts:

1

* Languages/compilers/performance analysis tools for achieving mono-processor high
performance, specially with accelerators (Larrabe, GPU, Cell, ...)
Goal : achieve more than 30% of the peak performance

* Efficient, “easy to use”, portable and fault tolerant implementation of
Libraries/Languages/compilers for mixed parallelism : MPI/OpenMP/’cuda like” language
Goal: one million cores (heterogeneous, hierarchical and massively parallel)

¢ Algorithm/solvers and data structures adapted to heterogeneous/hybrid, multilevel and
hierarchical massively parallel machines.
Example: dealing with non-structured irregular meshes for CFD computation on GPU
Goals:
o No global communication involving the complete system(avoiding MPI ALL-REDUCE,
MPI_BARRIER,... on 1 million of threads)
o exhibiting different type of parallelism (MPP, SIMD, ...)
o enabling fault tolerance techniques implementation
o enabling efficient 1O (data restructuring?)

1.2 A single generic interface for High Performance Solvers

Possible joint efforts. Defining and developing a single generic interface for High Performance
Solvers

Computational scientists have developed over the past 20 years numerous[Dong] scientific libraries
and solvers (direct, iterative and eigenvalue), ScaLAPACK, PETSc, HyPre, TRILINOS to cite some
of them, which all have their own interface. This multiplicity of interfaces makes difficult and costly
their integration and maintenance in end-user Scientific Application. It also makes tricky for a given
community to test them and find the most appropriate for a given purpose. Both solver and code
developers would greatly benefit of a single generic interface for High Performance Solvers.
Moreover, coming with interfaces to freely available libraries, the sources of the codes are available.
This is of great importance for industrial software stability in time. In order to be compatible with the
external libraries, the necessary periodic efforts are only done once by the Interface’s development
team and not many times by each client software using, for example, PETSc or HyPre separately.

A similar project called Numerical Platon[NP] is developed by the French Atomic Energy
Commission (CEA) . It provides an interface to a set of parallel linear equation solvers for high-
performance computers that may be used in industrial software written in various programming
languages (C, C++, FORTRAN, Python...). This tool was developed as part of considerable efforts by
the CEA Nuclear Energy Division in the past years to promote massively parallel software and on-
shelf parallel tools (public and in-house solvers, essentially PETSc, SuperLU and HyPre) to help
develop new generation simulation codes.

Moreover, at EDF R&D, collaborations are currently underway to improve the direct solvers
MUMPS[Mump] and PaStiX[Past] (Out-of-core, parallelization of the analyse step, null space basis
computing) and their hybrid overlays (A2S2 and HIPS). These sparse parallel solvers are natural
candidates to join such a product.

[Dong] J.Dongarra. Freely available software for linear algebra on the web (sept 2006).
http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

[Mump] Mumps’ web page. http://www.mumps.enseeiht/fr.

[NP] B.Secher, M.Belliard & C.Calvin. Numerical Platon: a unified linear equation solver interface
by CEA for solving open foe scientific applications. Nuclear Enginneering and design, vol. 239-1,
pp87-95 (2009).

[Past] PaStiX’s web page. http://pastix.gforge.inria.fr/files/README-txt.html.

1.3 Stochastic HPC computing for uncertainty and risk quantification

Numerical modeling of increasing complexity are developing in order to better characterize the
underlying factors : multi-physics, multi-scale or complex portfolios all imply increasing computing
power. Probabilistic quantification of the associated risks and uncertainties amounts to an additional
technological challenge as one needs to multiply at a large scale these already-costly unit simulations
in a framework that becomes stochastic. This also alters the way the computer power is invested in the
sense that massive distribution becomes necessary; to best value decision-support computing power,
one needs to re-work the compromise between the sophistication of best-estimate models and meshes
and the stochastic exploration. On this rapidly evolving domain, two kinds of challenges may be
highlighted: those related to the development of stochastic methods, and those related the associated
computer science implications.

Probabilistic quantification of the risks and uncertainties affecting a best-estimate model has generated
a whole domain of applied science, linking probabilistic, numerical analysis as well as physics and
decision-theory [Rocq]. Beyond the traditional Monte-Carlo sampling whose history is closely linked
to that of computing itself with Von Neumann’s ENIAC pioneering applications, a number of
uncertainty propagation and probabilistic simulation algorithms have been developed, such as
accelerated sampling (importance sampling, particulate methods etc.), reliability techniques (FORM-
SORM etc.), stochastic developments (e.g. chaos polynomials) and response surface techniques, yet
still wanting for further development particularly regarding the challenges of low probability estimates
for irregular response or high input dimension for sensitivity analysis/importance ranking or high-
volatility time series.

Beyond uncertainty propagation or risk computation, even tougher challenges come with the need for
inverse probabilistic techniques as the observable data to calibrate model variability generally comes
on parameters different the model inputs, so that the identification of the extent of uncertainty
affecting its input parameters requires the use of inverse techniques coupled with stochastic
simulation. Closely related is the need for a general coupling between stochastic optimization and
simulation in order to strike robust design or operational management strategies, with challenging
mathematical implications that are only partially solved under existing Expectation-Maximization or
stochastic dynamic programming algorithms (typically limited to close to Gaussian/linear behavior).
Bayesian settings are also bound to develop to better incorporate expert knowledge in a solid decision-
theory foundation.

Beyond the development of the methods itself there are key implications on the way HPC is structured
and used: challenges involves striking an advanced compromise between parallel & distributed
stochastic computing. While standard Monte-Carlo sampling leads to straightforward massive
distribution as the runs are all fully independent, the other kinds of stochastic computing algorithms do
need back-and-forth links between the various runs involved in exploring the stochastic space. For
instance, past developments of uncertainty propagation such as adaptive importance sampling schemes
have been designed with very limited link to the issue of computer implementation, ending up with
purely-sequential formulations that fail to fully optimize the avenues offered by distributed computing
to minimise the overall computing time. Adding the fact that parallel computing may be necessary to
run a single simulation of complex underlying best-estimate models, optimizing the overall stochastic
program becomes an insufficiently-researched domain.

[Rocq] de Rocquigny E., Devictor N., Tarantola ed. (2008), Uncertainty in industrial practice — A
guide to Quantitative Uncertainty Management, John Wiley & Sons

1.4 Unified Simulation Framework and associated services

Advancing individual solvers performance is not enough to bring high performance simulation to the
end-user. Each community needs a much broader set of tools in order to conduct industrial studies:
CAD, mesh generation, data setting tools, computational scheme editing aids, visualization, etc.

Study

Figure 10. The Salome platform, www.platform-salome.org

In the early 2000 EDF, together with CEA and other industrial and academic partners, started the
development of an integrated toolbox Salome www.platform-salome.org [Ribe,Berg], with the
following aims:
- reduce the cost of complex simulation platforms by mutualizing a set of common tools: pre
and post-processing, calculation distribution and supervision etc.
- boost performance through easy integration of multiple solvers for muti-physics studies (via a
common data model).

If Salome has been proved to be well adapted for sequential and moderately parallel simulations it has
to evolve in order to support massively parallel computing.

Possible joint efforts. Building a Unified Simulation Framework and associated services adapted to

massively parallel simulation:

* Common data model : designing a common data model and associated libraries for mesh and field
exchange adapted to massively parallel computing would enable interoperability and the coupling
of independent parallel scientific softwares. High level operations on simulation data, such as
mesh projection, data interpolation, could be implemented on top of this model.

* Meshing. In 2007 it took to the EDF CFD team several months to produce the 10® cells mesh for
the simulation of part of a fuel assembly with the CFD code Saturne, compare to “only” 1 month
of calculation needed on 8000 BG/L processors. Generating x10'° cells mesh as targeted in 2015,
requires future meshing tools to provide parallel meshing, automatic hexahedral meshing, mesh
healing, CAD healing for meshing and dynamic mesh refinement.

As an example are future works identified by a CFD Saturne code:
* Re-evaluate if tetrahedra are really that bad
* Our extended neighborhood gradient reconstruction scheme should reduce impact of non-
orthogonality
* Having mesh refinement algorithms would help, even if we don't do AMR right away
* Some octree-based techniques lead to fully hexahedral meshes:
o - conforming using stencils and smoothing

o non-conforming with hanging nodes, using building-cube type method (also used
by several codes, such as the Gerris Flow solver), combined with cut cells or
immersed boundary

o - At first, re-meshing on a low-quality, easily generated background would avoid
issues with CAD interpretation and allow to easily define the local cell target size

e+ Using hierachical techniques would also make multi-resolution visualization possible

o - We have been luckier with visualization than with meshing, but tools and
formats have their limits

* Parallel visualisation tools. Considering the volume of data that will be produced by Petaflop and
Exaflop computers, end users are needed adapted parallel visualisation tools and specific clusters
to post-treat their simulation results. The international scientific community would benefit in
focusing their research efforts in few software. VISIT and Paraview seem two good candidates.

* Remote and collaborative post-treatment: the sheer volume of data produced by
Petaflopic/Exaflopic calculations, storage and network limitations, and multi-sites teams make it
necessary to further advance R&D on remote and collaborative multi-user visualisation, parallel
and distributed file systems.

» Supervising and code coupling tool, coupling schemes : EDF and CEA have engaged in 2006 the
development of YACS, a new generation of supervisor, intended to handle parallel multi-physics
coupling scheme through a portable parallel extension to CORBA named PACO++[13] developed
by INRIA. Similar works are handle in US, based on different middlewares. Implementing tightly
coupled scheme, involving scientific applications developed by separated teams with such generic
tools is a particularly difficult challenge. A joint collaboration on code coupling tool architecture
principle, middleware for massively parallel coupled simulations seems indispensable.

The coupling using an external tool such as YACS is as less intrusive in the legacy codes as
possible. On the other hand, we share the advanced coupling algorithms for all multi-physic
simulation in a dedicated algorithmic box in the SALOME platform. From an algorithmic point of
view, the existing couplings are mainly explicit and semi-implicit (fixed point algorithm). Current
work are performed to implement Newton-like algorithms.

[Ribe] Ribes A and Caremoli C 2007 SALOME platform component model for numerical simulation
COMPSAC july, Beijing, China

[Berg] Bergeaud V and Tajchman M 2007 Application of the SALOME software architecture to
nuclear reactor research SCS Spring Simulation Multiconference on High Performance Computing
Symposium, Norfolk, USA

The Biggest Need: A New Model of Computation

Thomas Sterling

Louisiana State University
March 30, 2009

HPC is experiencing a phase change driven by technology advancements and constraints. For
the first time in more than a decade conventional software practices for programming and
managing system resources are no longer sufficient to address the challenges for achieving the
high end scalability for a wide range of applications. Further, past strategies for system
hardware architecture no longer utilize the emerging technologies to their fullest. Both are
reflected by the emergence of heterogeneous multicore components and the systems that use
them. Power is restricting clock rate, design complexity has been exhausted as a path of future
performance gains, and within a decade parallelism on the order of billion-way concurrency will
be required. Historically, major disparities between enabling technologies and the methods of
their use have driven computing through an evolutionary event of punctuated equilibrium
requiring simultaneous changes in architecture, programming models, and system software to
achieve a new balance for efficiency and continued progress in performance gain. Sequential,
vector, SIMD-array, systolic, dataflow, multithreaded, and most recently communicating
sequential processes represent distinct phases in HPC, each a different model of computation.
Currently, a new such model is required to redress the challenges imposed by the need for
multicore.

A model of computation is not a programming model, architecture, operating system, or some
form of virtual machine. Instead it is a strategy or discipline that specifies referents, their
interrelationships, and the actions that can be performed on them. In so doing, a model of
computation governs the semantics of state objects, function, parallel flow control, and
distributed interactions. While it provides an image of an entire parallel computer, not just any
single core, it leaves unbound policies of implementation technology, structure, and
mechanisms. Yet, it influences the decisions for co-design of programming languages,
compilers, runtime software, operating system, and even hardware architecture.

The goal of a new model of parallel computation for future Exascale computing is to serve as a
discipline to govern future scalable system architecture, programming methods, and runtime
technigues as semiconductor technology proceeds to nanoscale feature size. Such a new
model has to innately hide latency both system wide and to main memory. It has to exploit
parallelism in a diversity of forms and granularity. To this end it has to provide a framework for
efficient fine grain synchronization and scheduling, enabling optimized runtime adaptive
resource management and task scheduling for dynamic load balancing. Perhaps for the first
time, the model of computation must extend farther to support full virtualization for fault
tolerance and power management.

Then what would a new model of computation look like, even as it replaces the venerable
message-passing model? While no definitive specification can be given without substantial

research in collaboration with the international community, there are a number of attributes that
may prove imperative if it is to serve computing down to the nanoscale and up to the Exascale
within the next decade. Perhaps most fundamental is to replace static processes assigned one
on one to fixed processor cores with a new relationship between tasks and computing
resources. One possibility is the basic work-queue model where each physical resource acts as
a server to process a stream of task specifiers that work on relatively local program state.
Instead of waiting for some remote access, the resource terminates the current task and begins
a new one. Thus, the work-queue model decouples virtual tasks from physical processing
resources to significantly increase resource utilization, at least in cases with sufficient
parallelism. Complementing the work-queue model is the need to adopt a message-driven
model, replacing conventional message passing. Message-driven computation allows work to
be moved to the data when this is optimal, rather than always requiring that data be constantly
moved to a fixed location of work. This is particularly well suited to dynamic graph problems
such as adaptive mesh refinement and informatics. Such algorithms are heavily reliant on meta-
data to describe the data structures. Extremes in parallelism will be required with future systems
and meta-data used with message-driven computing may expose a diversity of parallelism
forms and sizes, at least in comparison with conventional global barrier based techniques.
Instead asynchronous methods need to be incorporated in the global flow control for adaptive
management of resources. The elimination of global barriers allowing more flexible flow control
such as data flow methods can be achieved with the powerful futures construct. To harness
hundreds of millions of cores in to a single system requires a model capable of unifying all
components and this requires a single system-wide name space. PGAS has been pursued and
serves well for some problems. But when dynamic migration of first class objects is required;
something more is needed so that data objects can move in physical space without changing
their virtual names. Such an active global address space still excludes full cache consistency
but enables lightweight access to remote data without overly constraining the distribution of that
data. The parallel flow control state at the global level must be more flexible than simply the
state of fixed allocation SPMD processes. A more powerful means of parallel control state
based on the distributions of “continuations” is needed to decouple flow control from fixed
physical resources allowing migration of control such as when traversing a dynamic directed
graph. A new model will support a self-aware property that adjust system configuration and
application rollback for fault tolerance and active power management.

The development of a new model of computation will free future application programming from
the deadly embrace of MPI + Clusters/MPPs where no progress can be made because each is
required to serve the other. It will permit a new co-design cycle of all levels of the system
software and hardware delivering new programming models that will greatly simplify the
programmer responsibility, dramatically improve efficiency, and exploit orders of magnitude
more parallelism intrinsic to at least some algorithms.

NSF IESP Whitepaper
Abani Patra, Rob Pennington, Ed Seidel
Office of Cyberinfrastructure

National Science Foundation

Within the context of the “NSF’s Vision for Cyberinfrastructure for 21st Century
Discovery” document, NSF is developing a comprehensive program for supporting
the national cyberinfrastructure (CI) for science and engineering, including major
HPC facilities, grids, networks, software, data, and virtual organizations. NSF clearly
cannot do this alone, and therefore must pursue global partnerships with other
organizations and agencies.

NSF reaches deeply into every campus in the US, covers all the sciences and
engineering areas, and in terms of cyberinfrastructure which includes HPC, is very
broad. NSF researchers will clearly benefit from a stronger software program,
improved support for complex applications and strengthened integration with
campuses. Students and postdocs will benefit from training in software engineering,
use of advanced CI, and socio-technical activities that are critical to success in many
complex research activities.

The computational community is already dealing with several major challenges at
petascale, including new hardware using manycore, massive scaling, system
software, file systems, applications software, debuggers, applications development,
programming environments, machine rooms, cooling and power costs.

Exascale challenges will drive innovation in many CI related areas. Developments in
cyberinfrastructure to support scientific and engineering research will need to be
integrated across the following major topics:

* Software: A major software grand challenge program responsive to emerging
architectures needs to be developed, involving national and international
efforts.

* Applications: NSF funded researchers have strength and breadth in the
community that will use exascale facilities. New research challenges will
further broaden the application coverage.

* Hardware: R&D activities in hardware design that are responsive to the most
challenging application needs.

Questions for consideration:

The NSF cyberinfrastructure vision document provides the current high level
framework for cyberinstructure strategy. The requirements for cyberinfrastructure
are evolving rapidly and, as a result, new questions arise in planning for future
cyberinfrastructure. As part of the process of understanding these requirements,
we welcome discussion and input on a wide range of questions including the
following.

* How will present & emerging applications use exascale systems?

* What are the new applications that are emerging or likely to emerge in the

coming decade?

o Are they new application domains, new modeling modalities, multimodal
modeling, dynamic/on-line integration computation and measurements?

o How will technology advances drive the advancement of applications
capabilities (technology-push)?

