
The International Exascale Software
Project Roadmap1

Jack	 Dongarra,	 Pete	 Beckman,	 Terry	 Moore,	 Patrick	 Aerts,	 Giovanni	 Aloisio,	 Jean-‐Claude	
Andre,	 David	 Barkai,	 Jean-‐Yves	 Berthou,	 Taisuke	 Boku,	 Bertrand	 Braunschweig,	 Franck	
Cappello,	 Barbara	 Chapman,	 Xuebin	 Chi,	 Alok	 Choudhary,	 Sudip	 Dosanjh,	 Thom	 Dunning,	
Sandro	 Fiore,	 Al	 Geist,	 Bill	 Gropp,	 Robert	 Harrison,	 Mark	 Hereld,	 Michael	 Heroux,	 Adolfy	
Hoisie,	 Koh	 Hotta,	 Yutaka	 Ishikawa,	 Zhong	 Jin,	 Fred	 Johnson,	 Sanjay	 Kale,	 Richard	 Kenway,	
David	 Keyes,	 Bill	 Kramer,	 Jesus	 Labarta,	 Alain	 Lichnewsky,	 Thomas	 Lippert,	 Bob	 Lucas,	 Barney	
Maccabe,	 Satoshi	 Matsuoka,	 Paul	 Messina,	 Peter	 Michielse,	 Bernd	 Mohr,	 Matthias	 Mueller,	
Wolfgang	 Nagel,	 Hiroshi	 Nakashima,	 Michael	 E.	 Papka,	 Dan	 Reed,	 Mitsuhisa	 Sato,	 Ed	 Seidel,	
John	 Shalf,	 David	 Skinner,	 Marc	 Snir,	 Thomas	 Sterling,	 Rick	 Stevens,	 Fred	 Streitz,	 Bob	 Sugar,	
Shinji	 Sumimoto,	 William	 Tang,	 John	 Taylor,	 Rajeev	 Thakur,	 Anne	 Trefethen,	 Mateo	 Valero,	
Aad	 van	 der	 Steen,	 Jeffrey	 Vetter,	 Peg	 Williams,	 Robert	 Wisniewski,	 and	 Kathy	 Yelick	
	
Abstract	
Over the last twenty years, the open source community has provided more and more software on which
the world’s High Performance Computing (HPC) systems depend for performance and productivity. The
community has invested millions of dollars and years of effort to build key components. But although the
investments in these separate software elements have been tremendously valuable, a great deal of
productivity has also been lost because of the lack of planning, coordination, and key integration of
technologies necessary to make them work together smoothly and efficiently, both within individual
PetaScale systems and between different systems. It seems clear that this completely uncoordinated
development model will not provide the software needed to support the unprecedented parallelism
required for peta/exascale computation on millions of cores, or the flexibility required to exploit new
hardware models and features, such as transactional memory, speculative execution, and GPUs. This
report describes the work of the community to prepare for the challenges of exascale computing,
ultimately combing their efforts in a coordinated International Exascale Software Project.
	

Keywords
High Performance Computing, Software Stack, Exascale computing

1 The International Exascale Software Project was organized by and has received ongoing support from a variety of
national agencies: In the United states, the Department of Energy Office of Advance Scientific Computing Research
(DOE-ASCR) and the National Science Foundation Office of CyberInfrastructure (NSF-OCI); In France, the
Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique (CERFACS), Agence nationale de la recherche (ANR), INRIA and
Teratec; In the United Kingdom, Engineering and Physical Sciences Research Council (EPSRC); In Japan, The
University of Tsukuba, RIKEN, Kyoto University, Tokyo University and the Tokyo Institute of Technology.
Corporations contributing to the staging of different IESP meetings have included Cray, EDF/EESI, IBM, Intel,
Fujitsu Ltd., and NVIDIA.

 ii

Table of Contents
1.	 Introduction .. 1	
2.	 Destination of the IESP Roadmap .. 3	

3.	 Technology Trends and Their Impact on Exascale 3	
3.1	 Technology Trends ... 4	
3.2	 Science Trends ... 6	
3.3	 Key Requirements Imposed by Trends on the X-Stack 7	
3.4	 Relevant Politico-Economic Trends ... 8	

4.	 Formulating Paths Forward for X-Stack Component Technologies 9	
4.1	 System Software .. 9	

4.1.1	 Operating Systems ... 9	
4.1.2	 Runtime Systems ... 11	
4.1.3	 I/O Systems .. 15	
4.1.4	 Systems Management ... 18	
4.1.5	 External Environments .. 22	

4.2	 Development Environments .. 26	
4.2.1	 Programming Models .. 26	
4.2.2	 Frameworks .. 28	
4.2.3	 Compilers .. 31	
4.2.4	 Numerical Libraries ... 33	
4.2.5	 Debugging .. 35	

4.3	 Applications ... 37	
4.3.1	 Application Element: Algorithms ... 37	
4.3.2	 Application Support: Data Analysis and Visualization 40	
4.3.3	 Application Support: Scientific Data Management 43	

4.4	 Cross-Cutting Dimensions .. 46	
4.4.1	 Resilience .. 46	
4.4.2	 Power Management .. 48	
4.4.3	 Performance Optimization ... 52	
4.4.4	 Programmability ... 54	

4.5	 Summary of X-Stack Priorities .. 57	

5.	 Application Perspectives and Co-Design Vehicles 61	
5.1	 From Here to Exascale: An Application Community View 62	
5.2	 IESP Application Co-Design Vehicles .. 63	
5.3	 Initial Considerations for CDV Analysis .. 64	
5.4	 Representative CDVs .. 65	

5.4.1	 High Energy Physics/QCD .. 65	
5.4.2	 Plasma Physics/Fusion Energy Sciences ... 66	
5.4.3	 Strategic Development of IESP CDVs .. 68	

5.5	 Matrix of Applications and Software Components Needs 68	

6.	 Perspectives on Cooperation between IESP and HPC Vendor
Communities .. 70	

6.1	 Challenging Issues for Vendor/Community Cooperation 71	
6.2	 Taxonomy of Development/Support Models 72	

 iii

6.3	 Requirements and Methods .. 73	
6.4	 Software Testing .. 76	
6.5	 Recommendations .. 76	

7.	 IESP Organization and Governance ... 77	
7.1	 Importance of a Business Case ... 77	
7.2	 Application of Current Funding Mechanisms 78	
7.3	 Governance Model .. 78	
7.4	 Vendor Interaction ... 78	
7.5	 Timeline ... 79	

8.	 Bibliography .. 81	

1. Introduction
The technology roadmap presented here is the result of more than a year of coordinated effort within the
global software community for high-end scientific computing. It is the product of a set of first steps taken
to address a critical challenge that now confronts modern science and is produced by a convergence of
three factors: (1) the compelling science case to be made, in both fields of deep intellectual interest and
fields of vital importance to humanity, for increasing usable computing power by orders of magnitude as
quickly as possible; (2) the clear and widely recognized inadequacy of the current high end software
infrastructure, in all its component areas, for supporting this essential escalation; and (3) the near
complete lack of planning and coordination in the global scientific software community in overcoming
the formidable obstacles that stand in the way of replacing it. At the beginning of 2009, a large group of
collaborators from this worldwide community initiated the International Exascale Software Project
(IESP) to carry out the planning and the organization building necessary to solve this vitally important
problem.

With seed funding from key government partners in the United States, European Union and Japan, as well
as supplemental contributions from some industry stakeholders, we formed the IESP around the following
mission:

The guiding purpose of the IESP is to empower ultra-high resolution and data-intensive
science and engineering research through the year 2020 by developing a plan for (1) a
common, high-quality computational environment for petascale/exascale systems and (2)
catalyzing, coordinating, and sustaining the effort of the international open source
software community to create that environment as quickly as possible.

There exist good reasons to think that such a plan is urgently needed. First and foremost, the magnitude of
the technical challenges for software infrastructure that the novel architectures and extreme scale of
emerging systems bring with them is daunting [13, 16]. These problems, which are already appearing on
the leadership-class systems of the US National Science Foundation (NSF) and Department of Energy
(DOE), as well as on systems in Europe and Asia, are more than sufficient to require the wholesale
redesign and replacement of the operating systems, programming models, libraries, and tools on which
high-end computing necessarily depends.

