

European scalable and power efficient HPC platform based on low-power embedded technology

Alex Ramirez Barcelona Supercomputing Center Technical Coordinator

Project goal

- To develop an European exascale approach
- Based on embedded power-efficient technology

- Funded under FP7 Objective ICT-2011.9.13 Exa-scale computing, software and simulation
 - 3-year IP Project (October 2011 September 2014)
 - Total budget: 14.5 M€ (8.1 M€ EC contribution),
 - 1095 Person-Month

Project objectives

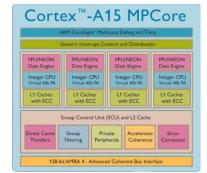
- Objective 1: To deploy a prototype HPC system based on currently available energy-efficient embedded technology
 - Scalable to 50 PFLOPS on 7 MWatt
 - Competitive with Green500 leaders in 2014
 - Deploy a full HPC system software stack
- Objective 2: To design a next-generation HPC system and new embedded technologies targeting HPC systems that would overcome most of the limitation encountered in the prototype system
 - Scalable to 200 PFLOPS on 10 MWatt
 - Competitive with Top500 leaders in 2017
- Objective 3: To port and optimise a small number of

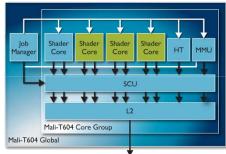
3 representative exascale applications capable of BLANC

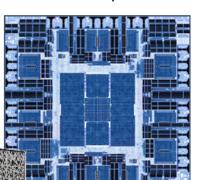
Power defines performance

- Prototype goal: 50 PFLOPS on 7 MWatt
 - 7 GFLOPS / Watt efficiency
- Required improvement on energy efficiency
 - 3.5x over BG/Q
 - 5x over ATI GPU systems
 - 7x over Nvidia GPU systems
 - 8.5x over SPARC64 multi-core
 - 9x over Cell systems

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	2097.19	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 2	40.95
2	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 1	38.80
3	1375.88	Nagasaki University	DEGIMA Cluster, Intel i5, ATI Radeon GPU, Infiniband QDR	34.24
4	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80
5	891.88	CINECA / SCS - SuperComputing Solution	iDataPlex DX360M3, Xeon 2.4, nVidia GPU, Infiniband	160.00
6	824.56	RIKEN Advanced Institute for Computational Science (AICS)	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	9898.56
Z	773.38	Forschungszentrum Juelich (FZJ)	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54

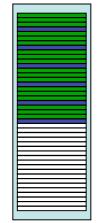

Challenges and Opportunities


- Challenges
 - Exploit massive number of low-power processors
 - Exploit compute accelerators
 - Sustain performance with lower bandwidth components
 - Interconnect
 - Memory
 - Programmability
- Why do we think we can make it?
 - Energy-efficient building blocks
 - Hybrid MPI+OmpSs programming model


Energy-efficient building blocks

- Integrated system design built from mobile / embedded components
- ARM multicore processors
 - Nvidia Tegra / Denver, Calxeda, Marvell Armada, ST-Ericsson Nova A9600, TI OMAP 5, ...
- Mobile accelerators
 - Mobile GPU
 - Nvidia GT 500M, ...
 - Embedded GPU
 - Nvidia Tegra, ARM Mali T604
- Low power 10 GbE switches
 - Gnodal GS 256
- Tier-0 system integration experience
 - BullX systems in the Top10

Tegra2 SoC: 2x ARM Corext-A9 Cores 2 GFLOPS 0.5 Watt



Tegra2 Q7 module: 1x Tegra2 SoC 2x ARM Corext-A9 Cores 1 GB DDR2 DRAM 2 GFLOPS ~4 Watt 1 GbE interconnect

1U Multi-board container:

1x Board container 8x Q7 carrier boards 8x Tegra2 SoC 16x ARM Corext-A9 Cores 8 GB DDR2 DRAM 16 GFLOPS ~35 Watt

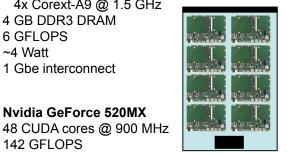
Rack: 32x Board container 10x 48-port 1GbE switches 256x Q7 carrier boards 256x Tegra2 SoC 512x ARM Corext-A9 Cores 256 GB DDR2 DRAM 512 GFLOPS ~1.7 Kwatt