* How can NSF best stimulate development of exascale software applications?

* How can application needs drive the design of hardware platforms, system
software, and applications software development environments?

* How will new architectures aid or impede successful reformulation of
problems for parallel solution approaches?

* How can useful software that has been developed as part of the exascale
effort be sustained beyond the development period?

* What systems software will be required? Distributed systems support,
programming environments, runtime support, data-management user tools?

* In what ways will fault tolerance need to be considered by the applications
developers? By the system software developers?

* What application support environments will be needed? Application
packages, numeric and non-numeric library packages, problem-solving
environments?

* How can NSF aid seamless portability of applications across different
hardware and software platforms as they all evolve?

* How can NSF aid or catalyze developments that make it possible to provide
the same user experience and where possible use the same tools, including
compilers, debuggers and performance tools, on system scales all the way
down to the typical researcher’s laptop or desktop?

* How can the community of science and engineering researchers who will use
exascale systems be best supported in a rapidly changing environment?

* How feasible is the development of generally applicable software that will
enable efficient translation of problems to programs? What priority should
be given to pursuing this approach?

* What education and training actions should be considered to prepare
researchers, students and educators for future cyberinfrastructure?

A Proposal for a Capability Centers Consortium

Bill Gropp & Marc Snir
NCSA. University of Illinois at Urbana-Champaign
22/03/2009

Introduction

Our proposal is motivated by the following observations:

A

Most, if not all of the users of the top NSF Supercomputing centers are using resources at more
than one center; in particular, smaller systems and regional centers will be used for developing
codes for the larger capability systems — in particular, Blue Waters. Users will be greatly
advantaged if the various platforms they use have compatible application development
environments and execution environments: same interfaces, languages, libraries and tools, and
similar procedures.

No vendor provides a complete solution to the needs of the HPC community; any large platform
will deploy a variety of libraries and tools that were developed by national labs or academic
researchers. The development, porting, tuning, and maintenance of such software packages
require collaborations with a variety of partners.

The desire for compatibility across platforms often lead application teams to seek the “lowest
common denominator” — to use only basic languages, libraries and tools that are guaranteed to
be available and well supported on all platforms. New approaches with the potential to increase
the productivity of the application programmers are not adopted because of this well known
vicious circle: application programmers are reluctant to use software that is not well-supported
on most platforms; and platform providers are reluctant to support software that is not used by
a large number of applications.

Our goal is to create mechanisms that

Facilitate the sharing of expertise and information about user needs, system operation and HPC
software among the top supercomputing centers.

Facilitate the sharing of expertise and information about the use of large HPC systems among
the users of top supercomputing platforms.

Facilitate collaborations between these centers.

Proposal for a Capability Centers Consortium V7

e Encourage the deployment of common software on all major HPC platforms used by scientists;
in particular, encourage the deployment of new languages, libraries and tools.

This initiative is synergistic with other extant initiatives:

e XD: Our proposed initiative is (a) focused at the very high-end of the performance pyramid,;
and (b) is not aimed, like XD, at developing a specific s/w infrastructure, but at sharing
information and collaborating in the deployment of any s/w that has can be common to
many capability platforms.

e Exascale s/w initiative: Our proposal is aimed at creating strong interactions between the
current, petascale centers. Such interactions are essential in providing a transition from new
research products to actual deployment and utilization on available systems. Our initiative
will provide a receptive environment for the technologies emerging from excascale s/w
research.

e PRACE: PRACE provides a common meeting point for the top HPC centers in the EU. Our
initiative can have a similar role in the US and can establish a strong collaboration with
PRACE.

Potential Activities

Information Sharing

Information sharing can occur through

e Periodic phone conferences
e Periodic workshops, possibly focused on topics of common interest, such as parallel file systems
e Shared social networking tools (wiki, discussion groups, mailing lists, etc.)

Different mechanisms may be used for different groups — with an emphasis on regular interactions for
the centers and on social networking tools for the users.

Information Aggregation

Shared information can be made more useful by collecting it in a common format and aggregating it.
Possible examples include

e Aninventory of used open source software (Pete Beckman, ANL has started this activity)
e Anintegrated directory of people: a list of contacts at the various centers for various subjects.
e Anintegrated directory of documentation and educational materials

o Aggregated statistics on system utilization, types of applications run, etc.: centers will agree to a
core of consistent metrics

e Aggregated customer surveys: centers will agree to a core of common questions in their surveys,
so as to enable aggregation of the results

e Aggregated bug reports: for vendor/platform related bugs, this will probably need to be done on
a per platform basis and possibly kept confidential; for open source software, the information
should be public. Centers will need to agree to consistent ontologies.

Collaborations

Collaborations can reduce duplicate work, and increase efficiencies in the various centers. Such
collaborations may include

e Shared development of tools (e.g., application performance tools or system monitoring tools).
The development is likely to occur in one place, but early interaction with other potential users
will increase the odds that tools are portable and satisfy the needs of a broader community

e Shared testing: the development of good regression test suites is expensive; the sharing of
general test suites, as well as tests focused on specific issues (such as OS jitter) can greatly
benefit the centers

e Collaboration in the deployment of new software

e Collaborations in the evaluation of various tools and environments

e Collaborations in the development of education material and user guides

Standardization

Different centers have platforms form different vendors, with different software environments and
different users; extensive homogenization of these environments is neither possible nor desirable. On
the other hand, the differences between platforms are often spurious. Discussions between the centers
could lead to agreements on a minimum common s/w stack for petascale/exascale platforms, either
through support for the same tools and libraries, or through the provision of compatible profiles.

Issues

Funding

The consortium will need core funding for meetings and for support activities. It will be important that
activities at the centers be funded from a budget managed by the consortium, to ensure that
commitments are met.

Proposal for a Capability Centers Consortium V7

Organization

The consortium needs a management model that ensures that decisions can be reached in a timely

manner, while providing buy-in from the involved centers. This would probably involve a small executive

committee coupled with a board representing all participating groups.

Technical Issues

1.

Do we specify a particular version or range of versions (at least as a default)? What do we do if
some version has a security hole and needs a quick fix (what is our contract with our users about
stability of the choices)?

2. Do we specify a base version and allow extensions? If so, how do we make the base strong
enough so that many/most users can and will choose to stay within that base level? Should
there be more than one? E.g., there could be a standards-compliant level (POSIX) and an
enhanced level (GNU+POSIX). Since the software stack will continue to evolve quite rapidly, easy
composability — the ability to add components developed by other groups -- might be more
important than a standard core. To achieve this, it may be more important to specify standard
interfaces for extensions — rather than detailed core functionality.

3. How do we track changes and evolution of software/standards? Should we have a shared
repository (containing version information, header files, if appropriate, and source files, if
appropriate).

4. How do we test compliance (more gently, how can sites quickly assess whether their
environment conforms to the spec)?

5. How do we make sure that users adopt? What is the process for user buy-in? How do we
assess success in getting users to work within the base set(s)? Good social networking tools that
facilitate the sharing of experience by users may be an important component of the solution to
this problem.

Inventory

We list below software components that are relevant to the proposed consortium and issues raised by

those components:

1.

Compilers, linkers

a. Primarily provided by vendors or GNU

4

Key issue is which languages (and which versions) are available — E.g., Fortran 2003, C99,
etc. This could be a significant problem, as some vendors are slow to conform to
current standards.

Issues for users are often prosaic ones such as common command line arguments,
particularly for include and library paths.

A major issue is extensions to the languages — GCC implements many extensions that
are often exploited in user code. Can we standardize on these extensions or on GCC?

Linking is also a problem — AIX has a very different approach to shared and dynamic
libraries than most other Unix implementations (Mac OS/X also has a different -- though

less so -- view).

A key approach should be to specify interfaces, not particular products (e.g., MPI 2.2,
not MPICH2 or OpenMPI).

2. Build tools (make, configure, etc.)

Make in various forms is provided by the vendor and by GNU.

Configure dominates, but there are other tools such as cmake. Configure doesn’t
handle cross compilation environments well and most autoconf scripts (e.g., user
programs in configure’s language) are not correct with respect to cross-compilation —
this may be a significant issue for some HPC platforms.

Again, we have the problem of extensive GNU extensions to make — can we standardize
on a subset, standardize on GNU tools everywhere, or something else.

3. Debuggers

a.

b.

Primarily provided by vendors or GNU.

Far less standardization; few truly parallel systems (such as Totalview); the consortium
must avoid picking a solution here.

An example of a place where we may want to specify a base level but allow (and even
encourage) sites to innovate here.

4, Performance tools

a.

Low level tools/APIs such as PAPI.

Proposal for a Capability Centers Consortium V7

i. It would be good to standardize on (something like) PAPI, or provide a per-node
(instead of per-process) version that could be used as a kernel module instead
of as a source code patch.

b. Command line, single thread or single process tools (e.g., gprof). Eliminate variations in
output format, input commands, etc.

c. Parallel performance tools
i. Aggregate tools (mpiP, fpmpi)

ii. Trace-based tools (Tau, VAMPIR -- now Intel Trace Analyzer, Jumpshot, Scalasca,

)

d. Extension of the above tools to OpenMP, UPC, CAF, ...
Visualization and Data Analytics
a. Another example where a base set + site-specific extensions is necessary.

Parallel File Systems. Are full POSIX semantics (which can impact both performance and stability
of the file system) required for all files? There are efforts to define more scalable POSIX APIs for
file system metadata (e.g., to more efficiently handle directories with tens of thousands of files);
what role can the consortium play in developing these enhancements? Can we provide better
tests and diagnostics to ensure that parallel file systems provide efficient support for user
parallel I/0O needs?

IDEs

a. Can we standardize on an IDE, such as Eclipse? How do we handle versions (there is a
lack of stability with many of these tools)?

b. Standard plugins, for
i. Eachlanguage

ii. Each parallel programming model/extension (e.g., MPI + C++, OpenMP +
Fortran, MPI + OpenMP + C)

iii. Debuggers
iv. Job control (mpiexec, batch job submission, job status)

v. Performance debugging/analysis

vi. Remote use
8. Parallelism
a. Which versions of MPl and OpenMP?
b. UPC and CAF. Which versions of these?

c. Interoperability of models — e.g., can you mix MPI and UPC routines in the same
program?

d. Parallel I/O
i. Are POSIX semantics supported?
ii. Are consistent semantics supported (e.g., PVFS, but not NFS v3)

iii. Do we encourage single file per job instead of one file / core (with all of the
support tools)? Are there common tools for managing collections of files?

9. Running codes
a. Standardize on mpiexec (part of MPI since MPI 2.0).
b. Standardize on OpenMP environment variables.

c. Standardize on basic batch commands (see the DOE SciDAC project on system software
that created a component-based framework for job management into which 3™ party
components could be included).

10. Libraries
a. Standard, stable libraries (e.g., BLAS, ScaLAPACK, LAPACK)
i. These should be in a standard place and be optimized for performance.
ii. Need a way to define this list in concert with users.
b. Libraries from research groups (e.g., PETSc , SPRNG, WSMP, FFTW)

i. These libraries are not stable; they change over time (though slowly, because
they have a user community).

ii. These cannot be tuned independently from their development group — a
collaboration process will be required to both harden the code (portability,

error reporting, coverage testing) and tuning for different platforms.
7

Proposal for a Capability Centers Consortium V7

iii. User support (bug reports) and training could be standardized; “level 1” support
could be provided by each site.

11. Frameworks from research groups (e.g., Cactus)
a. Same issues as libraries from research groups — all work must be done collaboratively.
12. Software environments
a. Standard set of scripting languages (which versions?).
b. Common way to select software versions (e.g., module, softenv).
c. Predefined personalities (e.g., a GNU personality for AlX).
13. Batch schedulers and resource managers
a. Standard interfaces for workflow engines.
b. Minimal common functionality.
14. Monitoring and error handling

a. Interchangeable event descriptors (a definition of a minimal amount of information
contained in an event descriptor).

Slouching Towards Exascale

Ewing Lusk
Mathematics and Computer Science Division
Argonne National Laboratory

Introduction

Let us speculate about how we will program exascale machines. Some believe that the
current “standard” of MPI plus a venerable sequential language (Fortran, C, or C++) will
become as abruptly obsolete as the vector Fortran compilers of the 1970s. While it is
exciting to contemplate an ab initio redesign of the HPC software infrastructure,
experience tells us that large-scale software (and HPC software is now very large scale)
requires a migration path that consists of incremental steps during which only some parts
change at a time. Indeed, as scalability forced vectorization to give way to message
passing, Fortran changed a little but was not replaced by Ada.

Where We Are Now

We are about to take another major step, but not a cataclysmic one. We now have robust,
portable, and effective standard languages for programming a von Neumann machine
with a single program counter and a single address space. Thanks to MPI, we have a
robust, portable, and effective standard for communication and synchronization among
such machines, What we lack is a robust, portable, and effective standard for parallel
programming (multiple program counters) within a single address space. (Neither
OpenMP nor POSIX pthreads provide features needed for an approach effective for
HPC.)

MPI, admittedly cumbersome for some straightforward tasks, has become the universal
mechanism for expressing parallelism among multiple address spaces, for several
reasons. Designed through a completely open process, it included the concerns of
multiple stakeholders from the beginning. This process resulted in a definition that was
portable to a wide class of machines and with a certain degree of performance
transparency that encourages the development of high-performance, scalable libraries and
applications. MPI’s design favored the development of portable libraries over end-
application programs, and in this it has been successful. Its specification includes
language interoperability and other features that enable it to fit into the HPC ecosystem
with existing tools. These properties are worth reviewing because we must be sure that
what we add to our programming environment be not worse than MPI.

The Next Step

The next step we are about to take is forced upon us by physics, so it is pointless to resist.
Because of power and heat dissipation requirements, multicore chips are already with us.
Whatever shape exascale computers ultimately take, we will be programming machines
with less memory per processing core than we are now. This reality will force most (not

all) applications to augment their existing programming model to include parallelism
within an address space together with their current MPI-based parallelism across multiple
address spaces.

This “hybrid” style of programming is already being used by applications in many areas
as they migrate toward petascale. The current most common shared-memory approach is
OpenMP. Although high-performance programming is difficult with OpenMP because
of its lack of locality control, OpenMP-+MPI is virtually the only approach being widely
used, for several reasons: (1) OpenMP is available on a wide variety of machines; (2)
both Fortran and C are supported; and (3) the OpenMP and MPI standards make explicit
commitments to each other that provide clear semantics for various levels of thread safety
in hybrid programs. The fact that OpenMPI+MPI represents an incremental step for most
applications (the overall MPI structure of the application can be maintained while the
MPI processes are internally parallelized with OpenMP threads) is an important factor in
encouraging applications to move to a hybrid model.

But OpenMP, at least as currently defined and implemented, is unlikely to be the final
answer for shared-memory parallel programming. In addition to the lack of locality
control, most implementations are restricted to single-node parallelism, where the
hardware provides the shared memory and synchronization mechanisms. Applications
are already finding the need for larger memories to be associated with their MPI
processes than are hosted on the single nodes of petascale machines. Therefore it may be
useful to consider the PGAS languages (UPC, Co-Array Fortran, and Titanium), which
offer a shared-memory model with a distinction between local and shared memory, thus
providing locality control and performance transparency.

What the PGAS languages lack so far is clear semantics for interaction with MPI and
implementations to match. One can imagine a million-thread computation organized as
10,000 UPC or CAF address spaces with 100 threads each, communicating via MPI,
which strains the scalability of neither model. Again, this would be an incremental
change for an existing MPI application.

Libraries

In discussing approaches to parallel programming, one often forgets that not all
programmers require the same features from their programming models. Let us define a
library as a collection of functions that are usable in multiple applications. Writers of
such libraries need access to performance and (except for certain vendor-specific
libraries) portability. To obtain these features, they are willing to give up a certain degree
of ease of use. Application writers, on the other hand, wish to focus on their science and
would rather not cope with some of the details required for scalability and performance.
For them, the easier it is to develop applications, the better they can produce
computational science results.

We are most familiar with the dichotomy between application and library in the case of
mathematical software, since the mathematics is the same for so many applications. But

there also exist libraries that are specialized to certain families of algorithms rather than
areas of application. For example, researchers have expressed interest in sophisticated
load-balancing libraries that can hide all of the MPI communication from an application
code, simultaneously providing scalability while simplifying the application logic.

What We Need to Do
Four actions would make progress toward programming exascale machines.

* Eschew ritualized denigration of MPI. 1t is a robust definition, with robust
implementations, of a critical component of future programming systems, namely
the transfer of data among separate address spaces. Support continued research
into areas of MPI that need it. The MPI-3 Forum is at work on extending the
standard.

* Recognize the need for a shared-memory programming model. What current
applications and libraries alike will embrace is a programming system for
parallelism within an address space. Such a system needs to be comparable with
MPI in portability and performance transparency. It need not be scalable to the
ultimate levels, but should not be restricted to running on a single node. Clear
semantics for interoperability with MPI are required. This is a critical research
topic; multiple solutions should be pursued at this point. PGAS languages show
promise, but semantics for interoperability with MPI are not yet there.

