

FP7-ICT-2011-7 Integrated Project No. 287530

Dynamical Exascale Entry Platform DEEP

16 partners from 8 countries:
3 PRACE Hosting Members
5 industry partners

Start: 1st Dec 2011

Duration: 3 years

Budget: 18.5 M€ (8.03 M€ funded by EU)

DEEP Partners

Goals

- Design of an architecture leading towards Exascale
- Development of hardware:
 - Implementation of a Booster based on Intel MIC processors and EXTOLL interconnect
- Energy-aware integration of components:
 - Hot-water cooling
- Cluster-Booster Resource-Management System
- Programming environment, programming models
- Libraries and performance analysis tools
- Porting Applications

Application's Scalability

- Only few application capable to scale to O(300k) cores
 - Sparse matrix-vector codes
 - Highly regular communication patterns
 - Well suited for BG/P

- Complicated communication patterns
- Less capable to exploit accelerators

- Highly scalable apps dominated by highly scalable kernels
- Less scalable apps dominated by less scalable kernels
 - But there might be highly scalable kernels, too!
 - How to improve their scalability?

Accelerated Cluster vs. Cluster of Accelerators

Cluster with Accelerators

- Each node has a classical host CPU
- Accompanied by one or more Accelerators
- Communication typically via main memory
- PCle bus turns out to be a bottleneck

Cluster of Accelerators

- Node consists of Accelerator directly connected to network
- Impossible with (most) current accelerators
 - Accelerator requires host-CPU to boot
 - Unable to directly talk to the network
 - Accelerator not capable to run general purpose code (OS)

Proposed architecture

Keep flexibility due to IB between cluster-nodes and booster-nodes

Complex kernels to be offloaded expected to have regular communication patterns

Kernels relieve pressure on CPU to Acc. communication

Extoll

- Ultra low latency (<1 µsec)
- High bandwidth (32 Gbit/s)
- 3D-torus topology preferred
 - any topology possible
 - but very small atomic switches
 - currently just 8 ports
 - will require many layers
- Very scalable (currently limited to 64k due to addresses)
- But less flexible
 - many communication patterns might introduce congestion
 - latency depends heavily on distance
 - max. latency increased with diameter

IESP 7th Workshop - Cologne 2011

Intel MIC Architecture

- Knights Ferry Processor
 - 32 Core Server Chip
 - GDDR5 memory
 - Based on IA32 cores
 - In order architecture
 - 512 bit wide vector register
- Basically a SoC
- Knights Corner Processor
 - Next generation MIC
 - > 50 Cores
 - 22 nm process

Booster node internal structure

- Booster nodes based on KNC
- Two nodes integrated on one physical PCB
- No extra CPU for bring-up, etc. (relocated to I/O node)
- PCIe root-complex to be integrated into Extoll NIC
- Each KNC shall be able to act autonomously
- Extoll communication to be initiated from within KNC

Software Architecture

- Basic strategy to port applications:
 - Highly scalable kernels offloaded to the Booster part
 - Less scalable kernels executed on the Cluster part

Pilot Scientific Applications:

- Brain simulation (EPFL)
- Space weather simulation (KULeuven)
- Climate simulation (CYI)
- Computational fluid engineering (CERFACS)
- High temperature superconductivity (CINECA)
- Seismic imaging (CGGVS)

DEEP position