Second, the complex web of interdependencies and side effects that exist among such software
components means that making sweeping changes to this infrastructure will require a high degree of
coordination and collaboration. Failure to identify critical holes or potential conflicts in the software
environment, to spot opportunities for beneficial integration, or to adequately specify component
requirements will tend to retard or disrupt everyone’s progress, wasting time that can ill afford to be lost.
Since creating a software environment adapted for extreme-scale systems (e.g., NSF’s Blue Waters) will
require the collective effort of a broad community, this community must have good mechanisms for
internal coordination.

Third, it seems clear that the scope of the effort must be truly international. In terms of its rationale,
scientists in nearly every field now depend on the software infrastructure of high-end computing to open
up new areas of inquiry (e.g., the very small, very large, very hazardous, very complex), to dramatically
increase their research productivity, and to amplify the social and economic impact of their work. It
serves global scientific communities who need to work together on problems of global significance and
leverage distributed resources in transnational configurations. In terms of feasibility, the dimensions of
the task—totally redesigning and recreating, in the period of just a few years, the massive software
foundation of computational science in order to meet the new realities of extreme-scale computing—are
simply too large for any one country, or small consortium of countries, to undertake on its own.

The IESP was formed to help achieve this goal. Beginning in April 2009, we held a series of three
international workshops, one each in the United States, Europe, and Asia, in order to work out a plan for

2

doing so. Information about, and the working products of all these meetings, can be found at the project
website, www.exascale.org. In developing a plan for producing a new software infrastructure capable of
supporting exascale applications, we charted a path that moves through the following sequence of
objectives:

1. Make a thorough assessment of needs, issues and strategies: A successful plan in this arena
requires a thorough assessment of the technology drivers for future peta/exascale systems and of
the short-term, medium-term, and long-term needs of applications that are expected to use them.
The IESP workshops brought together a strong and broad-based contingent of experts in all
areas of HPC software infrastructure, as well as representatives from application communities
and vendors, to provide these assessments. As described in more detail below, we also leveraged
the substantial number of reports and other material on future science applications and HPC
technology trends that different parts of the community have created in the past three years.

2. Develop a coordinated software roadmap: The results of the group’s analysis have been
incorporated into a draft of a coordinated roadmap intended to help guide the open source
scientific software infrastructure effort with better coordination and fewer missing components.
This document represents the current version of that roadmap.

3. Provide a framework for organizing the software research community: With a reasonably stable
and complete version of the roadmap in hand, we will endeavor to develop an organizational
framework to enable the international software research community to work together to navigate
the roadmap and reach the appointed destination—a common, high quality computational
environment that can support extreme-scale science on extreme-scale systems. The framework
will include elements such as initial working groups, outlines of a system of governance,
alternative models for shared software development with common code repositories, and
feasible schemes for selecting valuable software research and encouraging its translation into
usable, production-quality software for application developers. This organization must also
foster and help coordinate R&D efforts to address the emerging needs of users and application
communities.

4. Engage and coordinate with the vendor community in cross-cutting efforts: To leverage
resources and create a more capable software infrastructure for supporting exascale science, the
IESP is committed to engaging and coordinating with vendors across all of its other objectives.
Industry stakeholders have already made contributions to the workshops (i.e., objectives 1 and 2
above) and we expect similar, if not greater participation, in the effort to create a model for
cooperation as well as coordinated R&D programs for new exascale software technologies.

5. Encourage and facilitate collaboration in education and training: The magnitude of the changes
in programming models and software infrastructure and tools brought about by the transition to
peta/exascale architectures will produce tremendous challenges in the area of education and
training. As it develops its model of community cooperation, the IESP plan must, therefore, also
provide for cooperation in the production of education and training materials to be used in
curricula, at workshops and on-line.

This roadmap document, which focuses on objectives 1 and 2 above, represents the main result of the first
phase of the planning process. Although some work on tasks 3–5 has already begun, we plan to solicit,
and expect to receive in the near future, further input on the roadmap from a much broader set of
stakeholders in the computational science community. This version of the roadmap begins that process by
including more extensive input from the science application community, international funding agencies,
and vendor partners. The additional ideas and information we gather as the roadmap is disseminated are
likely to produce changes that need to be incorporated into future iterations of the document as plans for
objectives 3–5 develop and cooperative research and development efforts begin to take shape.

3

2. Destination of the IESP Roadmap
The metaphor of the roadmap is intended to capture the idea that we need a representation of the world,
drawn from our current vantage point, in order to better guide us from where we are now to the
destination we want to reach. Such a device is all the more necessary when a large collection of people,
not all of whom are starting from precisely the same place, need to make the journey. In formulating such
a map, agreeing on a reasonably clear idea of the destination is obviously an essential first step. Building
on the background knowledge that motivated the work of IESP participants, we define the goal that the
roadmap is intended to help our community reach as follows:

By developing and following the IESP roadmap, the international scientific software research
community seeks to create a common, open source software infrastructure for scientific computing
that enables leading-edge science and engineering groups to develop applications that exploit the
full power of the exascale computing platforms that will come on-line in the 2018–2020 timeframe.
We call this integrated collection of software the extreme-scale/exascale software stack, or X-stack.

Unpacking the elements of this goal statement in the context of the work performed so far by the IESP
reveals some of the characteristics that the X-stack must possess, at minimum:

§ The X-stack must enable suitably designed science applications to exploit the full resources of the
largest systems: The main goal of the X-stack is to support groundbreaking research on
tomorrow’s exascale computing platforms. By using these massive platforms and X-stack
infrastructure, scientists should be empowered to attack problems that are much larger and more
complex, make observations and predictions at much higher resolution, explore vastly larger data
sets, and reach solutions dramatically faster. To achieve this goal, the X-stack must enable
scientists to use the full power of exascale systems.

§ The X-stack must scale both up and down the platform development chain: Science today is done
on systems at a range of different scales, from departmental clusters to the world’s largest
supercomputers. Since leading research applications are developed and used at all levels of this
platform development chain, the X-stack must support them well at all these levels.

§ The X-stack must be highly modular, so as to enable alternative component contributions: The
X-stack is intended to provide a common software infrastructure on which the entire community
builds its science applications. For both practical and political reasons (e.g., sustainability, risk
mitigation), the design of the X-stack should strive for modularity that makes it possible for many
groups to contribute and accommodate more than one choice in each software area.

§ The X-stack must offer open source alternatives for all components in the X-stack: For both
technical and mission oriented reasons, the scientific software research community has long
played a significant role in the open source software movement. Continuing this important
tradition, the X-stack will offer open source alternatives for all of its components, even though it
is clear that exascale platforms from particular vendors may support, or even require, some
proprietary software components as well.

3. Technology Trends and Their Impact on Exascale
The design of the extreme-scale platforms that are expected to become available in 2018 will represent a
convergence of technological trends and the boundary conditions imposed by over half a century of
algorithm and application software development. Although the precise details of these new designs are
not yet known, it is clear that they will embody radical changes along a number of different dimensions as
compared to the architectures of today’s systems and that these changes will render obsolete the current
software infrastructure for large-scale scientific applications. The first step in developing a plan to ensure

4

that appropriate system software and applications are ready and available when these systems come on
line, so that leading edge research projects can actually use them, is to carefully review the underlying
technological trends that are expected to have such a transformative impact on computer architecture in
the next decade. These factors and trends, which we summarize in this section, provide essential context
for thinking about the looming challenges of tomorrow’s scientific software infrastructure; therefore,
describing them lays the foundation on which subsequent sections of this roadmap document builds.