* Understand the difference between end applications and libraries. While some
applications will use hybrid systems consisting of explicit management of
parallelism within an address space together with MPI, other applications may be
able to rely on libraries, some of them specialized to single algorithms or
domains.

* Don’t abandon the HPCS language ideas. While separate, vendor-sponsored
development of multiple “high-productivity” languages has not attracted much
attention from application programmers yet, the HPCS languages (Chapel, X10,
and Fortress) have introduced a number of important ideas. An open, multi-
agency program with a clearly defined research focus could ultimately bear
significant fruit.

Conclusion

This has been necessarily a simplified speculation on programming models for exascale
machines. In particular, it has largely ignored the issue of GPUs (although they often
come with their own shared address space and thus require a shared-memory
programming model) and has focused on hierarchies having depth of only two. Even
within these simplifications, however, many challenges and exciting research
opportunities exist on the path to exascale.

A Collaboration and Commercialization Model for Eascale Software
Research

Mark Seager and Brent Gorda,
Lawrence Livermore National Laboratory
March 24, 2009
Version 3

Motivation

In the US, recent software research and development for petascale systems has been performed by two
main entities: US Government funded R&D collaborations (both at Universities and at Government Labs)
and Industry efforts at products. With few notable exceptions, there has been little diffusion of
technology from the R&D collaborations to industrial efforts and little feedback from the industrial
efforts to the US government funded R&D efforts. However, the broader community has found value in
some of the R&D efforts and would like to see continued support. For the most part, support is
voluntary by the development groups because the funding was only for the R&D, not ongoing support.
On the other hand, industry efforts end up being funded for specific platforms and are generally
proprietary and suffer from the lack of overall effort due limited private and public investment.
Understanding these lessons from petascale efforts is essential for forming a coherent strategy going
forward to exascale. Clearly, a different research and development and commercialization model is
desired going forward.

Proposed Model

Many US Government funded R&D collaborations produce useful results and lessons learned that are
available to the HPC community for a variety of platforms. There is also much duplication of effort
within various HPC vendor organizations in the name of differentiation and specialization. Both of these
approaches are inefficient because they don’t effectively leverage each other. The basic R&D efforts
don’t feed into commercial development models and overall requirements from customers fielding
systems are not being fed back into the R&D efforts.

To overcome this and align forces toward the Petascale, we propose a new Open Source Collaborative
R&D model with commercialization paths. This leverages the “best of breed” development models from
DOE Office of Science (DOE/SC) petascale research efforts that are typically Open Source, Community
development based. It also leverages the NNSA Advanced Computing and Simulation (ASC)
PathForward (now FastForward) program where HPC provider product roadmaps are accelerated and
provide a clear commercialization strategy.

Figure 1 depicts the proposed model graphically. In this model for software development for exascale
systems, we retain the flexibility of R&D efforts to experiment, push the boundary and to be allowed to
fail. The fruits of these efforts (in the blue STAR figure) are handed off as harvestable results (e.g., code,
algorithms, models or techniques) and as “lessons learned.” These are harvested by a new class of
efforts labeled as Development and Engineering (D&E) collaborations in the Orange Box. These D&E

ASC PathForward-like efforts include a commercialization path should the results be successful. These
products are then delivered and supported on various HPC systems by the providers of these
commercial technologies (e.g., system software by system vendors and ISV products such as code
development tools). The key difference is the management and funding model for these efforts.
Rather than separate independent efforts in R&D, D&E, Products and Support, we propose they be
linked. Funding agencies for the D&E collaborations (E.g., ASC and DARPA) should participate as
contributors in the R&D efforts (e.g., DOE SC and NSF). That is, the R&D organizations should continue
to lead the R&D portions, but include contributions from organizations that focus on the D&E
collaborations. Likewise, R&D organizations should contribute to the D&E funding planning and
execution in the D&E efforts. As vendor partners contribute to the D&E collaborations, natural
commercialization strategies will emerge. Vendor partners should also be included, when appropriate,
in the R&D collaborations.

Lessons Learned

Products &

Lessons Learned
% Challenges

Figure 1: A new software development model for exascale systems couples basic R&D with commercial effort so leverage the
best of both worlds.

In all cases, linkages between stages should be valued as part of the project selection process in order to
incentivize the migration of technology from R&D to D&E and ultimately into products and services.
Naturally some R&D proposals could be formed without D&E collaboration paths, but may be selected
for funding based on the strength of the technical merits. In other words, the model should be flexible,
but encourage and incentivize technology migration.

A side effect of this strategy is that at every stage of migrating technology from left to right in Figure 1,
there is a corresponding opportunity to shape the agenda of upstream events by migrating challenges,
requirements and “Lessons learned” in counter flow direction (right to left in Figure 1).

There is a large gap between what has been developed for current 100s of teraFLOP/s Linux clusters and
1-20 petaFLOP/s systems that have been delivered or are on the horizon. The larger system comes with
huge requirements in terms of scalable systems software and file systems; Reliability Availability and
Serviceability (RAS); programming models and application resiliency. It is important that the community
consider multiple passes through the process depicted in Figure 1 be attempted before fielding exascale
systems in 2018 and beyond.

MAIN PRINCIPLES

Coordinate strategy between R&D->D&E and D&E->P&S. With migration path towards
commercialization.

Keep current focus areas and funding agents for R&D, D&E and P&S as they currently are and
add stake holders from next stage in the process.

Keep the model flexible as possible to encourage development and competition.

Multiple iterations required to get to exascale.

The Case for A Hierarchal System Model for Linux Clusters

Mark Seager and Brent Gorda,
Lawrence Livermore National Laboratory
April 6, 2009
Version 2

Motivation

The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance
computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a
pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems
hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per
year) in semiconductor fabrication and process technologies. These costs, which are approximately
doubling with every generation, are funded from investments multiple markets: enterprise, desktops,
games, embedded and specialized devices. Over and above these base technology investments are
investments for critical technology elements such as microprocessor, chipsets and memory ASIC
components. Investments for these components are spread across the same markets as the base
semiconductor processes investments. These second tier investments are approximately half the size of
the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on
scalable computing systems such as those needed for HPC and other markets. These tier 3 technology
elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs.
Above these is tier 4 are relatively small investments necessary to build very large, scalable systems
high-end or Leadership class systems. Primary among these are the specialized network designs of
vertically integrated systems, etc.

Leadership
plaiforms
O[$100M)Hyr

System design,
interconnect dev,
manufacturing

O($1B)yr

Microprocessor design, compilers,
0s

O($5B)yr

Foundries, base silicon technologies
O($10B)/yr

Figure 1: Leadership-class HPC systems sit on top of a $15B+ pyramid of investment.

The Hierarchal Systems Model of Petascale Systems

Since the mid-1990s Linux clusters and proprietary, vertically integrated systems (PVIS) have leveraged
the above hardware and software pyramid investment model. The gap between the scalability of COTS
Linux clusters and PVIS systems have diminished in the intervening years and now form a major fraction
of the TOP500 list. However, with recent development in PVIS, such as IBM BlueGene and Cray XT4, the
scalability of PVIS has again vastly outstripped basic Linux clusters. By looking at lessons learned in the
march to petascale PVIS, we have learned that one must focus on three things: scalability of hardware,
scalability of system software and infrastructure and applications scalability. Key observations on
hardware and system software scalability coming out of the BlueGene experience are: 1) keep the highly
replicated hardware and software components as simple possible and still get the job done (known as
KISS, or Keep It System, Stupid); 2) applying a “factor and simplify” design methodology® leads to a
hierarchal system model for both hardware and software; 3) the runtime environment (including the OS
and system services) felt by applications must extremely low noise. These design principles lead to an
extremely simple (small parts count) compute node implementation with MTBF measured in the field of
about 3 millennia. On the software side the highly replicated unit is the light weight kernel (LWK). Due
to the simplicity of the compute node architecture all external (but not interconnect) I/O and other OS
functionality is function shipped to 10 nodes (ION) with an external SAN interface. This creates a
hierarchal system model where there is a large number of CN and a reasonable number of ION (about
the same size as a small to medium size Linux cluster). If we now add a few Login nodes where users
login interact with the system (e.g., code development, batch job management and visualization) and a
few Service Nodes for the RAS infrastructure and scalable system administration, then we have the basis
for a fully hierarchal system infrastructure. For example, job launch and debugger daemons can be
migrated off the compute nodes (and thereby reduce the system noise and improve software reliability
by keeping the CN LWK environment simple as possible) to the ION.

! The “factor and simplify” design methodology takes a seemingly impossible problem (e.g., scaling Linux OS to
65,536 way parallelism for BlueGene/L) and breaks it into two problems; one of which is easy to solve and the
other is merely difficult (e.g., a light weight kernel on the 65,536 compute nodes (the difficult piece) and function
ship to Linux on 1,024 10 Nodes (the solved piece)).

Tool Front End
TotalView
STAT

" O e

10 Node
Compute Node

Figure 2: Hierarchal PVIS system model showing how the next generation of scalable tools can naturally use this hierarchal
hardware and software infrastructure.

This offers the opportunity for a hierarchal system infrastructure that associates a set of ION with CN at
job launch time and job launch is also hierarchal in the sense that a user submits the job and the batch
system, running on a SN launches job steps (parallel jobs) that start by launching daemons on behalf of
the user on the ION and then those daemons launch the job (and later manipulate it for the debugger
and other performance analysis tools) onto the CN LWK. This “factor and simplify” approach also
serendipitously provides a fan out infrastructure for tools and other system services. This fan out
infrastructure approach provides unique opportunities for scalability. For example, debuggers when
setting memory watch points or conditional memory watch points require processing every time each
MPI task touches a page in memory containing the target memory address as most implementations use
page table (or similar) mechanism to trap memory references with little performance impact on
memory operations on watched pages. However upon this hardware page trap, the debugger must then
determine if the memory address referenced in the page is the one being monitored or not and check to
see if the condition is met, if there is one. This processing typically is today serialized back to the
debugger process running on the Login node and interacting with the user. This is not scalable. With
the hierarchal infrastructure, the debugger daemon running on each of the ION can process all of the
page faults from MPI tasks on the CN under its dominion. This process runs in parallel across all the ION.
As the job grows, so does the number of ION associated with it and the method describe is thereby
scalable.

The Scalability Dilemma for Exascale Systems Has at Least Two Horns

Although significant research needs to be done on system scalability for Exascale systems, it is clear that
a hierarchal system model, possibly with multiple levels in the hierarchy, is at least an intermediate step
or starting point for research activities. The second horn of the Exascale systems scalability dilemma is
that if PVIS systems drift too far away from where Linux clusters are, then the pyramid investment

model in Figure 1 breaks down. It breaks down because more and more specialized technology will have
to be developed for the PVIS and less and less leverage is obtained from lower levels in the pyramid.
Thus we need to keep Linux clusters scaling up to petascale and beyond as we push PVIS systems
technology to the Exascale. Thus the march to Exascale must be two pronged: scale PVIS to Exascale
and COTS Linux clusters to petascale and beyond.

Current Flat Linux Cluster System Model

To understand the gaps here for Linux clusters it is instructive to review the current state of the art in
Linux cluster design and deployment methodology.

136 4Socket Quad Core Compute Nodes (2,176 CPUs)

288 Port (144D144U) Infiniband 4x DDR ' e

1 Login/ 6 GI"W.&!\OGH E 1 Remote Partition
144 Port IBA Servicel 1.2 GBls oW Serverwith
4xDDR Uplinks pmacter delivered /O 2x1 GbE, 1x10GbE
to spine switch over 2x10GbE 2

1/10GbE 1/10 GbEnet Federated Switch

supplied by site
Site Supplied Object ol
Storage Gismos E MD
1 0r 10GbE attached 4
200 TB and 7.2 GB/s MetaData supplied
by site

Figure 3: Linux Clusters of various sizes can be economically built from a Scalable Unit concept.

Recent advances in design indicate that multiple Linux clusters can be more economically built,
integrated and operated by adopting a Scalable Unit (SU) design methodology. These and other Linux
cluster designs in common use today essentially present a “flat system” model. SU are small aggregates
of nodes that contain all the essential elements and node types necessary to build Linux clusters of
various sizes: even vary large ones. In Figure 3, a SU design based on the 288 port IBA 4x DDR switch is
depicted. The preponderance of nodes are CN as these are where the user MPI based applications run.
The remaining nodes perform systems (and Login) functions and hence are kept minimal. In this SU
design, we have the minimum of Login Nodes (LN at 1) and Remote Partition Servers (RPS at 1) and a
few gateway nodes (GW at 4) necessary to provide sufficient 10 bandwidth for applications running on
the cluster over a SAN to the Lustre (or other) global (accessible multiple Linux clusters), parallel
(supporting parallel 10 within a cluster) file system. When building Linux clusters of various sizes the
system functions also grow linearly and scale appropriately. For example, the RPS remote boots all the
diskless nodes in the cluster (CN and GW) and serve up root and swap partitions for each node. Since
this function is replicated independently in each SU these services scale with system size. For large
clusters all one needs to add is a way to configure multiple RPS nodes in parallel from a single
management workstation attached to the cluster over a management Ethernet.

Proposed Model

From the above discussion, we notice that a slight tweak on the Linux cluster “flat system model” based
on SU design point can yield a hierarchal system model and offer the potential to scale Linux clusters to
10K-100K nodes. It turns out, from the hardware side, only a slight shift is necessary:

1. Design and build compute node as simple as possible (KISS)
2. Use gateway nodes as ION
3. Use RPS nodes as cluster of service nodes

The with recent advances in microprocessor design (e.g., including memory controllers and memory
buses directly on the processor) and the tendency of the industry to aggregate more function onto the
processor with time, it is possible to envision a very simple node design and a path to get there quickly.

On the software side a moderate shift is necessary to bridge the gap:

Light weight (low noise) Kernel

Function shipping interface to ION

All system services off of ION, only minimal job launch on CN
Debugging and process manipulation interface on ION to CN processes
Distributed RAS DB and infrastructure

ik N e

Filling this gap will require significant effort by the Linux community. However, there has been a lot of
research and development out of DOE SciDAC (e.g., FASTOS effort) that can be harvested. In addition,
many vendors have indicated a willingness to commercialize such a model for the community.

This would be a good example of how we can change the industry by utilizing the
R&D=>» D&E=>»Commercialization mechanisms described in a companion white paper titled “A
Collaboration and Commercialization Model for Exascale Software Research.”

MAIN PRINCIPLES

1. HPC pyramid investment model requires we pull up the rest of the pyramid while pushing to
exascale or the model breaks down.

2. Hierarchal systems model developed for petascale systems is a good starting point, with possibly
more than one level in the hierarchy, for exascale systems research

3. The current “Flat” Linux cluster systems model can be turned into a hierarchal systems model
and scale up to 10K to 100K nodes.
A change to both hardware (simpler compute nodes) and software are required.

5. We can mine existing petascale systems efforts and combine it with readily available
commercialization paths.

IESP Whitepaper: PDE-based applications and solvers at extreme scale
David Keyes
Columbia University & SciDAC TOPS project

The thirst for extreme floating-point processing rates is unquenchable in the foreseeable
future, being driven by the need for: (1) better resolving the full ranges of length or time
scales in multiscale phenomena, (2) accommodating physical effects with greater fidelity,
(3) allowing the model degrees of freedom in all relevant dimensions, (4) better isolating
artificial boundary conditions in PDE models and better approaching realistic levels of
dilution in particle models, (5) optimizing or controlling physical scenarios (by solving
inverse problems) once they are adequately resolved by forward models, (6) quantifying
uncertainty, and (7) improving statistical estimates. As applications stretch to take full
advantage of extreme architectures, however, the computational complexity of some
algorithms, such as Courant-stability-limited explicit solvers as well as some linear and
nonlinear solvers, grows superlinearly in memory size, making it impossible to weak
scale, even though memory capacity would seem to allow it. Extreme scales put a
premium on finding “optimal” algorithms, whose complexity is at worst log-linear in
problem size; any suboptimal component will ultimately dominate the execution profile.
In fact, to justify the acquisition and operating costs of exascale hardware, one needs to
be concerned not only with complexity exponents, but also with the coefficients in front
of the power laws, which can vary considerably from one formulation to another. The
availability of high capability architecture makes algorithms more, not less, important.

Fortunately, algorithms such as linear solvers have kept pace with extreme scales, and
optimal versions are known for many PDE-based formulations of driving applications.
Therefore modelers who can cast their simulations in terms of these formulations (e.g.,
sequences of Poisson solves to build up a preconditioner for a multicomponent system of
more general type) may weak scale to 10° processor cores today, on a massively parallel
computer with a log-diameter network. The logarithm, if it does not also arise from other
causes, is a consequence of the global reduction operations that are present in Newton,
Krylov, and other algorithms and ultimately degrades the marginal effectiveness of
additional processor-memory elements if the synchronization stranglehold is not deferred
by reducing its frequency. Furthermore, the marginal effectiveness of additional
processors dividing the bandwidth of a memory shared among many processors may be
nearly zero in many sparse algorithmic kernels.