300 MFLOPS / W

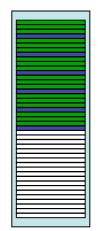
- First large-scale ARM cluster prototype
- Proof-of-concept to demonstrate HPC based on low-power components
 - Built entirely from COTS components
 - Mont-Blanc integrated design could improve substantially
- Enabler for early software development and tuning
 - Open-source system software stack
 - Application development and tuning to ARM platform

PRACE prototype @ BSC: ARM + mobile GPU

No. Contraction of the second second


Tegra3 Q7 module: 1x Tegra3 SoC 4x Corext-A9 @ 1.5 GHz 4 GB DDR3 DRAM 6 GFLOPS ~4 Watt 1 Gbe interconnect

Nvidia GeForce 520MX

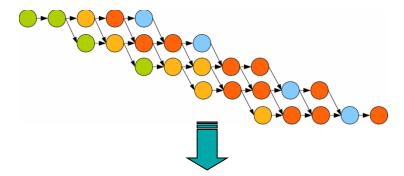

142 GFLOPS

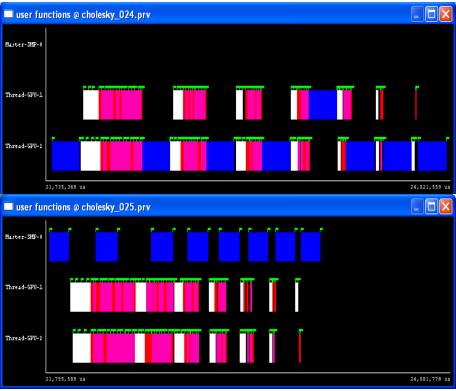
11.8 GELOPS / W

12 Watts

1U Multi-board container: 1x Board container 8x Q7 carrier boards 32x ARM Corext-A9 Cores 8x GT520MX GPU 32 GB DDR3 DRAM 1.2 TFLOPS ~140 Watt

Rack: 32x Board container 10x 48-port 1GbE switches 256x Q7 carrier boards 256x Tegra3 SoC 1024x ARM Corext-A9 Cores 256x GT520MX GPU **1TB DDR3 DRAM** 38 TFLOPS ~5 Kwatt


7.5 GFLOPS / W


- Increasing number of Top500 systems use GPU accelerators
- Validate the use of their energy efficient counterparts
 - ARM multicore processors
 - Mobile Nvidia GPU accelerators
- Perform scalability tests to high number of compute nodes
 - Higher core count required when using low-power processors
 - Evaluate impact of limited memory and bandwidth on low-end solutions

Hybrid MPI + OmpSs programming model

- Hide complexity from programmer
- Runtime system maps task graph to architecture
 - Many-core + accelerator exploitation
 - Asynchronous communication
 - Overlap communication + computation
 - Asynchronous data transfers
 - Overlap data transfer + computation
 - Strong scaling
 - Sustain performance with lower memory size per core
 - Locality management
 - Optimize data movement

System software porting + tuning

- Linux OS
- Filesystem
 - NFS, Lustre
- Parallel programming model + Runtime libraries
 - OmpSs, OpenMP, MPI, OpenCL
- Scientific libraries
 - ATLAS, FFTW, HDF5, LAPACK, MAGMA, ...
- Performance tools
 - Hardware performance counters
 - EXTRAE, PARAVER, SCALASCA
- Cluster management
 - Slurm, Ganglia

Target Mont-Blanc applications

- Real applications currently running in PRACE Tier-0 systems or National HPC facilities
 - YALES2
 - EUTERPE
 - SPECFEM3D
 - MP2C
 - BigDFT
 - QuantumESPRESSO
 - PEPC
 - SMMP
 - ProFASI
 - COSMO
 - BQCD

Fluid Dynamics Fluid dynamics

- Seismic wave propagation
- Multi-particle collisions
- Electronic structure
- Electronic structure
- Coulomb + gravitational forces
- Protein folding
- Protein folding
- Meteorological modeling
- Quantum ChromoDynamics

Project results

- Prototype HPC system based on European embedded processors
 - Demonstrate potential of embedded technology for HPC
 - Target maximum power efficiency
 - Limited by currently available technology
- Design of a next-generation system
 - Full scale system paving the way towards Exascale computing
 - Proposal and definition of the required technologies to achieve it
- Open source system software stack
 - Operating system, runtime libraries, scientific libraries, performance tools
- Up to 11 full-scale scientific applications
 - Capable of exploiting the benefits of this new class of HPC architectures