3.1 Technology Trends
In developing a roadmap for the X-stack software infrastructure, the IESP has been able to draw on
several thoughtful and extensive studies of impacts of the current revolution in computer architecture [13,
15]. As these studies make clear, technology trends over the next decade – broadly speaking, increases of
1000X in capability over today’s most massive computing systems, in multiple dimensions, as well as
increases of similar scale in data volumes – will force a disruptive change in the form, function, and
interoperability of future software infrastructure components and the system architectures incorporating
them. The momentous nature of these changes can be illustrated for several critical system-level
parameters:

§ Concurrency– Moore’s law scaling in the number of transistors is expected to continue through
the end of the next decade, at which point the minimal VLSI geometries will be as small as five
nanometers. Unfortunately, the end of Dennard scaling means that clock rates are no longer
keeping pace, and may in fact be reduced in the next few years to reduce power consumption. As
a result, the exascale systems on which the X-stack will run will likely be composed of hundreds
of millions of arithmetic logic units (ALUs). Assuming there are multiple threads per ALU to
cover main-memory and networking latencies, applications may contain ten billion threads.

§ Reliability – System architecture will be complicated by the increasingly probabilistic nature of
transistor behavior due to reduced operating voltages, gate oxides, and channel widths/lengths
resulting in very small noise margins. Given that state-of-the-art chips contain billions of
transistors and the multiplicative nature of reliability laws, building resilient computing systems
out of such unreliable components will become an increasing challenge. This cannot be cost-
effectively addressed with pairing or TMR; rather, it must be addressed by X-stack software and
perhaps even scientific applications.

§ Power consumption – Twenty years ago, HPC systems consumed less than a megawatt. The Earth
Simulator was the first such system to exceed 10 MW. Exascale systems could consume over 100
MW, and few of today’s computing centers have either adequate infrastructure to deliver such
power or the budgets to pay for it. The HPC community may find itself measuring results in terms
of power consumed, rather than operations performed. The X-stack and the applications it hosts
must be conscious of this situation and act to minimize it.

Similarly dramatic examples could be produced for other key variables, such as storage capacity,
efficiency, and programmability.

More important, a close examination shows that changes in these parameters are interrelated and not
orthogonal. For example, scalability will be limited by efficiency, as are power and programmability.
Other cross correlations can be perceived through analysis. The DARPA Exascale Technology Study [13]
exposes power as the pacesetting parameter. Although an exact power consumption constraint value is not
yet well defined, with upper limits of today’s systems on the order of 5 megawatts, increases of an order
of magnitude in less than 10 years will extend beyond the practical energy demands of all but a few
strategic computing environments. A politico-economic pain threshold of 25 megawatts has been
suggested (by DARPA) as a working boundary. With dramatic changes to core architecture design,
system integration, and programming control over data movement, best estimates for CMOS-based

5

systems at the 11-nanometer feature size is a factor of 3 to 5 times this amount. One consequence is that
clock rates are unlikely to increase substantially in spite of the IBM Power architecture roadmap with
clock rates between 0.5 and 4.0 GHz a safe regime and a nominal value of 2.0 GHz appropriate, at least
for some logic modules. Among the controversial questions is how much instruction-level parallelism
(ILP) and speculative operation is likely to be incorporated on a per processor core basis and the role of
multithreading in subsuming more of the fine-grained control space. Data movement across the system,
through the memory hierarchy, and even for register-to-register operations will likely be the single
principal contributor to power consumption, with control adding to this appreciably. Since future systems
can ill afford the energy wasted by data movement that does not advance the target computation,
alternative ways of hiding latency will be required in order to guarantee, as much as possible, the utility of
every data transfer. Even taking into account the wastefulness of today’s conventional server-level
systems and the energy gains that careful engineering has delivered for systems such as Blue Gene/P, an
improvement on the order of 100X, at minimum, will still be required.

As a result of these and other observations, exascale system architecture characteristics are beginning to
emerge, though the details will become clear only as the systems themselves actually develop. Among the
critical aspects of future systems, available by the end of the next decade, which we can predict with some
confidence are the following:

§ Feature size of 22 to 11 nanometers, CMOS in 2018

§ Total average of 25 picojoules per floating point operation

§ Approximately 10 billion-way concurrency for simultaneous operation and latency hiding

§ 100 million to 1 billion cores

§ Clock rates of 1 to 2 GHz

§ Multithreaded, fine-grained concurrency of 10- to 100-way concurrency per core

§ Hundreds of cores per die (varies dramatically depending on core type and other factors)

§ Global address space without cache coherence; extensions to PGAS (e.g., AGAS)

§ 128-petabyte capacity mix of DRAM and nonvolatile memory (most expensive subsystem)

§ Explicitly managed high-speed buffer caches; part of deep memory hierarchy

§ Optical communications for distances > 10 centimeters, possibly intersocket

§ Optical bandwidth of 1 terabit per second

§ Systemwide latencies on the order of tens of thousands of cycles

§ Active power management to eliminate wasted energy by momentarily unused cores

§ Fault tolerance by means of graceful degradation and dynamically reconfigurable structures

§ Hardware-supported rapid thread context switching

§ Hardware-supported efficient message-to-thread conversion for message-driven computation

§ Hardware-supported, lightweight synchronization mechanisms

§ 3-D packaging of dies for stacks of 4 to 10 dies each including DRAM, cores, and networking

Because of the nature of the development of the underlying technology most of the predictions above
have an error margin of +/-50% or a factor of 2 independent of specific roadblocks that may prevent
reaching the predicted value.

6

3.2 Science Trends
A basic driver of the IESP is the fact that the complexity of advanced challenges in science and
engineering continues to outpace our ability to adequately address them through available computational
power. Many phenomena can be studied only through computational approaches; well-known examples
include simulating complex processes in climate and astrophysics. Increasingly, experiments and
observational systems are finding that not only are the data they generate exceeding petabytes and rapidly
heading toward exabytes, but the computational power needed to process the data is also expected to be in
exaflops range.

A number of reports and workshops have identified key science challenges and applications of societal
interest that require computing at exaflops levels and beyond [1-11, 14, 17]. Here we summarize some of
the significant findings on the scientific necessity of exascale computing; we focus primarily on the need
for the software environments needed to support the science activities. DOE held eight workshops in the
past year that identified science advances and important applications that will be enabled through the use
of exascale computing resources. The workshops covered the following topics: climate, high-energy
physics, nuclear physics, fusion energy sciences, nuclear energy, biology, materials science and
chemistry, and national nuclear security. The US National Academy of Sciences published the results of a
study in the report “The Potential Impact of High-End Capability Computing on Four Illustrative Fields
of Science and Engineering” [14]. The four fields were astrophysics, atmospheric sciences, evolutionary
biology, and chemical separations.

Likewise, NSF has embarked on a petascale computing program that has funded dozens of application
teams through its Peta-Apps and PRAC programs, across all areas of science and engineering, to develop
petascale applications, and is deploying petaflops systems, including Blue Waters, expected to come on-
line in 2011. It has commissioned a series of task forces to help plan for the transition from petaflops to
exaflops computing facilities, to support the software development necessary, and to understand the
specific science and engineering needs beyond petascale.

Similar activities are seen in Europe and Asia, all reaching similar conclusions: significant scientific and
engineering challenges in both simulation and data analysis already exceed petaflops and are rapidly
approaching exaflop-class computing needs. In Europe, the Partnership for Advanced Computing in
Europe (PRACE) involves twenty partner countries, supports access to world-class computers, and has
activities aimed at supporting multi-petaflops and eventually exaflops-scale systems for science. The
European Union (EU) is also planning to launch projects aimed at petascale and exascale computing and
simulation. Japan has a project to build a 10-petaflop system and has historically supported the
development of software for key applications such as climate. As a result, scientific and computing
communities, and the agencies that support them in many countries, have been meeting to plan joint
activities that will be needed to support these emerging science trends.

To give a specific and timely example, a recent report2 states that the characterization of abrupt climate
change will require sustained exascale computing in addition to new paradigms for climate change
modeling. The types of questions that could be tackled with exascale computing (and cannot be tackled
adequately without it) include the following:

§ ¨How do the carbon, methane, and nitrogen cycles interact with climate change?”

§ ¨How will local and regional water, ice, and clouds change with global warming?”

§ ¨How will the distribution of weather events, particularly extreme events, determine regional
climate change with global warming?”