As a further threat to effective use of extreme scale hardware, we note that progressive,
mathematically beneficial trends in algorithms, such as increased use of unstructured
meshes and adaptive discretizations that yield more accuracy per degree of freedom
stored or flop performed at the expense of increased indirection, more conditionals, or
more integer operations per flop, inveigh against the uniformity and predictability that are
required to obtain maximum use of the floating point hardware. Traditional performance
metrics focusing on floating point rates only in highly unbalanced hardware have long
ceased, in general, to be reliable guides to the merits of a numerical computation.

Instead, performance optimizers should hunt for each successive bottleneck — whether
bandwidth, latency, number of integer load/store units, or whatever — and ask what

algorithmic alternative could relieve it by exploiting unused capacity in some other
hardware resource.

Solvers are just one of many algorithms that must scale. Tools for managing meshes,
fields, and particles, e.g., their generation, partitioning, adaptation, interpolation, and for
constructing of the discrete equations from the underlying models must all be scalable, as
well, or Amdahl’s Law will impose a limit to scalability that is asymptotically
independent of process granularity. The algorithmic techniques required to support
simulations of interest at extreme scales include CAD-to-mesh geometric adaptivity,
solution-based adaptivity, mesh partitioning, discretizations of virtually all types (with
attention to advanced high-order discretizations), contact-detection algorithms, optimal
implicit solvers, stiff method-of-lines integrators, kinetic and particle methods,
unconstrained and constrained optimization (for parameter identification, control, design,
etc.), sensitivity analysis (statistics- and derivatives-based), and uncertainty
quantification. Extreme-scale simulation represents an opportunity for developers of the
enabling technologies in applied mathematics and computer science to demonstrate a
paradigmatic shift that they have envisioned for years as completely new application
codes are written. The connective and control code and the majority of the means of
interchange of data between code components will have to be rewritten together with
algorithmic kernels take advantage of modern software practices and high-performance
architectures. Virtually all large-scale data structures in existing codes will have to be
replaced with distributed versions. In simulations at extreme scales, no data structure
whose size scales with the system can be relegated to just one processor-memory element
or replicated on each. As the software infrastructure is rebuilt, due attention can be given
to extensibility, reusability, object orientation, componentization, portability,
performance portability and tuning, code self-description and self-monitoring, and the
construction of multi-layered interfaces that enforce correct usage.

Beyond these improvements that are occasioned by extreme scales (though valuable at
any scale) the synchronizations that are built into most codes as matters of convenience in
programming model must be drastically reduced. New algorithms and new programming
models must be found that postpone synchronizations as long as possible. One class of
trade-offs that is well developed requires more memory and more nearest-neighbor
communication, which in turn allow many relaxation sweeps or Krylov steps to be
conducted per synchronization. Another class of trade-offs hierarchically decomposes an
implicit solve that involves all degrees of freedom globally into a set of infrequently
communicating local implicit solves, with frequent synchronization within the local
basins only. Such algorithms are known and are in some nonlinear problems actually
demonstrably faster than their globally synchronizing counterparts, though they might in
general be expected to be slower. However, full exploitation of asynchronous algorithms
requires programming scientific applications much like operating systems, with different
priorities assigned to different tasks, depending upon whether they are on or off the
critical path, and with data-driven associative communication between them. The SPMD
bulk synchronous model that is so convenient to understanding large-scale simulations
will have to yield to far more general constructs that are less reproducible and likely far
more difficult to verify for correctness and to predict for performance.

Developing a high performance computing/numerical analysis
roadmap

Overview

A Roadmap Activity in the UK has leveraged US and European efforts for identifying the challenges
and barriers in the development of high-performance computing algorithms and software. The
activity has identified the Grand Challenge to provide:

e Algorithms and software that application developers can reuse in the form of high-quality,
high performance, sustained software components, libraries and modules

e a community environment that allows the sharing of software, communication of
interdisciplinary knowledge, and the development of appropriate skills.

Through a series of workshops and discussions with UK HPC application groups and numerical
analysts five areas of challenge have emerged.

HPC-NA Roadmap Themes

Cultural

a. ldentify potential community players

b. Develop models of community sharing

c. Provide community activities, workshops, training, virtual meeting spaces.
d. Engage internationally

Applications and Algorithms
a. ldentify exemplar applications
i. Develop baseline models for communication and benchmarking
b. Develop map of algorithms across application domain
i. Indentify impact of specific algorithm development across discipline groups
ii. Speed dating
iii. Take mapping of dwarfs on capability computing
c. Develop map of developments internationally
i. Collect information about ongoing related activities
ii. Discuss with international funding agencies plans

Software

a. Abstractions (in collaboration with CS)

b. Code generation and adaptive software systems

c. Guidance on best practice for software engineering development
d. Develop frameworks and tools for application developers

e. Languages = take note of the DOE funded activities.

Sustainability
a. Develop models for sustainable software
i. Long term funding
ii. Industrial translation
iii. Open community support
iv. Other

b. Creation of MSC and other postgraduate training

Knowledge Base
a. Develop mechanisms for collecting information on existing software and dissemination
b. Develop mechanism for continuing community input
c. Education and training —
i. Optimization for example
ii. Software engineering
iii. Provide computational science internships
iv. Bid for short courses or summer schools

The activity is continuing in the UK to put more measurable priorities on the components in
the evolving roadmap. Details can be found at http://www.oerc.ox.ac.uk/research/hpc-na.

Performance at Exascale

Bernd Mohr (Jilich Supercomputing Centre) and
Matthias S. Mueller (Wolfgang E. Nagel Center for
Information Services and HPC)

Resource Management
Barney McCabe (ORNL) and Hugo Falter (ParTec)

Programmability Issues

Vivek Sarkar (Rice U.), Jesus Labarta (UPC),
Mitsuhisa Sato (U. of Tsukuba), Barbara Chapman
(U. of Houston)

Models of Computation — Enabling Exascale
Thomas Sterling, Louisiana State University

Major Computer Science Challenges at
Exascale
Al Geist (ORNL) and Robert Lucas (ISI)

Co-design of Architectures and Algorithms
Al Geist (ORNL) and Sudip Dosanjh (SNL)

IESP Exascale Challenge: Resilience and Fault
Tolerance
Al Geist (ORNL) and Franck Cappello (INRIA)

JUNE 28-29, 2009 PARIS, FRANCE

Performance at Exascale

Bernd Mohr Matthias S. Mueller, Wolfgang E. Nagel

Jiilich Supercomputing Centre Center for Information Services and HPC
b.mohr@fz-juelich.de {matthias.mueller,wolfgang.nagel} @tu-dresden.de
Introduction

Exascale systems will consist of complex configurations with a huge number of potentially heterogencous
components. Deep software hierarchies of large, complex software components will be required to make use of
such systems. While the software layers are designed to be transparent, they are typically not transparent with
respect to performance. This performance intransparency will result in escalation of unforeseen problems to
higher layers, including the application. This is not a really new problem, but certain properties of an exascale
system significantly increase its severity and significance.

* At this scale, there always will be failing components in the system with a large impact on performance.
A “real-world” application will never run on the exact same configuration twice.

* Load balancing issues limit the success even on moderately parallel systems, and the challenge of
locality will become another severe issue which has to be addressed by appropriate mechanisms and
tools.

* Dynamic power management, e.g., at hardware level inside a CPU, will result in performance variability
between cores and across different runs. The alternative to run at lower speed without dynamic power
adjustments may not be an option in the future.

* The unknown expectation of the application performance at exascale will make it difficult to detect a
performance problem if it is escalated undetected to the application level.

* The ever growing higher integration of components into a single chip and the use of more and more
hardware accelerators makes it more difficult to monitor application performance and move performance
data out of the system unless special hardware support will be integrated into future systems.

Altogether this will require a integrated and collaborative approach to handle performance issues and correctly
detect and analyze performance problems.

Performance Analysis

A large number of approaches for performance analysis exist that have successfully applied at small and medium
scale. The large amount of performance data may seem to impede the use at exascale. However, this is not the
case as long as features like memory size and I/O capabilities scale with compute power. An instrumented
application is nothing but an application with modified demands on the system executing it. This makes current
approaches for performance analysis still feasible in the future as long as all involved software components are
parallel and scalable. In addition to increased scalability techniques like automatic analysis, advanced filtering
techniques, on-line monitoring, clustering and analysis as well as data mining will be of increased importance. A
combination of various techniques will have to be applied. The following considerations are key for a successful
approach to performance at exascale:
* Failover or more general the operation with failed components should be performance neutral.
* An exascale system has to be capable to monitor the performance of components, not just the
functionality.
* Hardware and software components need to provide sufficient performance details for analysis if a
performance problem unexpectedly escalates to higher levels.
* Metrics beyond FLOPs need to be developed to identify and quantify performance problems, to measure
the sustained performance and the gap to the attainable peak performance.
* Programming models should be designed with performance analysis in mind. Part of that could be a
(standardized) hidden control mechanism in the runtime system that will be able to dynamically control
—in time and space — the generation of performance data if requested.
* Performance analysis in the presence of “noise” requires inclusion of appropriate statistical descriptions.
* Performance analysis needs to incorporate techniques from the areas of signal processing and data
mining.

DRAFT

Resource Management
Barney McCabe (ORNL) and Hugo Falter (ParTec)

A scalable application is an application whose performance scales with the size of the
computing system. To be scalable an application must make effective use of additional
resources, i.e., the application must demonstrate a performance improvement that is
proportional to an increase in resources. This improvement can be demonstrated by
reducing the time to completion for a fixed size problem (strong scaling) or by increasing
the size of the problem that can be completed in the same amount of time (weak scaling).
Alternately, a scalable application can be characterized as an application whose
performance is constrained by the availability of one or more resources, i.e., a scalable
application is a resource constrained application. Ultimately, application scalability is
based to the ability of the application to manage the resources provided by the computing
system.

By presenting an abstraction of a computing system, programming models emphasize the
management of some resources while de-emphasizing others. Successful HPC
programming models emphasize the management of the resources that are most likely to
constrain the scalability of an application, while de-emphasizing the management of other
resources. For example, explicit message passing models, like MPI, have been very
successful in HPC because they abstract the details of inter-node communication, but
emphasize the management of distributed of memory by requiring that applications encode
explicit message exchanges to access remote memory.

Approaches to resource management can be categorized in two dimensions: static/dynamic
and explicit/implicit. Static resource management decisions are made before execution,
while dynamic decisions are made during execution. Dynamic decisions typically incur
some overhead (additional use of resources) during execution but they can incorporate
information about the dynamic behavior of the program. Explicit resource management
decisions are written into the code for the application, while implicit decisions are
implemented in the translation or runtime system. Programming models emphasize the
management of some resources over others by choosing which resources require explicit
management by the application developer and which can be delegated to implicit
management by the underlying runtime system.

Static Dynamic
Explicit Algorithms Zoltan load balancing
Implicit | Register allocation by a compiler | Demand-paged virtual memory

The tradeoffs between static and dynamic approaches in resource management are
relatively straightforward to evaluate. Dynamic approaches can be justified when the
overhead needed to monitor resource usage and to adjust the management of these
resources results in an overall improvement in application performance. These
justifications are typically complicated by the fact that the costs and benefits are highly
application dependent and the fact that the overhead may require a resource that is
different from the resource used to measure performance improvement, e.g., the overhead
uses memory and performance is measured in time to completion.

DRAFT

Evaluating the tradeoffs between explicit and implicit approaches is rarely straightforward.
Implicit resource management decisions remove much of the burden for making resource
management decisions from the programmer (moving this complexity to the runtime
system) and may enhance application portability, because details regarding resources of the
target platform do not need to be encoded in the application. However, because implicit
approaches seek to hide the true nature of the resource, there is a chance that application
developers will unknowingly use the resource in an inappropriate fashion. A simple
example of this comes when programmers fail to maintain temporal locality in their data
access, yielding poor virtual memory or cache performance when the existence of these
mechanisms is not explicit in the programming model.

No implicit resource management strategy is ideal for all applications. There is a significant
chance that any implicit resource management decision will adversely affect the scalability
of an important application. In most cases, the critical resource management decisions are
limited to a small portion of the application and most of the application code does not need
to include explicit resource management decisions. For this reason, it is important that
implementations of programming models provide programmers with the tools needed to
“opt out” of the implicit management decisions as needed. As an example, compilers for
procedural programming languages provide implicit management of the registers available
on a CPU. Using profiling tools, application programmer can identify performance critical
parts of their code and, if needed, hand code specific subroutines in assembly code, opting
out of the implicit management of CPU registers provided by the compiler. Providing
mechanisms to opt out of dynamic, implicit resource management decisions is typically
more difficult. In the past, this has been addressed by providing hints and callbacks. Hints
allow the programmer to provide explicit advice to the runtime system in advance. The
runtime system uses the hints provided by the programmer to guide its management of the
resources. Callbacks allow programmers to register handlers that implement explicit
resource management strategies.

For the past two decades, high performance computing (HPC) has focused on increases in
processing resources; although, there is general recognition that balanced increases in
other resources (e.g.,, memory, storage, and inter-processor communication) may critically
impact the ability of an application to take advantage of increases in processor resources.
As we enter a time in which processor cycles are ubiquitous, the processor is unlikely to be
the resource which critically constrains the performance of an application. As such, we, as a
community should take this opportunity to re-consider the tools and approaches available
to application developers to support them in the management of resources for scalable
applications.

Programmability Issues

Vivek Sarkar (Rice U.), Jesus Labarta (UPC), Mitsuhisa Sato (U. of Tsukuba),
Barbara Chapman (U. of Houston)

Programming models are central to our effort to address the exascale challenge. They are
the key interface that will allow the separation of the programmers’ concerns from those
of system designers, potentially at different levels of granularity. Any such model must
meet the extensive needs of application developers and be supported by the entire
software stack. The programming and execution model interfaces are key to allowing
programmers to focus on their algorithms while providing the mechanisms that will
enable the compilers and run times to infer the information they need to optimize,
automatically and dynamically, the use of system resources (cores, memory, bandwidth,
power). Considerable research is needed to define and implement the programming and
execution models for such systems. Whereas evolutionary approaches may best support
the migration of existing application software, revolutionary models may be best suited to
providing extreme-scale performance for new applications on emerging architectures.
Both approaches should be explored.

Desirable properties of exascale programming models include the following:

* They should provide highest levels of performance. Most HPC programs are
written for performance. Moreover, exascale programming languages should be
performance-aware: they should provide an adequate abstraction of high
performance parallel hardware platforms to enable the exploitation of their
features, and some means to tune performance. The failure of automatically
parallelizing compilers and HPF was caused not only by technical immaturity but
also by a lack of an interface in the programming language for performance
improvement. When the programmer finds a performance bug, he or she should
have some mean to improve performance by modifying the program. The model
should provide the necessary interfaces to allow tools (especially performance
tools) to obtain information on the application’s execution behavior.

* Expressivity is a key requirement. Exascale programming languages should
provide a model and an interface to express the parallelism in programs. In
functional programming languages and "old" dataflow languages, parallelism is
implicit since the model of computation itself exploits the parallelism. In
imperative languages, new constructs and mechanisms should be introduced to
express the parallelism. From the application points of view, task parallelism must
be able to support coupled multi-physics simulations at several levels for exascale
systems. Applications will need to express massive amounts of potentially fine-
grain parallelism, of asynchrony and locality. Dynamic application behavior will
need to be supported. It should be possible to express hierarchical parallelism
within the application. Latency hiding needs to be facilitated.

* They should enable composability. Composability is essential to support
productive programming on exascale systems. Libraries and object-oriented
approach help accomplish this in conventional sequential programming, but they

don't always work in parallel programming. For example, it is difficult to use
parallel libraries with current OpenMP. Parallel object-oriented programming is
sometimes useful, but has some problems.

They should support fault tolerance and error handling. Fault tolerance is one
of the most difficult issues faced on exascale systems. If faults are exposed to
programmers, then some programming language support will be required to
handle them. It must moreover be possible for an application to respond to faults
and program errors gracefully rather than simply crashing.

They need to support massively parallel I/O. An abstraction of I/O, including the
file system, may help programmers handle the huge amounts of data that will
have to be read and written.

Approaches to programming exascale systems should take the following into account:

Topics

There is a need to provide a smooth transition path from existing practices and
codes to future approaches. Programming environments will be needed that
support this transition, as well as all phases of application development and tuning
on exascale architectures under new and enhanced programming models.
Approaches should provide portability (functional and performance) across
platforms such that the porting effort can be amortized over the foreseeable
variation of systems to appear from now till the exaflop era and beyond.
Incremental parallelization/tuning of applications is a desirable property closely
related to the above two issues.

