Economic and management challenges and needs of computational resource providers and industry partners

Chair: Dan Reed (Microsoft Research)

Secretary: Jean-François Lavignon (Bull)

Background and Overview

- Experiences and challenges
 - Insights from vendor and center experience
- Technology implications
 - Evolution/revolution
- Industry-community coordination
 - Crosscutting and complementary efforts
- Collaboration scenarios
 - Precompetitive and competitive
 - Economic and political feasibility

Petascale Lessons for Exascale

- Programs
- Process
- Mechanisms
- Outcomes

- Good
- Bad
- Ugly

Would we do it the same way again?

We Applied The Fundamental Axiom of Computing ...

- ... All problems can be solved via another level of indirection
- Which is to say, we discussed how to collaborate and how to create roadmaps

Preliminary Outbrief

Discussion focus

- Metrics define outcomes (choose wisely)
- Collaboration models and horizons
 - N × X != X × N
- Regional differences identified
 - U.S., Europe (e.g., PRACE), Japan
- Strong interest in international collaboration

High level issues

- Pre-competitive partnerships desired
 - Horizon should be 5+ years if involving provider competitors
 - Procurement winner(s) known early
- Co-development implications
 - Shared risk, funding and outcomes
- Vendor types/sizes have different constraints
 - · Risk, time horizon, funding fungibility

Background

Exemplar Technical Issues Affecting Software

- Parallelism scale
- Component heterogeneity
- Communication
 - bandwidth/latency
- Memory models
- Storage system structure
- Component reliability
- Energy management
- Design options
 - Evolutionary
 - Revolutionary

- Baseline identification
 - Strengths/weaknesses
 - Available resources
- DARPA architecture reference
 - Evolutionary strawmen
 - "Heavyweight" strawman"
 - Commodity-derived microprocessors
 - "Lightweight" strawman"
 - Custom microprocessors
 - Aggressive strawman
 - "Clean Sheet of Paper" silicon

Interaction Modalities and Motivations

- Commercial provider issues
 - Profit
 - Differentiation
 - Market share and sweet spots
 - Customer loyalty
 - Interoperability
 - Continuity/sustainability
- Type-specific issues
 - ISVs, software, hardware, integrators
- Commercial and open source software

Hypothesis: Timelines and Processes Really Matter

- Procurement-driven research and development
 - Rewards incrementalism and product evolution
 - Punishes revolutionary innovation
 - But, it is our historical model
- Short timelines reduce collaboration
 - Create vendor competitive pressures
 - Lessen information sharing
- Competitive advantage and compatibility
 - Differentiation and interoperability
- Implications
 - Define strategic, not tactical roadmaps
 - Enable pre-competitive industry collaborations

Collaboration Scenarios

- Tightly coupled collaboration
 - International governance and funding structure
 - Multi-company development teams
- Collaboration with standardization
 - Definition of standards, test suites, and benchmarks
- Loosely coupled collaboration
 - Focused workshops on software activities
 - Comparison of technical milestones
- Little collaboration
 - Periodic workshops, status reports of regions
 - Voluntary and ad hoc usage of project products

Vendor Exascale Software Roadmap

The roadmap should

- Specify ways to re-invigorate the international computational science software community
- Include computational science software activities across industry, government & academia
- Be created and maintained via an open process that involves broad input
- Identify quantitative and measurable milestones and timelines
- Be evaluated and revised as needed at prescribed intervals
- Specify opportunities for cross-fertilization of activities, successes and challenges
- Agency strategies for computational science
 - Shaped in response to the roadmap
- Strategic plans
 - Recognize and address roadmap priorities and funding requirements.

Roadmap/Milestone

	2009	2010	2011	2012	2013	2014	2015	2016
Software/ Language Issues								
Sustainability								
Collaborative workshops								
Coordinated research								
Educational activities								
Standards activities								
Priorities								
Staffing								

- Coordination mechanisms
- Research and development topics