2 Science Prospects and Benefits of Exascale Computing, ORNL/TM-2007/232, December 2007, page 9,
http://www.nccs.gov/wp-content/media/nccs_reports/Science%20Case%20_012808%20v3__final.pdf

7

§ ¨What are the future sea-level and ocean circulation changes? “

Among the findings of the astrophysics workshop and other studies are that exascale computing will
enable cosmology and astrophysics simulations aimed at the following:

§ Measuring the masses and interactions of dark matter

§ Understanding and calibrating supernovae as probes of dark energy

§ Determining the equation of state of dark energy

§ Measuring the masses and interactions of dark matter

§ Understanding the nature of gamma-ray bursts

Energy security. The search for a path forward in assuring sufficient energy supplies in the face of a
climate-constrained world faces a number of technical challenges, ranging from issues related to novel
energy technologies, to issues related to making existing energy technologies more (economically)
effective and safer, to issues related to the verification of international agreements regarding the emission
(and possible sequestration) of CO2 and other greenhouse gases. Among the science challenges are the
following:

§ Verification of “carbon treaty” compliance

§ Improvement in the safety, security, and economics of nuclear fission

§ Improvement in the efficiency of carbon-based electricity production and transportation

§ Improvement in the reliability and security in the (electric) grid

§ Nuclear fusion as a practical energy source

Computational research will also play an essential role in the development of new approaches to meeting
future energy requirements (e.g., wind, solar, biomass, hydrogen, and geothermal), which in many cases
will require exascale power.

Industrial applications, such as simulation-enhanced design and production of complex manufactured
systems and rapid virtual prototyping, will also be enabled by exascale computing. To characterize
materials deformation and failure in extreme conditions will require atomistic simulations on engineering
time scales that are out of reach with petascale systems.

A common theme in all of these studies of the important science and engineering applications that are
enabled by exaflops computing power is that they have complex structures and present programming
challenges beyond just scaling to many millions of processors. For example, many of these applications
involve multiple physical phenomena spanning many decades of spatial and temporal scale. As the ratio
of computing power to memory grows, the “weak scaling,” which has been exploited for most of the last
decade, will increasingly give way to “strong scaling,” which will make scientific applications
increasingly sensitive to overhead and noise generated by the X-stack. These applications are increasingly
constructed of components developed by computational scientists worldwide, and the X-stack must
support the integration and performance portability of such software.

3.3 Key Requirements Imposed by Trends on the X-Stack
The cited trends in technology and applications will impose severe constraints on the design of the X-
stack. Below are cross-cutting issues that will affect all aspects of system software and applications at
exascale.

§ Concurrency: A 1000x increase in concurrency for a single job will be necessary to achieve
exascale throughput. New programming models will be needed to enable application groups to

8

address concurrency in a more natural way. This capability will likely have to include “strong
scaling” because growth in the volume of main memory will not match that of the processors.
This in turn will require minimizing any X-stack overheads that might otherwise become a
critical Amdahl fraction.

§ Energy: Since much of the power in an exascale system will be expended moving data, both
locally between processors and memory as well as globally, the X-stack must provide
mechanisms and APIs for expressing and managing data locality. These will also help minimize
the latency of data accesses. APIs also should be developed to allow applications to suggest other
energy saving techniques, such as turning cores on and off dynamically, even though these
techniques could result in other problems, such as more faults/errors.

§ Resiliency: The VLSI devices from which exascale systems will be constructed will not be as
reliable as those used today. All software, and therefore all applications, will have to address
resiliency in a thorough way if they are to be expected to run at scale. Hence, the X-stack will
have to recognize and adapt to errors continuously, as well as provide the support necessary for
applications to do the same.

§ Heterogeneity: Heterogeneous systems offer the opportunity to exploit the extremely high
performance of niche market devices such as GPUs and game chips (e.g., STI Cell) while still
providing a general-purpose platform. An example of such a system today is Tokyo Tech’s
Tsubame, which incorporates AMD Opteron CPUs along with Clearspeed and Nvidia
accelerators. Simultaneously, large-scale scientific applications are also becoming more
heterogeneous, addressing multiscale problems spanning multiple disciplines.

§ I/O and Memory: Insufficient I/0 capability is a bottleneck today. Ongoing developments in
instrument construction and simulation design make it clear that data rates can be expected to
increase by several orders of magnitude over the next decade. The memory hierarchy will change
based on both new packaging capabilities and new technology. Local RAM and NVRAM will be
available either on or very close to the nodes. The change in memory hierarchy will affect
programming models and optimization.

3.4 Relevant Politico-Economic Trends
The HPC market is growing at approximately 11 percent per year. The largest-scale systems, those that
will support the first exascale computations at the end of the next decade, will be deployed by government
computing laboratories to support the quest for scientific discovery. These capability computations often
consume an entire HPC system and pose difficult challenges for concurrent programming, debugging and
performance optimization. Thus, publicly funded computational scientists will be the first users of the X-
stack and have a tremendous stake in seeing that suitable software exists, which is the raison d’être for
IESP.

In the late 1980s, the commercial engineering market place, spanning diverse fields such as computer
aided engineering and oil reservoir modeling, used the same computing platforms and often the same
software as the scientific community. This is far less the case today. The commercial workload tends to
be more capacity oriented, involving large ensembles of smaller computations. The extreme levels of
concurrency necessary for exascale computing suggests that this trend may not change, so it is not clear
how much demand for those features of the X-stack unique to exascale computing from commercial HPC
users. On the other hand, the HPC vendor community is eager to work with, and leverage the research and
development effort of, the IESP software community. To that end, plans for cooperation and coordination
between the IESP software and the HPC vendor community are being developed; we summarize the
current state of this discussion in Section 6.

9

4. Formulating Paths Forward for X-Stack Component
Technologies

In this section of the roadmap, the longest and most detailed, we undertake the difficult task of translating
the critical system requirements for the X-stack, presented in Section 3, into concrete recommendations
for research and development agendas for each of the software areas and necessary components of the X-
stack. The roadmapping template we used roughly follows the approach described in the excellent study
from Sandia National Laboratories by Garcia and Bray [12]. Accordingly, the discussion of each
component or area is divided into the following parts:

§ Technology and science drivers: The impacts of the critical technology trends and science
requirements must be described and analyzed for each software area and/or component of the X-
stack. These impacts represent technology and science drivers for each such area/component of
the X-stack, and each must be evaluated in terms of how well or poorly current technologies
address the target requirements and where the obstacles to progress lie.

§ Alternative R&D strategies: Once the technology and science drivers are identified and studied,
the different possible lines of attack on the problems and challenges involved, insofar as we can
see them today, need to be described and explored.

§ Research and development agenda recommendations: Alternative R&D strategies in each area
need to be evaluated and ranked, and actual plans, including specific milestones, must be drawn
up. Clearly these plans must take into account a variety of factors, many of which have been (or
should be) described elsewhere in the roadmap.

§ Cross-cutting Considerations: Many of the parts of the X-stack will have interdependencies and
cross-cutting effects related to other component areas; allusions to these effects are likely to be
laced or scattered through the previous three subsections. In many cases it will be desirable to
break out a summary of these considerations as a separate section in order to highlight gaps or to
ensure that activities are suitably coordinated. This version of the roadmap focuses on four such
cross-cutting areas: resiliency, power/total-cost-of-ownership, performance, and programmability.

4.1 System Software

The system software list is often described as that software that manages system resources on behalf of
the application but is usually transparent to the user. For the purposes of mapping the road to a viable X-
stack, we include under this heading the operating system, runtime system, I/O system, and essential
interfaces to the external environment (e.g., data repositories, real-time data streams, and clouds). Each of
these areas is treated in turn below.

4.1.1 Operating Systems

4.1.1.1 Technology Drivers for Operating Systems

Increasing importance of effective management of increasingly complex resources – Exascale systems
will increase the complexity of resources available in the system. Moreover, in order to attain the benefits
offered by an exascale system, effective management of these resources will be increasingly important.

As an example, consider the execution environment presented by an exascale system. Current systems
provide hundreds of thousands of nodes with a small number of homogeneous computational cores per
node. Exascale systems will increase the complexity of the computational resource in two dimensions.
First, the core count per node will increase substantially. Second, the cores most likely will be
heterogeneous (e.g., combining stream-based cores with traditional cores based on load/store). In addition

10

to increasing the complexity of the computational resources, the resources shared between the
computational resources (e.g., the memory bus) can have a far greater impact on performance.