Initial approaches should address the device, node and system level
programming. Proposals for hybrid programming should ensure clean interaction
between the different levels and ensure that the synchronization semantics and
scheduling decisions at one level do not imply restrictions on other levels.

for detailed study include:

Address space structure. Identify abstract levels of a structure that is simple
enough for use by a programmer to express objects/ideas yet allows the run time
flexibility regarding its mapping to the potentially varied physical structure.
Flexible work generation (parallelism/task specification) and synchronization
structures beyond pure fork-join approaches in order to support flexible
parallelism and high levels of asynchrony. Ideas from data flow or functional
programming may be revisited and smoothly integrated into current practices.
Latency tolerance, being able to specify required data accesses with large
lookaheads such that implementations (compiler or run time) can anticipate the
required data transfers and schedule them appropriately.

The issue of hierarchy and heterogeneity, providing mechanisms for modular
designs with interchangeable implementations of tasks.

Separation of functionality and performance, providing mechanisms for the
programmer to provide hints that may help satisfy performance or power
requirements, but are not required to provide functionality of the algorithms.

* Malleability, the ability of applications to dynamically adapt to the available
resources which may vary during a job run. Programming and execution models
should support/promote malleable programming practices by separating
(virtualizing) the algorithmic structure of a program from the resources where it is
executed.

* Error handling and fault tolerance. Providing the appropriate hooks for
resilient applications.

* Application development environments that facilitate the migration of current
codes and/or the development of new ones from scratch.

The evolutionary path aims to adapt existing programming models to needs of exascale
computing, and facilitate task of creating and tuning potentially hybrid application codes.
This could include work to enhance MPI, OpenMP, CUDA/OpenCL or other approaches
to programming accelerators and SIMD units, as well as work to improve their
interoperability. It might also include more effort to deploy the PGAS languages and
ensure that they may interoperate with other programming interfaces. A revolutionary
path might be based upon HPCS languages or might be a completely new path. It might
be worthwhile to revisit old parallel programming models and languages to obtain new
insights from the past, as is being done in the architecture community. Functional
programming models used to programming the dataflow machines, such as Id, SISAL, ...
could be interesting to evaluate. HPF was a great effort to develop a standard parallel
programming language and is also worthy of re-examination. It is important to take their
experience of failure into account for better future developments.

In such an open field, it is advisable to pursue a few alternatives and ensure there is
sufficient sharing of experiences as well as comparative studies between them. These
should be in terms of complexity/readability of the code and programming effort as well
as performance (both actual measurements on common platforms as well as predictions
for different potential targets). Although these types of studies are often difficult to
perform, special efforts should be devoted to that. Common sets of algorithms should be
used for evaluation by all the proposed models.

Finally, we should promote efforts to develop standard APIs between several levels and
components of existing software in the IESP community. For programmers and end-
users, candidates for standardization will include:
* PGAS languages (UPC and CAF, ...)
* Global views models such as Chapel and HPF
For the system developer, the candidates are:
* One-sided communication APIs
e Fault tolerant model and APIs
* API for I/O on massively parallel system
* API for accelerators
* Performance profile API and data format such as OTF
e API for thread scheduler

The standard development effort is a key to "evaluation" which develops the community.
It will be the basis for the next "revolution" of rich diversity for exascale computing.

Models of Computation — Enabling Exascale

Thomas Sterling

Louisiana State University
May 17, 2009

The derivation of new systems’ software and tools for high performance computing
environments at Exascale will demand realignment and adjustment of functionality and
capability of software components to exploit the new opportunities and address the new
challenges of future system architectures, which themselves will be created in response
to advancing hardware technologies. The evolution of digital device technology, the
most dramatic in the history of human technology, has catalyzed a sequence of
architecture classes over the last six decades, each optimized to the specific properties
of their respective emergent technology phase. Programming models and
representative languages followed to best exploit the performance capability of the
system hardware during each phase. Algorithms were devised to reflect the
computational needs of the applications while constrained to the semantic constructs of
the available APIs. This reactionary strategy is being replayed as HPC once again
experiences a phase-change with the advent of heterogeneous multicore for ultra-high
performance computing. However, this empirical random-walk methodology is time
consuming, error prone, and costly due to its intrinsic lack of guiding principles to
facilitate co-design of all system layers simultaneously. Such comprehensive principles
comprise a paradigm or model of computation to which all layers comply and contribute
to achieve overall system optimal behavior with respect to critical objective functions.
Can we get ahead of the game to leapfrog the tedium of catch-up? Or putting it another
way, can a model of computation be derived that will enable the development of
Exascale computer systems through the co-design of its comprising system software
(and architecture) layers? A brief discussion of the nature and characteristics of models
of computation (alternatively, “execution models”) is offered to contribute to the current
community discussions on proceeding toward the realization of Exascale computing by
the end of the next decade.

Prior HPC phase-changes included the:

= original sequential instruction operation,

» sequential instruction issue,

= vector,

= array,

= gystolic (for SPDs), and

» the most recent communicating sequential processes (CSP).

Others such as dataflow and reduction models did not achieve commercial status
although interesting experiments were performed. The multiple-thread/shared-
memory model is concurrent with CSP for limited scale systems.

The current HPC phase-change is apparent by the forced deployment of
heterogeneous multicore components to maintain the continued peak performance
progression consistent with Moore’s Law and the underlying exponential growth in
semiconductor device density. However, these structures are reactive to the
combined pressures of power consumption, processor design complexity, and
efficiency factors. They do not reflect a clear understanding of an underlying
innovative execution model by which this combination of resources can be
effectively employed for future applications. It is a subject of controversy as to
whether incremental extensions to current methodologies (e.g., MPI) may serve this
purpose. Four factors of the new phase suggest that incrementalism is a false hope
even if it does adequately serve over the next three to five years with diminishing
efficiency and scalability. These factors include:

1. > 1000X scalability gain with respect to current best levels

2. Power efficiency > 50 Gigaflops per watt,

3. Non-stop operation in the presence of single point failures, and
4. Support for efficient dynamic graph processing

Together these factors challenge conventional practices to:

a) Solve the multicore programming problem,

b) Reduce the ever increasing memory wall,

c) Expose and exploit billion-way parallelism,

d) Incorporate innate latency mitigation and hiding methods,

e) Reduce average energy per operation by two orders of magnitude,

f) Integrate memory-oriented operations for meta-data parallel computing,

g) Achieve fault tolerance through support at all levels,

h) Embrace dynamic adaptive resource management for runtime efficiency, load
balancing, and reconfiguration (resiliency),

i) Exhibit a global address space,

j) Greatly increase efficiency of parallel control such as elimination of global
barriers, lightweight task creation and context switching, and dynamic task
migration, and

k) Permit heterogeneous cores to be optimally scheduled.

Other requirements may prevail as well but these are sufficient to demonstrate the
inadequacy of common methods which over the prior decade and a half have resorted
to static mapping of coarse grained parallelism to physical processes, avoiding latency

rather than hiding it (noting some pre-fetch methods), overly constraining flow control by
simplistic global barriers, forcing a distributed memory mind set, and forcing
programmers to explicitly manage allocation of resources to data and tasks. No one
layer of the system is sufficient to address any of these but multiple layers engaged
synergistically implementing new strategies may do so. The model of computation
provides the template for the patterns of execution to be accomplished each layer
working in tandem with the others.

A model of computation describes how an abstract computation evolves on a physical
machine successively altering the intermediate state of both to converge on a final
solution. It defines the name spaces, the control semantics, the memory consistency
model, the forms of parallelism that it may exploit, and potentially other attributes as
well. It may define policy interfaces or invariants without specifying the actual specific
policies themselves in order to provide flexibility in system implementation and
application. Such policies might include scheduling methods and priorities, name space
management, and means of achieving compound atomic operations for example.

There are multiple key consequences of adapting a model of computation to a new
class of system hardware technologies. One is the verification through its existence and
mapping of functionality requirements to hardware mechanisms that full and complex
calculations can be performed on expected hardware designs. A second is that such a
model simplifies overall system design. Without it, each layer of a system must be
developed (assuming complete system design) in terms of every other layer; a order n-
squared process. Adopting a model of computation only requires that each layer be
defined in terms of its contributing functionality to realizing the shared model; basically
an order n process. Even with iteration for convergent refinements and optimization, an
execution model can greatly simplify the design process. A third value is that it does
permit early experimentation with early algorithm and application kernels through the
likely existence of a low-level application programming interface and test environments.
While unlikely to provide absolute performance numbers, it will yield insight in to the
utility of the control semantics of the model, and therefore future systems that employ it
as a basis for hardware and software system design. And forth, such a model as has
happened before, facilitates sharing and cooperation across disciplines and institutions.

How does a model of computation directly contribute to design concepts and decisions
for the many combined layers of the system? Some examples, in no way
comprehensive, are suggested:

o Application interface layer — the execution model defines the basic data
organization, name space (shared or distributed), distributed communication
semantics, and parallelism form and control. All these relate to the APl and

programming models that may be employed in constructing applications and
libraries.

o Compiler layer — the model of computation combined with the system processors’
ISAs and the previously defined APl syntax determines the responsibilities in
translation and analysis that is to be performed by the compiler. This includes
invocation of runtime system functions and operating system service calls. The
compiler will provide software implementation of software support mechanisms.

o Runtime system layer — A major effect of the model of computation is its
definition of the functionality of the runtime system. This software is likely to grow
in importance for new systems and will be heavily influenced by the model of
computation determining how and what information about the runtime state will
be exploited to manage tasks and resources. The runtime system will provide
dynamic control, scheduling, allocation, and some synchronization of concurrent
activities according to the underlying execution model.

o Operating system layer — the model of computation will determine what support it
requires from the lower level system some of which will be provided by operating
system services that must be provided.

o Architecture layer — For efficiency and scalability, the model of computation will
require certain time critical mechanisms to be implemented at least in part in the
hardware architecture to minimize overhead. Other architecture requirements
driven by the model of computation include how to perform virtual to physical
address translation, guaranteed compound atomic functions on data, and
efficient communications.

Towards the establishment of the next generation model of computation, research is
required to understand the driving requirements and to devise alternative solutions that
will enable computing systems and methods for Exascale in the next decade. The
above discussion has considered the general strategy and approach as well as the
basic challenges that will guide the derivation of such a model of computation.

Whitepaper on the

Major Computer Science Challenges at Exascale’
February 2009

Al Geist, ORNL and Robert Lucas, ISI

Exascale systems will provide an unprecedented opportunity for science, one that will make it possible to
use computation not only as a critical tool along with theory and experiment in understanding the
behavior of the fundamental components of nature but also for critical advances for the nation’s energy
needs and security. To create exascale systems and software that will enable DOE to meet the science
goals critical to the nation’s energy, ecological sustainability, and global security, we must focus on major
architecture, software, algorithm, and data challenges, and build on newly emerging programming
environments. Only with this new infrastructure will applications be able to scale up to the required levels
of parallelism and integrate technologies into complex coupled systems for real-world multidisciplinary
modeling and simulation. Achieving this goal will likely involve a shift from current static approaches for
application development and execution to a combination of new software tools, algorithms, and
dynamically adaptive methods. Additionally, we must bring together new developments in system
software, data management, analysis, and visualization to allow disparate data sources (both simulation
and real-world) to be managed in order to guide research and to directly advance science. Achieving this
vision will require fostering long-term, sustained, communitywide activity in evolving code suites. Large-
scale applications, like large-scale computers themselves, require the support of multiple specialists
within a single community. Indeed, the community of computer vendors, application scientists, and
computer scientists, together with the hardware and software they both develop and use, form an
integrated, interdependent ecosystem.

Several recent studies and workshops [1-10] have identified the high level problems facing the HPC
community as it moves towards exascale over the next decade. This paper compiles and organizes the
major software challenges into four categories:
* Problems caused by the growing scale and complexity of computer architectures
* Problems caused by the growing complexity of science applications, including the longstanding
problems with debugging and tuning large applications at scale
* Problems are caused by the huge increase in the data produced and consumed by peta and
exascale systems.
* Problems of software sustainability such as hardening and long-term support of popular software
packages, education of the next generation of HPC specialists, and training the existing users
about advanced techniques and tools.

These workshops pointed out that it is critical that work begin today if the DOE’s scientific computing

community is to be able to exploit exascale systems when the technology to create them matures in the
coming decade.

1. Challenges due to scale and complexity of system

! Work in process. Based on an analysis of the computer science challenges from the DOE Exascale studies.

For most of the past five decades, the growing computational power of supercomputers has come
primarily from a doubling of clock frequency every 18 months. In the last two decades, this has been
augmented by an increase in the number of processors. Over this time period, the clock rate increased by
six orders of magnitude, while the number of processors increased by three orders of magnitude. Due to
constraints on heat and the power requirements of today’s microprocessors, the last frequency doubling
occurred about five years ago and has remained effectively constant ever since. Vendors have shifted to
putting multiple processors (cores) on a chip; first two, then four, then eight. The number of cores per
chip is expected to continue to increase exponentially over the next decade. Today’s supercomputer
vendors see the only way to continue increasing the computational power of their systems is through
increasing the number of processors and hence the scale and complexity of their systems. In the last five
years supercomputer architectures have gone from 1000 processors to 100,000 processors and the next
generation systems are going to have over a million processors. The rate of growth of parallelism is in
fact accelerating, and will likely exceed one hundred million when exascale systems appear. Some
estimates even predict that the need for multiple threads to cover main memory and communication
latency means that scientific codes will contain billions of threads.

The change of shifting from using faster processors to using multi-core processors is as disruptive to
scientific software as the shift from vector to distributed memory supercomputers fifteen years ago. That
change required complete restructuring of scientific application codes, which took years of effort. Some
application communities still haven’t transitioned to even a thousand-way parallelism. The shift to multi-
core exascale systems will require applications to exploit million-way parallelism and overcome
significant reductions in the bandwidth and volume of memory available to each CPU. This “scalability
challenge” driven by the exponential increase in the amount of parallelism in the system affects all
aspects of the use of high performance computing. It makes all the existing problems harder, such as
getting performance from the applications, managing the system, debugging, etc.. It also creates new
challenges such as fault tolerance, the need for new programming models, and verification of results.

There is another looming shift in the complexity of the node architectures that will be as big a challenge
to software development as the exponential growth in processors. This is the potential shift to
heterogeneous node architectures. Today most supercomputers are of huge scale but they are
homogeneous. Over the next decade it is expected that the multi-core processors will include several
different types of cores on each node, for example, a computation accelerator, a graphics processor, a
communication processor, an IO processor, etc. An early example of a heterogeneous system is the
Roadrunner supercomputer at LANL.

The major challenges caused by the increasing scale and complexity HPC systems are cross cutting of the
entire software stack. The software challenges include the rapid increase in parallelism, the memory wall,
system heterogeneity and fault tolerance. For each of these challenges computer science research is
needed across the entire stack not just at one level. For example, making an application fault tolerant is
not sufficient if the system software is not also fault tolerant. Making the system software fault tolerant is
not sufficient if the data can be corrupted by faults in the data management software. To be able to use
these systems to solve the nation’s problems, DOE, as the pioneer in HPC, must improve all parts of the
software stack and influence the architecture design to meet the scientific needs. The challenges impact
both the developers and users of the system software, the applications, the runtime, communication, 10,
and data management, including analyzing the results.

1.1 Increasing Parallelism

The increase of system concurrency from hundreds of thousands to hundreds of millions will be a
tremendous challenge for system software to manage and for applications to get good performance at this
level of parallelism. Almost all of today’s large-scale applications use the message-passing programming
model (MPI) together with traditional sequential languages (C, Fortran, C++), but new architectures with

many cores per chip and parallelism in the millions are expected to make this programming model more
problematic and less productive in the future. Thus new approaches are needed. For example, a hybrid
programming model such as MPI with some global view techniques such as Unified Parallel C (UPC) or
Co-Array Fortran (CAF). In order to facilitate the utilization of the extreme scale resources, new
programming models and High Productivity Computer Systems (HPCS) languages must be explored.

1.2 Memory Wall

The memory wall traditionally refers to the challenge that the bandwidth and latency to memory
continues to grow at a slower rate than the processor power. The transition from frequency-based scaling
to core-based scaling will make the memory wall both higher and broader. It is higher in that bandwidth
and latency continue to get worse as memory gets farther away from CPU operations (at least in terms of
clocks). The memory wall is going to get broader in that the overall memory capacity per core must
decrease. It will be harder and harder to maintain the desired byte-to-flop ratio—in absolute capacity
(flops/s per byte) and bandwidth terms (flops per byte). Hence, applications will have to be redesigned to
make better user of limited memory. Additionally, applications will have to deal with increasing
hierarchies of memory (and indeed storage). There are now often five levels of direct access memory
(register sets, three levels of cache, and main memory). In the future there may be more levels and more
(or less) sharing of these levels within a shared memory node, as well as a new level of persistent FLASH
to augment the DRAM main memory.

