
Anshu Dubey
IESP Workshop, San Francisco

April 2011

Director : Don Lamb
Associate Directors : Rajeev Thakur and Anshu Dubey

Argonne National Laboratory
University of Chicago

Flash High-Energy Density Physics
Co-Design Center

Flash HEDP Co-Design Center Goals

  Enable modeling and simulation of
HEDP experiments on exascale
computers
  Allow scientists to address physical

regimes and phenomena currently
infeasible in the laboratory

  Through a rigorously
defined co-design
structure and process,
the Center will apply
domain research to
identify and tune
interdependencies among
the hardware, applied
mathematics, and
computer science, and
the application

  Incorporate insights from
co-design into FLASH to
ensure that it is a highly
capable exascale code for
the academic HEDP
community

Year 1 Year 2 Year 3 Year 4

HPC System Timeline

Concept phase:
Blue Sky design
discussion, R&D,
technology assessment

Design phase:
Packaging, chip
layout, detailed
design

Implementation /
Bring-up phase:
Integrate, test, revise,
test at scale

Concept system software
Simulations for evaluation

 System software, Simulations for
V&V, Compilers and Libraries

Co-Design at
hardware level

Some Co-Design possible
at hardware level, more at
system software level

Only useful in
diagnostics

Window of opportunity for Hardware Changes Closes here…

Co-Design
Interaction

Team

Code Team
Hydro/MHD Mesh Radiation

CoDEx/
CODES

Simulators

Vendor
Simulators

Exascale Software and
Reduced Apps

 Math
Solvers

 V&V

Verification

Experimental
validation

Algorithms

Compact
Apps/

Kernels

Programming
Models

System
Software

Data Analysis
And Viz

CS Team

Platforms

Vendor
Parti-

cipation

Flash Co-design Interaction

Internally, the
Center needs well-
coordinated
requirements,
known for the near
term, experimental
for the long term

Vendors will
want details
on which to
build their
plans

In active design
phases,
frequent and
regular
meetings with
vendors for
working groups

 Applications/Applied Math
Models and Algorithms,
Infrastructure

Programming Models :
Data structures, macro/micro
Parallelism access patterns

System Software :
Operating System, I/O
Runtime environment

Hardware :
Cores, accelerators, memory
Communication networks K
er

ne
ls

 in
te

ra
ct

 d
ire

ct
ly

 w
ith

 h
ar

dw
ar

e

 N
ex

t l
ev

el
 w

or
kl

oa
d

in
cl

ud
es

 p
ro

gr
am

m
in

g

m
od

el
s

in
 th

e
in

te
ra

ct
io

n

 C

om
pa

ct
 a

pp
s

 h
av

e
re

pr
es

en
ta

tiv
e

 w
or

kl
oa

d
fo

r w
ho

le
 s

ec
tio

ns
 o

f

 a
pp

lic
at

io
n

w
ith

 ru
nt

im
e

en
vi

ro
nm

en
t

Integration

Designated group for managing representative
workload in the Co-Design Interaction Team

  Identify code components in the critical path
  Infrastructure: meta-data and load balancing
  Physics : memory intensive vs. computation intensive

  Identify code components that exercise co-design
  IO, AMR, analysis

Maintain a well documented repository of kernels,
reduced and compact apps

  Available to vendor partners, exascale projects, and
 other collaborators
  Regularly updated based on feedback

Repository of Representative Workload

Examples of Vendor Interaction

  Flash an Early Science project
for IBM BG/Q Mira
  An official acceptance test

  Details under NDA, but one
person working with IBM

  NVIDIA’s HPC initiative has
licensed FLASH for co-design
  Multiphysics and multiscale

  Understand relatively easy
changes they might make to
CUDA GPU architecture that
would allow FLASH to be more
easily ported to it	

  Because of regression testing,
we understand representative
workload

  Unit tests become reduced
apps; comparison tests are
compact/mini apps

  These can be easily adapted for
vendor use (IBM already has
the needed set; we are
preparing one for NVIDIA)

Suitably stripped and
documented code release
licensed by vendors

Inter-node Challenges

 Challenges

  Parallel IO
  Analysis memory snapshot

a large fraction of total system
memory

  Higher degree of macro
parallelism
  Load balance
  Meta-data handling

  Higher fidelity physics
dictates greater coupling
  Implicit/semi-implicit treatment

Co-Design Opportunities

  Different approach through
data staging
  Critical vs. non-critical data
  Combine with in situ analysis

  New parallel algorithms
  Trade-off between duplication

and communication
  Possibly more hierarchy

  Investigate different class of
numerical algorithms
  Less deterministic

Intra-Node and Resiliency Challenges

Challenges
Intra-Node
  Memory intensive

computations
  Increasing limits on available

memory per process
  Bigger working sets

Faults
  Frequent failures
  Silent errors

Co-Design Opportunities

  Aggressive reuse of memory
  Distinguish between cores
  New algorithms
  Programming model

  Stochastic algorithms
  Redundancy

Code Maintenance and Co-Design

 Code verification and regression testing
 Expect more non-determinism and async execution models

to get performance and scalability
 But to do regression testing without reproducibility?
 Will study approaches to selectable determinism

 Changes to compiler or runtime?
 Changes in algorithm formulation, atomization

 Timely incorporation of science advances into the
co-design (prevent obsolescence of code modules)
 Compact apps are living documents
 Testing of new algorithms / implementation coming about

because of new knowledge/insights

Co-Design Needs from Application

  Greater encapsulation
  Minimize common data
  Maximize code sections that are

re-entrant
  Increase isolation between layers
  Separate code functionalities

such that different optimizations
are applicable to different layers

  Minimize kernel dependency
on programming models

  Expose optimization and
fault tolerance possibilities
  Be clearer about dependencies
  Identify critical sections Vs the

non critical sections
  Define more compact working

sets

  Explore more inherently
robust alternative algorithms
  Stochastic Vs deterministic

Co-Design Needs from Hardware and Software

During Co-Design
 Ability to express and implement ideas from the last

slide
 Framework for testing ideas and experimentation
 Ability to realistically assess impact on algorithm and

model choices
 Ability to evaluate direct influence of architecture

decisions
 Metrics for performance evaluation

 Deterministic performance engineering parameters

 Fault notification and recovery models
 Tuning parameters

At Exascale
 Measurable and predictable performance
 Reliable results within quantified limits
 Retain code portability and performance

 Standardized interfaces for common functionalities
 Libraries and middleware
 Auto-tuning or code to code translation

 Memory management
 Memory bound application

  IO management
 Large volumes of analysis data
 Currently one snapshot roughly 1/10th of memory footprint
 Analysis a judicious combination of in-situ and post processing

Co-Design Needs from Hardware and Software