Besides the changes in the resources provided by an exascale system, the programming models will
undergo an evolution. In particular, non-MPI programming models will undoubtedly have increasing
presence in exascale systems. The only trends clear at the present time are that there will be an increasing
emphasis on datacentric computations and that programming models will continue to emphasize the
management of distributed-memory resources. Given the evolution in programming models, we can also
expect that individual applications will incorporate multiple programming models. For example, a single
application may incorporate components that are based on MPI and other components that are based on
shared memory. The particular combination of programming models may be distributed over time
(different phases of the application) or space (some of the nodes run MPI; others run shared memory).

The purpose of an operating system is to provide a bridge between the physical resources provided by a
computing system and the runtime system needed to implement a programming model. Given the rapid
change in resources and programming models, a common operating system must be defined for the
exascale community. This will provide the exascale community with a common set of APIs that can be
used by a runtime system to support fully autonomic management of resources, including adaptive
management policies that identify and react to load imbalances and the intermittent loss of resources
(resilience). In order to achieve this goal, the APIs supported by the operating system must expose low-
level resource APIs, and the runtime must be aware of the context (within the application) of a specific
computation.

4.1.1.2 Alternative R&D Strategies for Operating Systems

Several approaches could be adopted in the development of a community operating system for exascale
systems. One approach is to evolve an existing OS, for example, Linux, Plan 9, or IBM’s Compute Node
Kernel. An alternative approach is to start with a new design to address the specific needs of exascale
systems. The first approach has the advantage that the APIs provided by the OS have already been
defined, and many runtime implementations have already been developed for the APIs. Moreover, these
operating systems also provide drivers for many of the devices that will be used in exascale systems (e.g.,
the PCI bus). However, because the APIs are based on the resources provided by previous systems (many
of these operating systems were defined nearly a half-century ago), they may not provide the appropriate
access to the resources provided by an exascale system. In the end, it is likely that a hybrid approach,
which builds on APIs and existing code bases and redesigns and modifies the most specialized
components, will prevail.

The operating system must maintain a high degree of flexibility. This flexibility can be accomplished
only by minimizing the resource management strategies that are required by the operating system.

4.1.1.3 Recommended Research Agenda for Operating Systems

The first step in the development of a common OS for the exascale community is to develop a framework
for the OS. This should be undertaken by a small collection of researchers who have significant
experience in implementing HPC operating systems.

One of the critical challenges in developing HPC operating systems is our inability to study the impact of
resource management decisions “at scale.” To remedy this problem, we will need to develop a full
system simulation capability. A number of efforts are addressing parts of the full-system simulation
capability; however, these efforts need to be coordinated to ensure that they provide the needed
capability.

The most critical APIs provided by the community OS will include APIs to support inter- and intranode
communication, inter- and intranode thread management, and explicit management of the memory

11

hierarchy provided by the entire system. APIs to support energy management and resilience will also be
critical. However, these APIs require more experience and, as such, their final definition should be
deferred until the final stages of this research activity.

The critical research areas in which substantial, if not groundbreaking, innovations will be required in
order to reach this goal are the following:

§ Fault tolerant/masking strategies for collective OS services

§ Strategies and mechanisms for power/energy management

§ Strategies for simulating full-scale systems

§ General strategies for global (collective) OS services

Timeframe Targets and Milestones – Operating Systems

2010-11
Community-defined framework for HPC operating systems that defines a set of core
components and coarse-grained APIs for accessing the resources provided by an HPC
system.

2012-13 Scalable, full-system simulation environment that can be used to evaluate resource
management mechanisms at scale.

2014-15 APIs for fine-grained management of internode communication, thread management,
and memory hierarchy management.

2016-17 APIs for fine-grained management of power (energy) and resilience.

2018-19
At least one runtime system that provides global, autonomic management of the
resources provided by an HPC system. This runtime system should provide for
transparent resilience in the presence of failing resources.

4.1.2 Runtime Systems

4.1.2.1 Technology and Science Drivers for Runtime Systems

The role of a runtime system is to act on behalf of the application in matching its algorithm’s
characteristics and requirements to the resources that the system makes available in order to optimize
performance and efficiency. By programming to the runtime system’s interface, application developers
are freed from the mundane but often difficult jobs of task scheduling, resource management, and other
low-level operations that would force them to think about the computer rather than the science they are
trying to do. As the description of the technology trends and science requirements above suggests, it will
be extremely challenging to create runtime systems that can continue to fulfill this role. The design of
tomorrow’s runtime systems will be driven not only by dramatic increases in overall system hierarchy and
high variability in the performance and availability of hardware components but also by the expected
diversity of application characteristics, the multiplicity of different types of devices, and the large
latencies caused by deep memory subsystems. Against this background, two general constraints on design
and operation of X-stack runtime systems need to be highlighted: power/energy constraints and
application development cost. The first constraint establishes the objective for X-stack runtimes as
maximizing the achieved ratio of performance to power/energy consumption, instead of raw performance
alone. The second constraint means that X-stack runtimes must focus on supporting the execution of the
same program at all levels of the platform development chain, which is in line with the basic criteria for
X-stack success (Section 2).

The runtime system is the part of the software infrastructure where actual and more accurate information
is available about system resources allocated to the application, its needs and potential performance; thus

12

this component has the potential to make better-informed decisions on behalf of the application. To
achieve this goal, however, and successfully insulate application programmers from the complexities of
extreme scale platforms, X-stack runtimes will have to incorporate much more intelligence than current
technologies support. The real challenge will be to use this added intelligence effectively in the limited
timeframe that is typically available while the application runs. Being in charge of the actual execution of
the program, the runtime system is also a key component for resilience. Being in charge of the actual
execution of the program, the runtime system is also a key component for resilience. For example, it
should detect and forecast problems, and provide basic mechanisms that enable the application to
"survive" faults and, subsequently, reallocate the potentially reduced set of resources so that performance
is still maximized.

4.1.2.2 Alternative R&D Strategies for Runtime Systems

Several directions can and should be tried in order to create X-stack runtimes that achieve the targeted
scale. The most obvious division of alternatives is in terms of degree of hierarchy, namely, a flat runtime
model (e.g., message passing) and a hierarchical model (e.g., shared memory within a node and message
passing across nodes). In the latter case, the runtime hierarchy can have the same underlying model at
different levels or use different models at different levels. Flat and hierarchical alternatives are not totally
opposed in direction, and a hybrid approach can certainly benefit from the flat approach pushing its
capabilities to the limits. Another set of alternatives to explore are general-purpose runtime systems, on
the one hand, and application type- or area-specific (or customizable) runtime systems, capable of more
effectively exploiting platform resources relative to special sets of needs, on the other.

4.1.2.3 Recommended Research Agenda for Runtime Systems

Challenging research topics include heterogeneity, asynchrony, reduction of process management and
synchronization overheads, provision of shared naming/addressing spaces, optimization of
communication infrastructure, scheduling for parallel efficiency and memory efficiency, memory
management, and application-specific customizability. These topics can be grouped into four priority
research directions:

§ Heterogeneity:

o Research challenge: X-stack runtime systems will have to work on several different
platforms, each of them heterogeneous, and this will certainly prove challenging. The
objective will be to optimize the application’s utilization of resources for best
power/performance by helping the application adapt to and exploit the level of granularity
supported by the underlying hardware.

o Anticipated research directions: Anticipated research includes unified/transparent accelerator
runtime models; exploitation of systems with heterogeneous (functionality/performance)
nodes and interconnects; scheduling for latency tolerance and bandwidth minimization; and
adaptive selection of granularity. This type of research is also expected to be useful for
homogeneous multicores.

o Impact: Research in this area broadens the portability of programs, decoupling the
specification of the computations from details of the underlying hardware, thereby allowing
programmers to focus more exclusively on their science.

§ Load balance:

o Research challenge: A key challenge is to adapt to the unavoidable variability in time and
space (processes/processors) of future applications and systems. This will have to be done
with the objective of optimizing resource utilization and execution time.