1.3 Influencing Architecture Design

DOE scientists have been pioneering users of high-end systems for over five decades. While the systems
themselves are usually manufactured and deployed by computer system vendors, architecture research
conducted by DOE scientists, often in collaboration with the vendors, allows DOE to develop the
specifications for the systems. To maximize the utility of the computer hardware, DOE computer
scientists often contribute everything from system software to programming environments and debugging
tools. Recent examples abound, including BlueGene/L, Red Storm, and Roadrunner. As we look
forward to exascale, high-end systems will become increasingly specialized, and DOE scientists will have
to take an even more active role in designing of both the software and the hardware of such systems to
assure their utility for the scientific problems that face the nation.

1.4 Heterogeneity

Heterogeneity exists at many different levels in modern supercomputers. The systems have several
different node types: compute, 10, login; several different operating systems; and several different
interconnection networks: RAS network, command network, one or more communication networks.
Despite this heterogeneity, these systems are usually considered homogeneous because the fundamental
compute node is homogeneous and replicated tens of thousands of times across the system. A
heterogeneous system is one where there are regions of different compute nodes across the system. For
example the proposed Japan 10 PF system is designed to be a mix of three different types of architectures:
vector, cluster, and specialized (GRAPE). Another form of heterogeneous system is where the compute
nodes are heterogeneous. An example is the “Roadrunner” system where each compute node has a
traditional AMD multi-core processor plus an IBM Cell processor, originally designed for the Sony
Playstation. The major chip vendors have all started exploring creating heterogeneous multi-core chips
that combine light-weight, high compute density processor units (e.g., GPUs) and traditional
computational units (CPUs) in order to increase the computational power on a single chip. It is expected
that over the next decade most supercomputers will be constructed using such heterogeneous multi-core
processors.

Heterogeneity is also appearing at the system level, as computer centers adopt a “crop rotation” model,
whereby systems are partially updated on a regular basis. A recent example occurred at the ORNL

Leadership Computing Facility, when two generations of Cray XT systems were simultaneously
deployed.

Heterogeneity is a radical shift from today’s environment. System management, job scheduling, efficient
resource utilization, and load balancing all become much more complex. Today’s code development
assumes a homogenous run-time environment, with parallelization being done manually by each code
developer. At the scale where applications need to make use of millions of heterogeneous processes,
discovering the opportunities for parallelization becomes much more difficult and requires a set of tools
that can automate the parallelization of the trivially parallelizable segments of code, and aid the
application developer in finding less obvious opportunities. This task is even more daunting when
considering future heterogeneous multi-core architectures, since the parallelization algorithms have to
take into account the different types of processors and the interactions between them. Compiler research
will be needed to understand how to exploit heterogeneous hardware, automating as much of this as
possible and providing code-restructuring assistance where automation is not possible.

1.4 Fault Tolerance

Modern PCs may run for weeks without rebooting and more data servers are expected to run for years.
However, because of their scale and complexity, today’s supercomputers run for only a few days before
rebooting. Exascale systems will be even more complex and have millions of processors in them. The
major challenge in fault tolerance is that faults in extreme scale systems will be continuous rather than an
exceptional event. This requires a major shift from today’s software infrastructure. Every part of the
exascale software ecosystem has to be able to cope with frequent faults; otherwise applications will not be
able to run to completion. The system software must be designed to detect and adapt to frequent failure of
hardware and software components. On today’s supercomputers every failure, even ones that get
reconfigured around, kills the application running on the affected resources. These applications have to be
restarted from the beginning or from their last checkpoint. The checkpoint/restart technique will not be an
effective way to utilize exascale systems, because checkpointing stresses the I/0 system and restarting
kills 999,999 running tasks because 1 fails in a million task application. With the potential that exascale
systems will be having constant failures somewhere across the system, application software isn’t going to
be able to rely on checkpointing to cope with faults. A new fault will occur before the application could
be restarted, causing the application to get stuck in a state of constantly being restarted. For exascale
systems, new fault tolerance paradigms will need to be developed and integrated into both existing and
new applications.

To complicate matters even more, the GPU accelerators that are being considered for heterogencous
systems often do not have any error checking on the processors or in their memories. This is because
there is no market force to require error checking since a few incorrect pixels on the frame of an
animation is not noticeable. But if GPUs become common in peta and exascale systems then undetected
errors from GPUs or other sources could dramatically increase the rate of faults in large systems.

Research in the reliability and robustness of exascale systems for running large simulations is critical to
the effective use of these systems. New paradigms must be developed for handling faults within both the
system software and user applications. Equally important are new approaches for integrating detection
algorithms in both the hardware and software and new techniques to help simulations adapt to faults.

2. Challenges due to complexity of applications

As computational capabilities have grown, so have the resolution and complexity of the simulation
models. The large simulation codes today incorporate multidiscipline, multi-physics, multiple time scale
and multiple solution methods. They have taken years to develop by teams of programmers and scientists
and can include millions of lines of code. As we make the leap to exascale computation the impact on the

cost to update, recode, and incorporate more advanced models into the simulations can be an order of
magnitude higher than the cost of the supercomputer hardware. In order to contain these costs, the
exascale software ecosystem must support more efficient program development that addresses the
following application challenges:

* Scaling limitations of present algorithms

* Innovative algorithms for multi-core, heterogeneous nodes

* Software strategies to mitigate high memory latencies

* Hierarchical algorithms to deal with BW across the memory hierarchy

* Need for automated fault tolerance, performance analysis, and verification
* More complex multi-physics requires large memory per node

* Model coupling for more realistic physical processes

» Dynamic memory access patterns of data intensive applications

» Scalable IO for mining of experimental and simulation data

The user requirements are heavily shaped by the length of the life cycle of the applications. HPC
applications have both long development cycles and long periods during which the application is in
"production." An important aspect of this life cycle is that code is always in development -- even
production code. Thus, the users require assurances of stable support for a programming model, including
the development tools that enable its use. Further, "new" applications are almost never entirely new—they
almost always take some existing code base to provide key underlying physics or mathematics
functionality from an existing application. As a result, users are not open to tools that only target "new"
applications or require significant changes to the established workflow of the application team.

Applications are becoming much more multifaceted as teams include a variety of languages, libraries,
programming models, data structures, and algorithms in a single application. In fact, application teams are
listing scalable tools for debugging, memory correctness, thread correctness, and multimode performance
analysis as key factors in their productivity.

Today’s tools are limited in scope, capability, and scalability. The overhead associated with current
measurement techniques is too intrusive at the petascale and may skew analysis so much as to render any
analysis ineffective. Therefore, we need to develop scalable and less intrusive methods of collecting
performance data, develop knowledge discovery methods for extracting key performance features, and
provide assistance in feeding the results of these analyses back to the code transformation.

2.1 Improving Programmability
Exascale computer architectures will require radical changes to the software used to operate them and the
applications that run on them.

New ways of specifying computations: Scientists must be freed from the details of managing data
movement among memory systems and synchronizing access to shared memory among threads of
control. They will need languages and libraries, in some cases discipline- or even application-specific,
which specify results to be obtained with less attention to the details of the computation than is currently
necessary. Implementation of such libraries and languages will require lower-level programming models
and tools that permit execution on a wide range of hardware and exploit the capabilities of exascale
architectures.

Portability: Libraries are the typical software test beds where new programming models and execution
models are proved out and this will continue to be the case. Numerical and communication libraries
provide a fast vehicle for getting the new concepts into use by the application developers. MPI is the

portable programming model today. Any new programming model that is created must be, at a minimum,
be as portable across the key HPC systems, clusters, and development platforms of the time to be adopted
by software developers. Tools to assist in the code transformations to new models and new algorithms are
going to be critical in transitioning the millions of lines of code to a new programming model.

Huge code size: The increasing prevalence of coupled multi-disciplinary codes has combined with the
long life cycle of scientific applications and the use of third party libraries to make codes larger and more
complex. As a result, tools must handle larger executables. Tool developers are already seeing demand for
tools to handle codes of several hundred mega-bytes to giga-bytes of executables. In addition, the rise of
component based programming is resulting in applications that have hundreds if not thousands of shared
libraries. So tools must be developed that handle both huge binary files as well as large numbers of files.

The memory challenge states that the memory per core in petascale architectures is going to decrease.
Developers need tools that will help them understand the scaling behavior of memory allocations and
usage as well as detect correct memory semantics. With limited node memory, tools that monitor how
much memory is being used in a parallel job over time would also be useful. To be applied at extreme
scale, all of these tools must have little overhead, a criteria that many existing memory correctness tools
fail to meet.

Tools throughout software life cycle: The tool needs vary with the life cycle stage. Initial code
developers need full featured debuggers and performance analysis tools and are willing to work with tools
with relatively high overheads, such as some memory correctness tools. Similar functionality is also
needed for code being maintained. In addition, support for version tracking, code coverage and regression
testing (both correctness and performance) are useful at this stage. Supporting code ready to run at large
scale requires yet different tools. Lightweight debugging functionality is essential at these scales, as are
low overhead mechanisms for performance profiling and analysis. Codes in production need workflow
tools to interact with applications and large scale systems. Finally, tools to support fault tolerance, with a
focus on data integrity, are expected to become even more important during this life cycle stage as faults
become continuous.

2.2 Building New Applications

The vision for the next decade is to have a totally integrated approach to how applications are built,
modified, updated, and used in other applications. In such a development environment the tools will
interoperate with each other and assist the scientists in writing, debugging, tuning, and maintaining their
codes. This will be facilitated through:

Rapid, modular construction of new applications from existing suites of interoperable components.
Scientific software components with well-defined interfaces have the potential to greatly increase code
reuse, thus shortening development times and increasing software reliability.

Coupling of multiple applications into ever-larger applications through automated workflows.

Single large runs remain an important class of large-scale computations, but many applications need
parameter studies consisting of large numbers of coordinated sets of runs, each perhaps consistent of a
pipeline of computation and analyses. High-level, standard languages for coordinating such families of
executions will enable scientists to focus on science rather than “run management.”

Debugging Tools. An integral part of application development includes verifying that code runs as
expected. Current debuggers are not able to handle even a few thousand tasks much less the 100,000 tasks
on today’s supercomputers. Application developers for today’s large systems fall back to the very
inefficient method of debugging—dumping user inserted debug code to output files. With the vast
increase of process count going to exascale systems, searching manually for a single anomalous process
among the millions of running processes and threads is not tenable.

Application teams need tools for managing application builds and configurations, mixed language
support, dynamic linking, program configurations, remote access, compiler infrastructures for application-
specific analysis and transformations, and integrated development environments. Application teams
specifically request lightweight tools to diagnose memory, threading, and message passing errors that are
casy to use and scale from the desktop system to the petaflop platform. Furthermore, the architectures and
system software must make the necessary performance and reliability information available to these tools
so that they can perform root-cause analysis with greater accuracy.

For performance and correctness tools the availability of scalable tools is particularly critical. These tools
require a scalable infrastructure to provide tool communication, data management, binary manipulation of
application executables, execution management for batch schedulers and operating systems, and a variety
of other capabilities. Tool infrastructures must be efficient, modular, fault tolerant, and flexible.

2.3 Execution Environment

Managing a system with a million processors and faults occurring almost continuously produces new
challenges for system software. Efficient scheduling and resource management become significantly
harder with a dynamically changing configuration as does upgrading and monitoring. The acceleration in
scale puts additional pressure on the scaling of all system software components. In particular, OS scaling
has been a historical challenge at each change in scale. Several performance issues are anticipated to
become of increasing importance. Perhaps at the top of the list is load balancing. Tools are needed to
detect load balance problems and to assist the dynamic load balancing of applications.

In order to guide research, and to directly advance science there must be a more flexible and dynamic
resource management capability throughout the computing environment to allow computing, analysis,
visualization, and live data to be integrated simultaneously during a simulation. While workflows provide
a nice execution interface for the scientist, they will need to evolve to meet the needs of the growing
complexity of applications.

a) Semantic awareness in workflows: Workflows need intelligence to identify which actors can be
linked technically, highlight mismatch of units between actors, enable better control over
parameter sweeps, and learn from previous workflows.

b) Optimization of workflows: Currently workflows are driven by the need to optimize the
scientist’s time. In the future they may also need to consider other options such as optimizing
power, CPU cycles and data transmission time by dynamically scheduling on appropriate
systems. This will require that the workflows be aware of the underlying hardware.

c) End-to-end software environments to support collaborative data analysis: As advances in
mathematics and computer science make the analysis of larger and more complex data sets
feasible, it is also necessary to bring these advances together in an environment that supports the
end-to-end process of data analysis from the initial data to the final results. This environment
should include support for workflows, provenance, and storage of data.

d) Incorporation of policies: Workflows will also need to incorporate any privacy and security
policies that may dictate how and what data can be analyzed.

2.4 Validation and Verification

The scale and complexity of the science problems enabled by exascale systems require new techniques
for making sure that the calculations are done correctly. It will be increasingly important to validate that
new extreme scale algorithms are solving the right problem and to verify that the answer produced is
correct and not corrupted by numerical stability or numerical errors from transient non-fatal faults.

The difficulties in drawing scientifically-meaningful conclusions from vast volumes of data is reflected in
the greater need for code validation, uncertainty quantification, and the analysis of data across ensembles
of simulations. Often, the quality of the data, and the variation in the data, add to the challenges resulting

from the massive size of the data, thus increasing the need for robust algorithms that are not sensitive to
the settings of parameters.

3. Challenges due to increased data

The data challenges include dealing with the volume, different formats, transfer rates, analysis, and
visualization of massive (potentially distributed) data sets. Exascale applications running on as many as a
million processors are likely to generate data at a rate of several terabytes per second (even assuming only
a few megabytes per processor). It is not practical to store raw data generated at such a rate. Dynamic
reduction of the data by summarization, subset selection, and more sophisticated dynamic pattern
identification methods will be necessary to reduce the volume of data. And the reduced data volume will
have to be stored at the same rate as it is generated, in order for the exascale computation to progress
without interruption.

This requirement presents new challenges of orchestrating data movement from the supercomputer to the
local and remote storage systems. Data distribution will have to be integrated into the data generation
phase. Managing the dataflow using well-coordinated workflow engines will be required as part of the
software infrastructure that runs the simulations.

The issue of large-scale data movement will become more acute as very large datasets or subsets are
shared by large scientific communities. This situation will require large volumes of data to be replicated
or moved between production and analysis machines, often across the wide area. While networking
technology is greatly improving with the introduction of optical connectivity, the transmission of large
volumes of data will inevitably encounter transient failures, and automatic recovery tools will be
necessary.

Another fundamental requirement is the automatic allocation, use, and release of storage space.
Replicated data cannot be left in storage devices unchecked, or storage systems will fill and become
clogged. A new paradigm of attaching a lifetime to replicated datasets, and the automatic management of
data whose lifetime expires, will be essential.

3.1 Parallel File Systems

Parallel file systems such as Lustre and PVFS2, and I/O software stacks including MPI-1O and high-level
I/O libraries (e.g. HDF5, Parallel netCDF) are in extensive use in HPC by a wide variety of applications.
Current deployments typically use vendor file systems and enterprise hardware and are providing
adequate storage performance, capacity, and reliability for current systems. For the next decade the key
challenges to Parallel File Systems are scaling, performance, and fault tolerance. Overall, we need storage
systems at HPC centers that provide scalable bandwidth and tolerate non-catastrophic failures without
data loss.

3.2 Data Management

Scientists are facing the burden of managing the data generated by large-scale simulations and
experiments. They need to deal with multiple steps of moving the data between software modules,
extracting subsets of the data, summarizing the data, generating images or movies, and moving the data to
archival storage. Such tasks are extremely time consuming, and require expertise that is irrelevant to the
scientist, such as transfer protocols, security mechanisms, and idiosyncrasies of archival systems.

In order to support exascale data generation, data storage will fundamentally change. Users will need
tools that manage the movement of data automatically across a storage hierarchy. Data that is used often
will be moved to highly parallel dynamic storage, while archived data will reside in powered down
storage or passive storage devices. Furthermore, algorithms to automatically track and remove unused

data from the dynamic storage will be essential to minimize storage costs. Collections of datasets will be
organized as directories. Such abstraction will fundamentally change the way the 1/O is expressed by
applications and will involve a storage management layer that maps datasets into physical devices without
effecting the applications.

Keeping track of the data generated is already a daunting task. The meaning of the data, referred to as
metadata, requires precise annotation of how the data was generated, and the scientific interpretation of
each data item. Furthermore, many scientific datasets are generated from other datasets, or perhaps a
combination of datasets. This requires the capability of tracking the history, or provenance, of the data.
Today, such tools are provided in ad hoc manner; some metadata is collected in various forms of
notebooks, some in databases, and some embedded as headers of files. In the exascale regime the
automation of this task is essential because of the sheer volume of the data and the accelerated rate of
their production. Standard metadata models and tools will have to be developed, as well as tools to
automatically capture the metadata as the datasets are generated. Furthermore, the data models need to
support standard ontology for each scientific domain and allow for dynamic evolution of such standards.

3.3 Turning Data into Scientific Discoveries

One of the challenges in contemporary science is the process of discovering knowledge and testing
hypotheses in the presence of a growing deluge of data. A recurring theme in this document—that
existing methods will not scale to meet the challenges of exascale systems and data—holds true in the
area of knowledge discovery. Existing approaches for knowledge discovery do not scale to the exascale.
Failure to address the issues of knowledge discovery in the exascale ecosystem will have a profound and
adverse impact on all science programs.

A number of different, yet complementary, approaches to address these problems will require exploration:

* Ability to visualize and analyze results at coarse and fine resolutions depending to support the
natural investigatory process that relies on context/focus interaction;

* Better visual data analysis algorithms for characterizing and presenting uncertainty;

* Integration of visual data presentation and data analysis techniques (e.g., clustering, classification,
statistical analysis and representation) to aid in accelerating knowledge discovery;

* QGreater emphasis on the human-computer interface to increase the efficacy of visual presentation
motifs and interactive knowledge discovery interaction models;

* Context-centric interfaces to simplify use of complex software infrastructure;

* Rethinking design and implementation of fundamental knowledge discovery algorithms and
software infrastructure to be capable of effectively leveraging exascale platforms.

As the size of simulation, observational, and experimental datasets grow into the petascale range, many of
the existing technologies do not scale to be practical for both on-line and off-line data analysis and
knowledge discovery processes. These additional challenges need to take advantage of acceleration,
parallel processing, and smart navigation, summarization, and manipulations of the massive datasets.
New methods for achieving better efficiency of searching, processing, exploring, and displaying
information are needed. Finally, scalable and flexible data formats for storing, processing, provenance,
and sharing results of data analysis are required.

3.4 Efficient Searching

Searching for key pieces of information in data is becoming challenging due to several factors. With data
reaching the petabyte scale, there is a need for better indexing technology to support multiple tasks such
as database search, sub-graph extraction, and text searches with ranking. The data being searched is also
becoming more complex, with simple row/column tables being replaced by graphs, data with associated
uncertainty, collections of data such as a sequence of interactions in a graph, and so on. Users are also
making more complex queries and may require an estimate of the time it would take to obtain an answer

to the query. To address these issues, we need advances in several different areas including, but not
restricted to, indexing, sampling, query estimation, and approximate query answering. The characteristics
of modern datasets, as well as the hardware on which the analysis software is executed, suggest the need
to re-think existing algorithms or develop new ones due to:

Scalability of the analysis techniques: We need advances in both mathematical algorithms and computer
science issues to ensure that our analysis techniques will scale with both the size of the data and the
number of processors available to run the analysis algorithms. This would require new parallel
algorithms, scalable data structures, techniques for re-organizing the data to be more suitable for multiple
processors, automatic compiler-driven parallelization, etc. Since data maybe inherently distributed and
streamlined, algorithms need to be adapted to these physical properties of the data.

Modifying algorithms for new architectures: With the paradigm shift from single processors to multi-
core architectures, GPUs, and FPGAs, we need research to determine how scientific data analysis tasks
can be re-designed to be highly multi-threaded to take advantage of these architectures. In particular, I/O
bottlenecks often encountered by data intensive applications can be circumvented with in-memory data
operations and specialized indexing techniques such as Quaterrnary Triangular Mesh (for geoprocessing),
and space filling curves (for increasing locality in multidimensional spaces). The new architectures can be
particularly well suited for some of the newer types of data. For example, algorithms for fast quantile and
frequency estimation in data streams can benefit from the use of GPUs. Likewise, significant amount of
processing tasks may be accelerated using FPGAs, e.g., kernel computations, key statistics, pattern
recognition using templates etc.

Analysis within storage: An approach to minimizing the time taken to move data from storage to where it
is being analyzed is to analyze the data where it is in storage. This is referred to as Active Storage.
Research is needed to understand the data structures necessary for such analysis and the approaches
including programming models, software libraries used to embed analysis functions within storage, and
the storage infrastructure enhancements necessary to make this possible.

Exploiting modern programming models and constructs: MapReduce, Bigtable, and have been
successfully used in various applications on several different architectures for the analysis of large
datasets. However, it is unclear if such programming models can be directly used in the context of
scientific data. Research is needed to determine how such models can be extended to implement scientific
data analysis algorithms and meet the requirements of fault tolerance and scalability, while supporting the
fine granularity and frequent synchronization needs of scientific applications.

4. Software Sustainability

Creating an exascale software ecosystem entails more than just solving the technical challenges. It
includes educating scientists on how to use the solutions, both new tools and new approaches, and
demonstrating why using these solutions is to their advantage. It includes making sure that the solutions
are hardened to production quality so that they can be integrated into the software suites of the nation’s
supercomputer centers. It includes making pieces available as they are completed, rather than waiting
until everything is done. And it includes helping users integrate these pieces into existing codes so that
science teams can benefit in the near term and build up trust in the solutions being provided for the
exascale software ecosystem.

Sustaining and hardening software to production quality: Academic and laboratory researchers and
developers rarely possess either the software engineering skills or the desire to transition research ideas to
production code, with concomitant support. The pathway from research prototype to a software tool that
is widely available, production quality and actively supported is not clear. In most cases, the funding
researchers receive is targeted toward specific research goals, and not necessarily to provide tool porting,
testing, documentation, standardization, or user support. A new model of software tool support is needed
if we are to address current and future needs.

Engagement with applications and domain experts: All too often, software tools are developed in the
absence of detailed understanding of the user and application needs. Conversely, users are often unaware
of the technical difficulties underlying tool design and support. Bridging this gap with a collaborative
software development and extension process, where promising ideas are identified and tested early, then
enhanced and supported across the application development and support cycle, would ameliorate the
expectations gap.

User training: Software development tools can be very flexible and powerful in their own right. The
developers of these tools should make it a priority to train the user community on tool capabilities and
usage. Furthermore, usability should be a major requirement included in any funding focusing on
transition to production software.

Education and workforce: As is the case in other areas of HPC and computer science, there is a specific
need to educate new students and workers in order to ensure a sufficiently large and capable workforce.

6. References

1. Final report from Exascale townhall meetings- Breakout Group Seven “Software Challenges”. June

2007

2. Workshop on Software Development Tools for Petascale Computing final report. August 2007

3. Workshop on Visual Analysis and Data Exploration at Extreme Scale final report, October 2007,

4. Scalable Systems Software Summary Report ASCR PI meeting, April 2008

5. Data Management and Analysis Summary Report ASCR PI meeting, April 2008

6. Workshop on Mathematics for Analysis of Petascale Data final report, June 2008

7. Whitepaper “The Scientific Data Analysis Process at the Petascale” Editors: Chandrika
Kamath, Arie Shoshani, August 2008

8. Workshop on CS/Math Institutes and High Risk/High Payoff Technologies for Applications
preliminary report, October 2008

9. DARPA “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”,
Kogge, et.al. (September 2008) http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

10. DARPA “Exascale Software study”, Sarkar, et.al., (In preparation)
http://www .1bl.gov/CS/html/SCO8ExascalePower Workshop/Sarkar-SC08-Exascale-Workshop-v2.pdf

Towards Exascale File I/O

Yutaka Ishikawa
University of Tokyo, Japan

2009/05/21

Background & Overview
I —

« Existing libraries and systems
— High Level I/O Library

Environment to develop exascale file systems
Challenges towards exascale systems

« Parallel HDF5 1. File system configuration
— Collective I/O 2. Exascale file access technologies
« MPI-IO 3. Exascale data access technologies
— Global File System 4. Exascale Layered implementation
 Lustre, PVFS, GPFS, ... « Collaboration Scenarios
« Existing file systems * Milestone

— Global file system only
* Most systems
— Staging
» Files are copied to a local disk of each
compute node before execution, and

then dirty files are copied to the global
file system after execution.

e.g., Earth simulator, Riken Super
Combined Cluster, PACS-CS@Univ.
of Tsukuba

2009/05/21

Environment to develop exascale file systems
I —

« Benchmarks and use cases
— Tounderstand file system performance and reveal the weakness of the file system
— Involvement of application developers’ skill

* We have to discuss with application developers to understand the application
characteristics

* We have to cooperate with application developers to achieve better file I/O
performance

— Is the following consortium still working ?
» Parallel I/O Benchmarking Consortium
http://www-unix.mcs.anl.gov/pio-benchmark
« Tools
— File I/O access tracer
* To understand the application I/O characteristics
« Experimental Equipments
— 1Kto 10 Knodes
— The developed code can be deployed to compute nodes and file servers
» Kernel modification

2009/05/21

Research Topics: File system configurations

Compute. Compute’ ' Compute Compute
. . Compute 'Compute Compute Compute 8 : s
Local disk | Disk for N p o N 2 S Z N N Node Node
C o C O(C ode C ode Compute'= Compute = Compute === Compute
on each group of ompute | ompute omgute o omzute S I S T oo Pk e
Al LlO(I, llo e klo e | —_
system |node nodes Compute ~ Compute - Compute Compute Computegg Compute;ECompute sk Gtz Tk
0o Node Node Node Node
Node Node Node Node S—
Type A v
Type B v e
Type C v v
Servers Servers
" ’ ’ ’ W W
Type A Type B
. yp VAW yp)
(\ (Compute Compute Compute , , . Compute
Compute |Compute, (Compute |Compute Compute [Compute Computeeﬁ. ..Compute Node Node
Node Compute Compute Computede_ ' Compute | _Node & [Node

Node Node Node

_

Comnute 'Combute
Compute |Compute 'Compute | |

. "Compute_Node
Node

Compute . |
_NCompute Node
Node

Servers

Type C

2009/05/21

Servers

Servers

Type D)

Research Topics: Exascale file access technologies
I —

* Type A (Global file system only)
— This configuration may be not applied
* Type B (Global file system + Local disk)
— Local disk will be SSD.
— Research topics
« Both the file and meta-data cache mechanisms in each node
+ File staging
 If two networks for both computing and file access are installed, some optimization
mechanisms utilizing both networks are also research topics
+ Type C (Global file system + Group file system)
— Each group file system provides the file access service to the member nodes of its group
— Research topics
« Efficient file staging
« The group file system as file cache
* The file service mechanism to some groups if an application runs over those groups
* Type D (Global file system + Group file system + Local disk)
— The combination of Types B and C

2009/05/21

Research Topics: Exascale data access technologies
I —

» Most application developers use the read/write file /0 system calls (, at
least in Japan)

» |f the parallel HDF-5 is enough capability to describe exascale
applications, the following research topics are candidates:

— Efficient implementation of parallel HDF-5 for exascale parallel file
system

» Optimization over cores in each node
— Application domain specific libraries on top of parallel HDF-5
« If the parallel HDF-5 is not enough capability,

— Design of extended API and the implementation data structure is
redesigned

* Deployment Issues
— Portable efficient implementation
— Tutorials for the application developers

2009/05/21

Research Topics: Layered Implementation for collaboration
I ——

Data Access Layer

— Parallel HDF and others API/ABI
_ Data Access
« Cache and Collective Layer Laver .
_ Apbroaches y API/ABI Parallel File
PP Cache System
* Memory-mapped parallel And —
file 110 Collective Communication
. Distributed Shared API/ABI
Communication

Memory

Communication Layer
— Accessing parallel file system
Parallel File System

2009/05/21

Collaboration Scenarios
e

1. Almost no collaboration
— Joint workshops are held
2. Loosely coupled collaboration
— Benchmarks are defined
3. Collaboration with Standardization
— Network protocol is defined
— Client-side API/ABI are defined
* New Parallel File 1/0O
 Highly abstracted Parallel File 1/0 in addition of HDF5 ?
4. Tightly Coupled collboration
— Developing the single File /O software stack

2009/05/21

Milestone

Benchmarks V1.0

development

Supercomputer Univ. of Tokyo ~ Kyoto Univ. Univ. of Univ. of Tokyo
centers@Japan Tsukuba

2009/05/21

IESP Exascale Challenge:

Co-design of Architectures and Algorithms

Al Geist (ORNL) and Sudip Dosanjh (SNL)

Historically, huge supercomputers were built and delivered with little or no software on them.
The application developers were left with heroic efforts to get there simulations to run efficiently
on these systems. In order to improve the effectiveness of peta and exascale systems we need to
have a paradigm shift where architectures and algorithms are co-designed.

There is a large gap between the peak performance of supercomputers and the actual
performance realized by today’s algorithms. This architecture-algorithm performance gap will
get even wider with the increase in computing power being driven by a rapid escalation in the
number of cores incorporated into a single chip rather than increases in clock rate. The transition
from massively parallel architectures to multi-core architectures will be as profound and
challenging as the change from vector architectures to massively parallel computers that
occurred in the early 1990’s that enabled our Nation and the U.S. Department of Energy to break
the teraflop barrier. To effectively bridge this architecture-algorithm gap and use the next
generation of computers, we must solve a host of architectural challenges in hardware and
software.

Hardware challenges:
* Moore’s Law still holds, but clock speed is constrained by power and cooling limits
* Processors are shifting to multi/many core with attendant hierarchical parallelism
* Compute nodes with hardware accelerators create the additional complexity of
heterogeneous architectures
* Processor cost is increasingly driven by pins and packaging, which means the memory
wall is growing in proportion to the number of cores on a processor socket
* Supercomputer architectures must be designed with an understanding of the applications
they are intended to run
* A supercomputer architecture that performs well on full scale real applications cannot be
built from only commodity components.
Software challenges:
* Scaling limitations of present algorithms
* Hierarchical algorithms to deal with bandwidth across the memory hierarchy
* Software strategies to mitigate high memory latencies
* More complex multi-physics requires large memory per node
* Need for automated fault tolerance, performance analysis, and verification
* Innovative algorithms for multi-core, heterogeneous nodes

Promoting the integrated co-design of architectures and algorithms represents a fundamental
shift from simply procuring and operating large scale systems. A key way to lower the risk of

o1-

adopting novel architectures and technologies is to demonstrate through paper studies, system
simulation, and hardware prototypes the performance benefit of these technologies. The vision is
that both the hardware designers and the software designers will compromise based on what the
other group can do in a given timeframe. The evolution of the architecture and algorithms then
becomes more aligned, which helps close the performance gap. Deploying small prototype
systems will facilitate application, algorithm and system software development, prove the
technology to industry, and lower the risk of adoption of advanced architectures. The metrics for
success will be measured through changes to product roadmaps, and integration or adoption of
co-designed technologies into next generation supercomputer systems.

IESP Exascale Challenge:

Resilience and Fault Tolerance
Al Geist (ORNL) and Franck Cappello (INRIA)

Research in the reliability and robustness of exascale systems for running large simulations is
critical to the effective use of these systems. New paradigms must be developed for handling
faults within both the system software and user applications. Hardware support may also be
investigated to reduce the fault tolerance overhead. Equally important are new approaches for
integrating detection algorithms in both the hardware and software and new techniques to help
simulations adapt or be indifferent to faults. One essential element toward these objectives is a
better understanding of HPC usage scenarios, applications needs, fundamental origin of the
algorithm sensibility to faults, and failures root causes.

What users want is resilience in the execution of their applications. They want to be able to
submit a long-running job and have it run to completion in a timely manner. However, because
of their scale and complexity, today’s supercomputers typically have faults somewhere in the
system every day and run for only a few days before the number of faults require rebooting.
While supercomputers can often reconfigure around faults, every fault kills the application
running on the affected resources. Historically these applications have to be restarted from the
beginning or from their last checkpoint, but the checkpoint/restart technique is already losing its
effectiveness on petascale systems and will not be viable on exascale systems because of the rate
of failures and time required to write out checkpoints. A new fault will occur before the
application could be restarted, causing the application to get stuck in a state of constantly being
restarted.

Exascale systems will have millions of processors in them and some projections say they will
have a billion threads of execution. The major challenge in resilience is that faults in extreme
scale systems will be continuous rather than an exceptional event. This requires a major shift
from today’s software infrastructure. Every layer of the exascale software ecosystem has to be
able to cope with frequent faults; otherwise applications will not be able to run to completion.
The system software must be designed to detect and adapt to frequent failure of hardware and
software components. With the potential that exascale systems will be having constant failures
somewhere across the system, application software isn’t going to be able to rely on current
checkpointing techniques to cope with faults. For exascale systems, new paradigms to tolerate
hardware and software faults will need to be developed and integrated into both existing and new
applications.

Silent errors are the imonster in the closeti for exascale systems. Silent errors are simply faults
that occur that never get detected. They can be transient as in the case when a bit or logic gate
gets flipped spontaneously. Transient flipping of bits happens continuously in the memory of the
largest systems in the world, but ECC memory automatically detects and corrects these faults.
Silent errors arise when any part of the memory is not ECC or data paths are not protected, or
when multiple memory faults cancel each other out preventing ECC from detecting the faults.
Silent errors are not limited to transient affects, for example, an undetected hardware failure is a
silent error. Often they are only discovered when the application running on this hardware: gives

the wrong answer, fails to complete, or completes much more slowly than usual. By then it is too
late for the application to recover. Silent errors are not limited to hardware faults. There have
been several cases where software or firmware code has had bugs in it that only manifest in rare
cases, for example, router-chip software that changes the bits in one message out of every billion.
The key characteristic of silent errors is that they are undetected; therefore, there is no
opportunity for an application to adapt or recover from the fault. If the rate of silent errors is too
high, then a user must worry that the results of his simulation are correct. This gets back to
resilience and correctness of their algorithms and application in the face of faults. Designing
mechanisms to tolerate silent errors depend on a better comprehension of these errors especially
when they hit the hardware. Very few results are available about the quantitative evaluation of
their likelihood at large scale during the application executions.