13

o Anticipated research directions: Directions include general-purpose, self-tuned runtimes that
detect imbalance and reallocate resources (e.g., cores, storage, DVFS, bandwidth) within or
across processes and other entities at the different levels; virtualization-based mechanisms to
support load balancing; minimization of the impact of temporary resource shortages, such as
those caused (at different granularity levels) by OS noise; and partial job preemptions.

o Impact: Research in this area will result in self-tuned runtimes that will counteract, at fine
granularity, unforeseen variability in application load and availability and performance of
resources, thus reducing the frequency at which more expensive application-level rebalancing
approaches will have to be used. Globally, this will significantly reduce the effort requested
of the programmers to achieve efficient resource utilization and ensure that the resources that
cannot be profitably used are returned to the system to be reallocated.

§ Flat runtimes:

o Research challenge: A major challenge is to increase the scalability of existing and proposed
models with respect to the resources required for their implementation and the overheads they
incur. This includes the need to optimize the utilization that is currently achieved of internal
resources such as adaptors and communication infrastructure. Also, typical practices today
where globally synchronizing calls (barriers, collectives) represent big limitations at large
scale will have to be addressed.

o Anticipated research directions: Research will be needed in optimization of resources and
infrastructure for implementing the runtime (e.g., memory used by message-passing libraries,
overheads for process management and synchronization) and increased usage of prediction
techniques to accelerate the runtime, or at least introduction of high levels of asynchrony and
communication/computation overlap (i.e., asynchronous MPI collectives, APGAS
approaches, data-flow task based approaches). Also needed will be hierarchical
implementations of flat models (e.g., thread based MPI, optimization of collective operations)
and adaptation of communication subsystems to application characteristics (routing, mapping,
RDMA, etc.)

o Impact: Research in this area will result in increased scalability of basic models. Techniques
developed here will also be beneficial for the hierarchical approach. Globally, this will extend
the lifespan of existing codes and will help absorb the shock that the transition to exascale
represents.

§ Hierarchical/hybrid runtimes:

o Research challenge: A key challenge is how to properly match the potentially different
semantics of the models at different levels as well as to ensure that the scheduling decisions
taken at each of them have positive synergy. This matching between models must also
consider the actual matching of the execution to the underlying hardware structure and ensure
efficient utilization of the resources for any target machine. One of the challenges that
motivates the hierarchical approach is constraining the size of the name/address spaces (i.e.,
ranks, amount of shared state) while still providing a fair level of concurrency and flexibility
within each level.

o Anticipated research directions: Anticipated research includes experimentation on different
hierarchical integrations of runtimes to support models, such as MPI+other threading or task
based models, threading models+accelerators, MPI+threading+accelerators, MPI+PGAS, and
hierarchical task-based models with very different task granularities at each level; techniques
to support encapsulation, modularity, and reuse; selection of appropriate number of entities

14

(processes/threads) at each level in the hierarchy and the mapping to actual hardware
resources; and automatic memory placement, association, and affinity scheduling.

o Impact: Research in this area will result in effectively matching the execution to the available
resources, enabling smooth migration paths from today’s flat codes.

Timeframe Targets and Milestones – Runtime Systems

2010-11

Asynchrony/overlap: Demonstrate for both flat and hierarchical models 3x scalability
for strong scaling situations where efficiency would otherwise be very low (i.e., 30%)
Why: Fighting variance is a lost battle: learn to live with it. Synchronous behavior is
extremely sensitive to variance and does not forgive communication delays.

2012-13

Heterogeneity: Demonstrate that the “same” code can be run on different
heterogeneous systems.
Locality-aware scheduling: demonstrate that automatic locality aware scheduling can
get a factor of 5x in highly NUMA memory architectures.
Why: By then, everybody will have experienced that rewriting the same application
for every new platform is not a viable alternative. Machines will have deep,
noncoherent memory hierarchies, and we have to demonstrate we know how to use
them.

2014-15

Optimizing runtime: general-purpose runtime automatically achieving load balance,
optimized network usage, and communication/computation overlap, minimization of
memory consumption at large scale, maximization of performance to power ratio,
malleability, and tolerance to performance noise/interference on heterogeneous
systems.
Why: Complexity of systems will require automatic tuning support to optimize the
utilization of resources, which will not be feasible by static, user-specified schedules
and partitionings.

2016-17

Fault-tolerant runtime: tolerating injection rates of 10 errors per hour (cooperating
with application provided information and recovery mechanisms for some errors).
Why: By then systems will have frequent failures, and it will be necessary to
anticipate and react to them in order that the application delivers useful results.

2018-19

Fully decoupling runtime: dynamically handling all types of resources such as cores,
bandwidth, logical and physical memory or storage (i.e., controlling replication of
data, coherency and consistency, changes in the layout as more appropriate for the
specific cores/accelerators).
Why: Underlying system complexity and application complexity will have to be
matched in a very dynamic environment.

4.1.2.4 Cross-Cutting Considerations

The runtime functionality interacts with all cross-cutting areas.

§ Power management: The runtime will be responsible for measuring the application performance
and deciding the appropriate setups (frequency and voltage, duty cycles, etc.) for the knobs that
the underlying hardware will provide.

§ Performance: The runtime will have to be instrumented to provide detailed information to
monitoring systems such that they can report appropriate measurements to upper levels of the

15

resource management infrastructure (i.e., job scheduler) or to the user. The runtime will also need
monitoring information about the performance of the computational activity of the application to
select the most appropriate resource for them or to choose the appropriate power mode.

o Resilience: The runtime will be responsible for implementing some fine-grained mechanisms
(i.e., reissue failed tasks, preserve state) as well as for deciding when to fire coarse-grained
mechanisms and the actual amount of state they should handle.

§ Programmability: The runtime will have to implement the features needed to support the various
programming models used on exascale systems.

Global coordination between levels (architecture, runtime, compiler, job schedulers, etc.) is needed.

4.1.3 I/O Systems

4.1.3.1 Technology and Science Drivers for I/O Systems

Technology and science drivers for I/O systems include architectural alternatives for I/O systems, the
underlying application requirements or purpose for doing I/O, I/O software stack, the expected
capabilities of the devices, and fault resiliency. The data management (discussed in detail in the Scientific
Data Management section), life cycle, and its future usage and availability also influence how I/O system
software should be designed. Given the current state of I/O and storage systems in petascale systems,
incremental solutions in most aspects are unlikely to provide the required capabilities in exascale systems.
I/O architectures, when designed as separate and independent components from the compute
infrastructure, have already been shown not to be scalable as needed. That is, traditionally I/O has been
considered as a separate activity that is performed before or after the main simulation or analysis
computation, or periodically for activities such as checkpointing, but still as separate overhead. This
mindset in designing architectures, software, and applications must change if the true potential of exascale
systems is to be exploited. I/O should be considered an integral activity to be optimized while architecting
the system and the underlying software. File systems, which have mainly been adapted from the legacy
(sequential) file systems with overly constraining semantics, are not scalable. Traditional interfaces in file
systems and storage systems, or even in some cases higher-level data libraries, are designed to handle the
worst-case scenarios for conflicts, synchronization, and coherence and mostly ignore the purpose of the
I/O by an application, which is an important source of information for scaling I/O performance when
millions of cores simultaneously access the I/O system. Emerging storage devices such as solid-state
disks or SCMs have the potential to significantly alter the I/O architectures, systems, performance, and
software system. These emerging technologies also have significant potential to optimize power
consumption. Resiliency of an application under failures in an exascale system will depend significantly
on the I/O systems—its capabilities, capacity, and performance—because saving the state of the system in
the form of checkpoints is likely to continue as one of the approaches.

4.1.3.2 Alternative R&D Strategies for I/O Systems

Many R&D strategies at different levels of the architecture and software stack can potentially address the
above technology drivers and for exascale systems. The metrics of I/O systems are performance, capacity,
scalability, adaptability of applications, programmability, fault resiliency, and support for end-to-end data
integrity.

1. Delegation and Customization within I/O Middleware: The best place for optimizing and scaling
I/O is the middleware within user space because that is where most semantic data distribution,
data usage, and access pattern information are available. The middleware is not only for the
single-user space; it also cooperates with other user file I/O activities on the machine so that
system-wide optimization can be performed. The concept of delegation within I/O middleware
entails the use of a small fraction of the system on which the middleware exists and runs within

16

the user space to perform I/O-related functions and optimizations on behalf of the applications.
Using the application requirements, it can perform intelligent and proactive caching, data
reorganization, optimizations, and smoothing of I/O accesses from burst to smooth patterns. This
approach can provide services to the application in such a way that the application can customize
the resources used based on its requirements. The delegation and customization approach also has
the opportunity to perform various functions on data while it is being produced or to preprocess
the data before it is consumed. The availability of multicore nodes provides the opportunity to use
one or more cores on each node, to perform I/O services, to use an exclusive set of select nodes,
and to provide a range of customization options including locality enhancements.

2. Active Storage and Online Analysis: The concept of active storage is based on the premise that
modern storage architectures might include usable processing resources at the storage nodes that
can be exploited for performing various important tasks including data analysis, organization, and
redistribution. This concept has significant potential to improve performance and knowledge
discovery by exploiting the significant processing power within the caching and delegate nodes or
within the storage system. The potential use of both significantly more memory and GPGPUs, as
well as FPGA types of accelerators for data reformatting, subsetting, analysis, and searching,
make it even more attractive. However, the potential for developing these should be explored
within the runtime middleware (e.g., MPI-IO or higher-level libraries) or at the file system layer.
These layers should be modified to provide appropriate interfaces to enable this capability. Online
analytics can potentially reduce the need to store certain types of data if all the necessary
information and knowledge from this data can be derived while it is available.

3. Purpose-driven I/O Software Layers: The traditional homogeneous I/O interfaces do not
explicitly exploit the purpose of an I/O operation. A checkpointing I/O activity is different from
an I/O activity, which stores data for future analysis using some other access pattern. An example
of the latter is the use of data in analyzing a subset of variables along a time axis. Optimizations
in the two activities may require different approaches by the software layers. The software layers
from file systems, middleware, and higher should be modified by incorporating these capabilities
and by exploiting the purpose of I/O.

4. Software Systems for Integration of Emerging Storage Devices: Emerging storage devices such
as solid-state devices and storage class memories (SCMs) offer significant potential to improve
performance, reduce power consumption, and improve caching; such devices can potentially
reduce or eliminate explicit I/O activities and traffic on traditional disks if they are transparently
incorporated within the I/O software layers. Research and development of newer I/O models and
different layers of software systems, including file systems and middleware, is important for the
exploitation of these devices. Various approaches must be investigated along with the various
options for using these devices in the exascale architecture (e.g., an SCM device being part of
each node’s memory hierarchy or them being part of a separate section of the architecture that
have these devices). These systems have implications in how various layers are designed and
optimized and should be topics for research and development. Furthermore, power optimization
approaches in software layers should be explored.

5. Extension of Current File Systems: Efforts may be made to extend current file systems to address
the parallelism and performance needed. However, given the current capabilities and performance
of these files systems, which are derived from conservative and reactive designs and with strict
sequential semantics, the chances of success of this approach are limited.

6. New Approach to Scalable Parallel File Systems: Research is needed for newer models,
interfaces, and approaches that are not limited by sequential semantics and for consistency
models that incorporate newer and highly scalable metadata techniques, and that can exploit

17

information available from user and higher levels as well as that can incorporate newer storage
devices and hierarchies.

7. Incorporation of I/O into Programming Models and Languages: Important research areas include
language features and programming model capabilities in which users can use the programming
models and language to provide the I/O requirements, access patterns, and other high-level
information. Ideally, it should be possible for compilers to use these enhanced models to optimize
I/O, pipeline I/O, and intelligently schedule I/O to maximize overlap with other computations.
Moreover, the models should be usable on multicore architectures, where they can be exploited to
utilize cores for enhancing I/O performance and specify online analysis functions on delegate
systems of active storage.

8. Wide-Area I/O and Integration of External Storage Systems: Scalable techniques are needed in
which parallelism in accessing storage devices is integrated with parallelism for network
streaming. Also important is integrating parallel streaming of data over the network, using similar
principles as those in parallel I/O.

4.1.3.3 Recommended Research Agenda for I/O Systems

The recommended research agenda for I/O systems is all items above except item 5.

Timeframe Targets and Milestones – I/O Systems

2010-11
§ I/O delegation concepts in various I/O software layers
§ New abstractions and approaches to parallel file systems
§ Protocols for parallel data transfers for wide-area I/O

2012-13

§ Initial I/O runtime and file systems for SCM/SSD devices
§ Develop purpose-driven I/O software layers
§ I/O delegation optimizations, including analytics and data-processing

capabilities
§ Programming language and model constructs for I/O integration

2014-15

§ Active storage alternatives in runtime and file systems
§ Customizable I/O APIs and implementations
§ Tuned I/O API implementations demonstrated with new memory hierarchy

components that include SCM
§ Scalable tools with parallel I/O and parallel streaming for wide-area I/O

2016-17

§ Newer programming models and languages capabilities enabled for active
storage

§ Fault resiliency and low-power capabilities added in the I/O software layers
§ Integration of online analysis within active storage architecture with new

storage devices (SCM)
§ Protocol conversion capabilities for wide-area I/O

2018-19

§ File systems and runtime software layers for exascale I/O optimized for new
storage devices

§ Power-performance optimization capabilities in I/O software layers
§ Scalable software layers for wide-area I/O integrated with schedulers with

special-purpose protocols for external networks

18

4.1.3.4 Cross-Cutting Considerations

The architecture of the systems in general, and for storage and I/O systems and their use of emerging
devices in particular, will influence the I/O system software. Architectures should consider the issues
outlined above in designing I/O systems. I/O-related communication and storage device usage will
significantly influence power optimizations. The I/O system software clearly has implications for
resiliency, the schedulers, the operating systems, and programming models and languages.

4.1.4 Systems Management
Systems management comprises a broad range of technical areas. We divided these topics into five
categories to be able to more tightly describe the challenges, research directions, and impact of each: (1)
“resource control and scheduling,” which includes configuring, start-up, and reconfiguring the machine,
defining limits for resource capacity and quality, provisioning the resources, and workflow management;
(2) “security,” which includes authentication and authorization, integrity of the system, data integrity, and
detection of anomalous behavior and inappropriate use; (3) “integration and test,” which involves
managing and maintaining the health of the system and performing continuous diagnostics; (4) “logging,
reporting, and analyzing information,” where the data consists of a static definition of machine (what
hardware exists and how it is connected), the dynamic state of the machine (what nodes are up, what jobs
are running, how much power is being used), RAS (Reliability, Availability, Serviceability) events
(warning or error conditions, alerts), and session log information (what jobs ran, how long, how much
resource they consumed); and (5) “external coordination of resources,” which is how the machine
coordinates with external components (e.g., how the HPC machine fits in a cloud) and comprises a
common communication infrastructure, reporting errors in a standardized way, and integrating within a
distributed computing environment.

4.1.4.1 Technology and Science Drivers for System Management

In addition to the fundamental drivers mentioned above (scale, component count failure rates, etc.) there
are additional technical challenges for system management. The first challenge is the fact there is a “real-
time” component to all system management tasks, with the time periods ranging from microseconds to
weeks. Whether it is running the right task at the right time, getting the right data to the right place at the
right time, getting an exascale system integrated and tested in a timely manner, or responding to
attempted security compromises, all system management tasks have to be responsive. On exascale
systems the tasks also have to be automatic and proactive in order to stay within response limits.

Another driver for exascale system management is that the limited resources that have been used in
system resource control and scheduling for the gigascale to petascale—processors and computational
operations—are no longer the most constrained resource. DARPA studies listed in this report document
that data movement, rather than computational processing, will be the constrained resource at exascale.
This is especially true when power and energy are taken into account as limiting design and total cost of
ownership criteria. Hence, resource control and management—and the utilization logs for resources—
have to change focus to communications and data movement. Today, most of the data movement
components of a system are shared and not scheduled, while most of the computation resources are
controlled and dedicated to an application. That may not be the best solution going to exascale, but we do
not know.