Exascale systems will need to have much more hardware fault detection built into the
architecture and software fault detection built into the software stack in order to reduce the rate
of silent errors. Once detected, there is still much work to do, including coordination between
different layers of the software stack, deciding on a plan for recovery, reconfiguration,
adaptation, and recovery of the application.

When faults become continuous, there will be a critical need for fault oblivious algorithms, and
applications that can run-through faults. Very little is known today about how to create such
applications except for in the simplest cases that are nearly embarrassingly parallel. The
challenge does not rest just with the application developer, the system software also needs to be
completely rethought to allow it to cope with a continuous stream of faults and being in a
constant state reconfiguration of the system. Much research and paradigm shifts must occur.

In addition to progress in application, system and hardware, there is a need for experimental
environments being able to stress and compare different fault tolerance approaches and
techniques in a scientific way. Large scale testbeds are essential in the observation and
understanding of complex phenomena. Software environments capable of reproducing usage and
fault scenarios are also needed to test and debug new resilience concepts at large scale, before
putting them in production.

Consistent Application Performance at Exascale
William Kramer and David Skinner
June 21, 2009

This whitepaper sets out to examine the future of application performance consistency on
exascale parallel computing systems. By performance consistency we mean the regularity of
wall clock times to complete a fixed amount of application progress. In particular we do not
address consistency of results from applications. Correctness of results is an important topic
aswell and will be treated separately.

The design of high performance computers concentrates on increasing computational
performance for applications. Performance is often measured on an optimally configured,
dedicated or near dedicated system to show the best case in performance. In rea
environments, resources are seldom dedicated to a single task and systems run multiple tasks
that may negatively influence each other. It is this more complex production context that is
arguably more important in setting user expectations of application performance. Managers
of large HPC resources likewise depend on consistent delivery application performance in
production for allocation shared use of the resource by multiple science teams.

Large scale systems running in production mode are particularly prone to performance
fluctuation. By their nature they involve a large number of components servicing a varied
workload. Resource contention which results in performance degradation can be caused by
underprovisioned interconnects, topology mismatches, congestion aware messaging,
assignment of memory, systems software layers, system management event timing (daemons
running at particular times aka “system jitter”), bugs in configurations, software and
hardware and system management and configurations. Keeping al of these impediments in
check so that users observe consistent performance is challenging at the terascale and
petascale. It is therefore crucia that we consider how larger machines and larger applications
can be avoid the pitfalls encountered with today’ s machines.

What level of consistency is reasonable to expect for Exascale? Inconsistency of parallel
applications has implications for how much useful work can be produced by Exascale
systems. Performance inconsistency is caused by many factors but on well managed HPC
systems, the ssmple causes of inconsistency (multiple jobs running within a shared memory
processor, simple configuration mistakes, etc.) are not the primary causes of inconsistency.
Factors leading to changes in performance occur over multiple time scales and originate both
from within systems, within applications and from external sources. As aresult, variability in
runtime performance is strongly tied to the hardware and software architecture. On today’s
Terascale system, it has been shown that high degrees of consistency (CoV < 1%) are
regularly achievable for most workloads (Kramer W. T., 2008).

The performance impact of inconsistency can be quite large, becoming the dominant
impediment to parallel scaling in some cases. Consistency, or redly the lack of it, will play
an even larger role for the effectiveness of Exascale architectures unless proactive steps are
taken to address it. Inconsistency can result from a myriad of causes including the hardware
architecture, the.

Understanding the parallel scaling factors leading to performance inconsistency needs to be a
chief concern of the design and use Exascale systems. Since the majority of testing and
performance analysis is done on test systems much smaller than production machines, it is
common to encounter variability induced performance loss at scale that goes unseen on
smaller machines.

The variability of performance is as important as availability and mean time between failures
to usersto be able to accomplish their goals. For example, the user’ s productivity isimpacted
at least as much when performance varies by a factor of two, as when a system'’s availability
isonly ¥z of the expected time. In both cases, the amount of work done is only half of what is
expected of the system.

Multiple sources show inconsistency in runtimes leads to many negative impacts [(Figueira
and Berman 1966), (Worley and Levesque 2004), (Zhang, Sivasubramaniam, Moreira, &
Franke, 2001)] al of which make a HPC, and future Exascale systems have less value. The
first impact is less overal work done by the system. Runtime inconsistency is inherently bad
for performance since variations in runtime proceed upward from some best case runtime,
i.e., variation is seldom toward better than optimal performance. The longer a task takes, the
more time it takes to get usable results for analysis. Since some applications have a strict
order of processing steps (i.e. in climate studies, year 1 has to be simulated before year 2 can
start), they cannot directly overcome this slowdown via, say, increased paralelism.
Inconsistency can also introduce wider error margins for non-deterministic applications,
leading to more difficulty verifying results.

Inconsistency decreases the efficiency of HPC paralel computers since cycles are lost to
both job failure and complex job scheduling to mitigate the lack of consistency [(Srinivasan,
et a. 2002), (Lee, et al. 2004)]. Jobs fail through incorrect estimation of the batch queue
requirements. System scheduling becomes less effective because users must be overly
conservative in requesting batch time. Most scheduling software relies on user-provided run
estimates, or times assigned by default values, to schedule work effectively. When a cautious
user over estimates runtime, the job scheduler operates on poor information and results in
inefficient scheduling selections on systems. These all contribute to the loss of user
productivity and decreased system impact.

Consistency isinfluenced by a number of factors.

e System configuration and management errors and bugs (Kramer and Ryan 2003) — at
Exascale, with orders of magnitude more components, there will be increased likelihood
that such artifacts are introduced.

e Hardware architectura features — including the network topology, size of computational
nodes, hardware collective features (from vectors to distributed collectives), automated
error recovery and hardware consistency features (e.g. globa cocks). (Skinner and
Kramer October 6-8, 2005) At Exascale, the trade-offs of many more cores within an
SMP/node or a much broader network, will greatly influence the consistency of systems.

e Software architectura features — including message passing collectives, the OS foot print
(micro kernels, Light Weight OS, full OS), synchronization primitives, automated error
recovery and service provisioning. (Kramer and Ryan May 2003) The software layers,
being less integrated than HW design and having to be limited by hardware features by
prove the most challenging areato control inconsistency at the Exascale.

e Application Implementations — including in-effective use of resources, static workload
alocation, 1/0 and application specific check pointing. At the Exascale, in order to deal
with the system challenges of resiliency, parallelism and performance, applications will
have more responsibility for dynamic workload reassignment, adaptive behaviors (AMR)
and recovery. This will lead to even more challenges for consistency unless there are
well planned interactions between the system components and the applications.

e Resource Management — including scheduling applications that compete for resources,
prioritization, Quality of Service, and coordination of services. Often this type of
consistency challenge is the result of insufficient information for the scheduling agents
and insufficient methods for applications to express their needs. At the Exascale, power
management will increase the need for dynamic interactions competing different needs.
For example, the Exascale facility may wish to control power costs, or the system may do
power control automatically, without taking into account the consistency needs of the
applications.

The challenge is how to maintain this level of consistency at the Exascale. To date, once

inconsistency is identified, it is possible, abeit not always easy, to restore consistency by

making changes to parameters, fixing bugs and adjusting configurations and so on. It is not
clear this will be the case at Exascale unless consistency is a holistic design parameter. Key
issues for assuring consistency at the Exascale include

e Architectural and system design criteriathat reflects consistency requirements
e Testing for consistency at scale
o Wadll studied solutions and trade-offs for consistency
e Consistency metrics for Exascale systems
e Understanding system architectural influences that can be explicitly linked to
consistency
e Resource management that istoo narrowly defined
e |neffective methods to express performance and consistency needs up and down
the software hierarchy
In order for Exascale systems to exhibit the consistency that is required to make the
applications and systems productive, new understanding of the causes and solutions to
inconsistency are needed, along with new ways of measuring the impact of design,
implementation and operational choices have on consistency. In order for applications to
mitigate the effects that make systems inconsistent, new mechanisms for expressing
consistency requirement and applications reactions are also required.

Figueira, S. M., & Berman, F. (1966). Modeling the Effects of Contention on the Performance of
Heterogeneous Applications. Proceedings of the High Performance Distributed Computing (HPDC '96),
(p. 392).

Kramer, W. T. (2008). PERCU: A Holistic Method for Evaluating High Performance Computing Systems.
University of California at Berkeley, Department of Electrical Engineering and Computer Science.
Berkeley, CA: University of California.

Kramer, W., & Ryan, C. (May 2003). Performance Variability of Highly Parallel Architectures. Berkeley, CA:
Lawrence Berkeley National Laboratory.

Kramer, W., & Ryan, C. (2003). Performance Variability on Highly Parallel Architectures. International
Conference on Computational Science 2003. Melbourne Australia and St. Petersburg Russia.

Lee, C. B., Schwartzman, Y., Hardy, J,, & Snavely, A. (2004). Are user runtime estimates inherently
inaccurate? 10th Workshop on Job Scheduling Strategies for Parallel Processing. New York, NY.

Skinner, D., & Kramer, W. (October 6-8, 2005). Understanding the Causes of Performance Variability in HPC
Workloads. 2005 IEEE International Symposium on Workload Characterization (IISWC-2005). Austin,
TX.

Srinivasan, S., Kettimuthu, R., Subrarnani, V., & Sadayappan, P. (2002). Characterization of Backfilling
Strategies for Parallel Job Scheduling. nternational Conference on Parallel Processing Workshops
(ICPPW'02), (p. 514).

Ujfalussy, B., Wang, X., Zhang, X., Nicholson, D. M., Shelton, W. A., Stocks, G. M., et a. (November, 1998).
High performance first principles method for complex magnetic properties. Proceedings of the ACM/IEEE
SC98 Conference. Orlando, FL: IEEE Computer Society, Los Alamitos, CA 90720-1264.

Worley, P., & Levesgue, J. (2004). The Performance Evolution of the Parallel Ocean Program on the Cray X1.
Proceedings of the 46th Cray User Group Conference.

Zhang, Y ., Sivasubramaniam, A., Moreira, J., & Franke, H. (2001). Impact of Workload and System Parameters
on Next Generation Cluster Scheduling Mechanisms. IEEE Transactions on Parallel and Distributed
Systems , 12 (9), 967-985.

An Exascale Approach to Software and Hardware Design
William Kramer and David Skinner
June 21, 2009

The demands of Exascale require a complete rethinking of the software and hardware
development process that has become the ad hoc standard in HPC. For the past 10-15 years,
horizontal layers software and hardware design and development have been the de facto
standard of creating HPC software, in part due to the influences of funding methods, research
incentives, software methods, the Open Source movement and commercia outsourcing and
specialization. This Horizontal Design approach leads to the development of discrete
components in the SW stack and independent hardware components — all developed with
different methods, differing requirements and quality. Unlike past generations of system
software (from the earliest OSs through to the original community source movement with
Unix) and hardware, where some degree of top to bottom Vertical Design existed, the last
10-15 years have been dominated by plug and play componentization that are focused on
horizontal functionality and portability.

The horizontal design approach has notable successes like the Linux kernel, MPI and a
variety of job schedulers. It also has many challenges that are inhibiting progress and
making even Petascale systems challenging to fully exploit. As many who field Terascale
clusters know, every cluster is now unique with different horizontal components (often in
name, at least in version). Currently at the Tera and Petascale level there is only one
company that produces a system software stack which is vertically designed from top to
bottom and one other company that is providing a scaled, vertically tested stack that has
specificaly designed components added to the horizontal components.

To reach Petascale, the HPC community has mitigated many of the issues in the horizontal
design method such as relying on vendors to do vertical testing and integration, standing up
extra test bed resources for integration testing and error correction, taking excessive time
from the few large scale production systems to do integration, testing, diagnosis and
correction, or living with inefficient and error prone systems. The current horizontal design
method presents a number of insurmountable challenges to reach Exascale. Y et economics
and cost effectiveness will not let us return to the days of completely proprietary vertica
methods. Nor can one organization alone, be it government or private, afford to pioneer
Exascale and make it a success.

There is some hope! What is needed is to change the horizontal approach of developing
essentialy isolated SW components that have narrow view of their function and role in the
system. Instead, the community must organize the hardware and software development
activities with component cross cutting principles. The cross cutting principles define the
requirements, function, interfaces, integrations and performance needs for each horizontal
component. Instead of thinking of integration as the final step in defining and devel oping and
Exascale system, it will be the first step.

The cross cutting requirements for the vertical design approach were identified to first order
a the first IESP workshop. They include: Resilience (reliability & fault tolerance);

Performance; Programmability; Computational model; 1/0; Consistency and verification;
Resource Management; and Power Management/Total Cost of Ownership.

There are limited proofs of existence that has the hint the vertical design approach yields an
effective and long lived, yet flexible solution to this conundrum. Some examples include

e The DOE SciDAC program. SciDAC introduced the concept of software application
development teams and software infrastructure teams that are linked in an iterative
approach to developing applications that relay on increasing more effective software
infrastructure

e Scientific “framework” development for large scale experiments and long lasting
infrastructure. High Energy Physics regularly uses a formal process of vertical
architecture definition, software development and testing often incorporating
thousands of funded and unfunded contributors. The processes here are notable for
progressive demonstrations of integrated progress milestones (e.g. Data Challenges)
and timely delivery for equipment that is being co-devel oped.

e The methods used to produce community based SW such as the High Performance
Storage System which follows formal methods and shares development across
multiple organizations.

e Commercia OS development methods such as those that exist in IBM and Cray.

e Forma testing methods that are used in verification and validation of network
protocol change proposals.

One factor motivating a renewed emphasis on vertical integration is the dominance of
software failures as the causative factors in large scale system availability. Failure at scale of
system software such as filesystems, batch schedulers, and even authentication mechanisms
such as LDAP is a maor problem for HPC resource managers. In many cases vendors
leverage software which works well at smaller scales but place too much reliance on the
ability of the software to integrate seamlessly at al levels. Some studies indicate that on large
systems, across vendors and architectures, SW accounts for the maority of sytem wide
failures on HPC systems.

User experience can also suffer when insufficient attention is paid to end to end software
functionality. The usability of tools such as debuggers and performance profilers can
diminish significantly when they are used beyond the scale that software vendors are capable
of performing testing. Improving usability and thus the value of the HPC resource to science
can be improved by a more goal oriented vertical approach, one that builds in expectations of
usability at scale.

The vertical approach is not at odds with previous approaches to HPC software development.
A tightly coupled vertical design can still produce software which is of lateral use, however
attention to vertical integration diminishes risks of software failure encountered when relying
upon “off the shelf” generic software. Vertical integration does not replace these software
components but improves them for HPC.

In summary, Exascale will not be achievable without a tightly coupled vertical design, design
and integration process. The methods that got the HPC to early Petascale will not stretch to
Exascale. The vertical approach does not diminish community contributions, flexibility or
openness, but rather makes the investments people and organizations make more likely to
have impact.

	Meeting 1
	Presentations
	Improving HPC Software: Welcome
	e-Infrastructure in FP7: HPC related aspects
	International Exascale Software Program
	Development of an Over Petascale Computer in Japan
	Improving HPC Software: Overview
	Thou Shalt Specialize or Commoditize? The Japanese Situation Towards Peta and Exascale
	Technology and Architectures for Future Large-Scale Computing Systems
	Computational Science and HPC Software-Development in Europe
	Software Barriers for HPC
	Science Drivers, Current HPC Software Development, and Platform Deployment Plans for the USA

	Whitepapers
	Musings on the Path Forward to Exascale
	BSC Vision Towards Exascale
	Software Challenges of Extreme Scale Computing
	Software and Exascale Computing
	Application Analysis and Porting in the PRACE Project
	The Application Perspective - Seeking Productivity and Performance
	EDF White Paper
	The Biggest Need: A New Model of Computation
	NSF IESP Whitepaper
	A Proposal for a Capability Centers Consortium �
	Introduction
	Potential Activities
	Information Sharing
	Information Aggregation
	Collaborations
	Standardization

	Issues
	Funding
	Organization
	Technical Issues

	Inventory

	Slouching Towards Exascale
	A Collaboration and Commercialization Model for Exascale Software Research
	The Case for A Hierarchal System Model for Linux Clusters
	PDE-based applications and solvers at extreme scale
	Developing a high performance computing/numericalanalysis roadmap

	Meeting 2
	Performance at Exascale
	Resource Management
	Programmability Issues
	Models of Computation - Enabling Exascale
	Major Computer Science Challenges at Exascale
	Towards Exascale File I/O
	Co-design of Architecture and Algorithms
	Resilience and Fault Tolerance
	Consistent Application Performance at Exascale
	An Exascale Approach to Software and Hardware Design