System management also has to ensure system integrity, a major factor of which is system security
(security is used here in the sense of open-system cyber security). Exascale systems will be so varied and
complex that in order to protect their correct operation, security features (such as authentication and
authorization, intrusion detection and prevention, and data integrity) will have to be built into the many
components of the system. The “defense-in-depth” concepts that are successful for facility-wide security
will have to be extended throughout the exascale system without impinging on performance or function.

19

System complexity is another driver at exascale. HPC systems are exceedingly complex and susceptible
to small perturbations having extraordinary impact on performance, consistency, and usability. Taking the
number of transistors multiplied by the number of lines of code simultaneously in use as a measure of
complexity, exascale systems will be four orders3 of magnitude more complex than their petascale
predecessors. The system manager’s job is to manage this complexity in order to provide consistent high
performance and quality of service. Without the reinvention of many of the tools used today and the
invention of new tools, system managers will not be able to meet those expectations.

4.1.4.2 Alternative R&D Strategies for System Management

The obvious alternative is to take an evolutionary approach to extending terascale and petascale system
management practices. This will result in significant inefficiencies in exascale systems, extended outages,
and low effectiveness. As a metric, one can extend the Performability (Performance * Reliability)
measure to also include the effectiveness of resource allocation and consistency (PERC). Given the
evolutionary approach, it is likely that exascale systems will have a PERC metric within an order of
magnitude of petascale because of much less efficient resource management, much less consistency, and
much less reliability.

Another approach could be to import technical approaches from other domains such as the
telecommunications industry, which provisions data movement and bandwidth as key resources. Another
domain that has technology to offer is real-time systems, which use control theory, statistical learning
techniques, and other methods to manage limited resources in a proactive manner. As a final example,
some cyber-security intrusion detection technology also has potential to offer stateful, near-real-time
analysis of activities and logs. Data mining and data analytics also have potential to offer point solutions
to managing large amounts of event data and identifying key factors that need to be addressed at high
levels.

4.1.4.3 Recommended Research Agenda for System Management

Here we present a representative list of research problems that will need to be addressed in order to
achieve the goals of exascale system management presented above.

Category 1: “Resource control and scheduling” and “External coordination of resources”

§ Better characterize and manage nontraditional resources such as power and I/O bandwidth

§ Determine how to manage and control communication resources – provision and control,
different for HPC than for WAN routing

§ Determine and model real-time aspects of exascale system management and feedback for
resource control

§ Develop techniques for dynamic provision under constant failure of components

§ Coordinate resource discovery and scheduling with exascale resource management

The first area for research in Category 1 is obtaining a better characterization of non-traditional resources
such as power and I/O data motion. Related is research into how to control that data motion. As part of

3 Estimates of today’s vendor-supplied system software contain between 3 and 18 million lines of code. If one
assumes that each line of code generates 10 machine instructions, that is 30–180 million instructions. Further
assume that OS functions use 1/30th of a second (and applications the rest)), there are 1 – 6 million instructions per
second in every node. Today’s machines have 1,000 to 10,000 OS images, with some having closer to 100,000. A
simplistic complexity value might be considered as number of instructions * number of images. Today this is
6*1014. At exascale, there may be 10,000,000 nodes. If the code complexity only doubles for exascale, the
complexity is 1.2*1014, four orders of magnitude more complex in the simplest case.

20

that study, the community needs to identify whether additional hardware enhancements should be
designed such as network switches that allow multiplexing streams by percentage utilization. In part, the
control will need to build on the results of the ability to better characterize the data motion, but it may
also proceed somewhat independently. Another research initiative that must be undertaken is determining
how to integrate the characterization and perform the control in real time. The most challenging piece of
research is determining how to keep the system running in the presence of constant failures. System
management in the exascale timeframe ideally must be able to proactively determine failures and
reallocate resources. If a failure is not predetected, the system management infrastructure must be able to
detect, isolate, and recover from the failure, by allocating additional equivalent resources. While effort is
underway in the application space to handle failures, system management research should target
presenting applications with machines where failures are corrected transparently by reallocating working
resources to replace the failed ones. Moreover, in order to integrate the HPC machine into a larger
infrastructure, research should be undertaken to provide standardized reporting of machine definitions and
capabilities that exist in a globally scheduled environment.

Category 2: “Security”

§ Provide fine-grained authentication and authorization by function/resources

§ Provide security verification for software built from diverse components

§ Provide appropriate “defense in depth” within systems without performance or scalability impact

§ Develop security-focused OS components in X-stack

§ Assess and improve end-to-end data integrity

§ Determine guidelines and tradeoffs of security and openness (e.g., grids)

For a system as complex as an exascale system, the risk of undetected compromise is too high to rely on
traditional security at the borders (login nodes). Fine-grained authentication and authorization by function
and for each resource are needed through all software and hardware components of the system. This has
to be lightweight so as not to restrict or slow authorized use or limit scalability, while at the same time
comprehensive enough to assure as complete protection as possible. The security model should be to
monitor and react rather than restrict, as much as possible, and to enable open, distributed ease of use.

Because the system is expected to be built from diverse components, created by different communities,
security verification of software components will have to be done efficiently. This will require a means to
verify correct functioning, but the challenge will be to accommodate the scale and the diversity of use of
an exascale resource.

Since other needs point to creating a novel HPC operating system, a critical feature to be considered is
making a security focused OS. There may also be hardware assist features that can combine finer-grained
control and access management. Security requires integrity, so end-to-end data integrity has to be
included. Moreover, new analysis to provide the right balance between security and openness for
distributed computing (e.g., grid, web services) needs to be explored.

Category 3: “Integration and test” and “Logging, reporting, and analyzing information”

§ Determine key elements for exascale monitoring

§ Continue mining current and future petascale failure data to detect patterns and improvements

§ Determine methods for continuous monitoring and testing without affecting system behavior

§ Investigate improving information filters; provide stateful filters for predicting potential incorrect
behavior

21

§ Determine statistical and data models that accurately capture system behavior

§ Determine proactive diagnostic and testing tools

The first research initiative that must be undertaken to reach the end goal of proactive failure detection is
determining the key elements that need to be monitored. Much work has already occurred in this area.
Thus, determination of what will be required for exascale is needed, with potentially new items identified.
Additional research must be encouraged in the field of mining failure data to determine patterns and
develop methodologies for doing so. Because the amount of collected data will be vast in the exascale era,
investigations for filters and statistical models must occur. In both cases, it is critical to significantly
reduce the volume while accurately capturing system behavior and not losing critical events. For filtering,
there is a critical need to develop stateful techniques, where the dynamic state of the machine determines
what events the filter provides. Techniques must be researched to allow this monitoring, filtering, and
analysis to occur in real time without affecting application behavior running on the system. These
research initiatives need to feed research of proactively determining where failures will occur by
monitoring and analyzing filtered data.

Timeframe Targets and Milestones – Systems Management

2010-11

Category 1: Creation and validation of an analytic model and simulation capability
for exascale resource management that spans different implementations of job and
resource management systems. This work will enable experimentation of alternative
designs that will accelerate implementation in the later timeframes.
Category 2: Fine-grained authentication—being able to provide access to individual
or classes of resources to a single user or to groups of users.

2012-13

Category 1: Dynamic provisioning of traditional resources—being able to provide
applications with more nodes and memory on the fly.
Category 3: Unified framework for event collection: providing a community-agreed-
upon standard format for events across machines and subsystems within a machine.

2014-15

Category 1: Expanded analytic model and simulation capability for exascale resource
management to include external coordination of services.
Category 2: Security validation of diverse components, providing a methodology for
the different components in a system to ensure that security is maintained across the
components.
Category 3): Model and filter for event analysis, using the data produced by the
above unified framework to produce models representing the system for
understanding how different policies would impact the system, and providing filters,
some of which should be stateful (dependent on the dynamic state of the machine).

2016-17

Category 1: Integrated nontraditional resources, such as bandwidth and power: by
using the above models and filters, and the dynamic provisioning of resources,
providing the ability to manage new important resources such as power and data
motion.
Category 3: Continual monitoring and test so that, by building on the unified
framework for collecting data and filters, real-time monitoring and testing of the
machine are provided.

2018-19

Category 1: Continual resource failure and dynamic reallocation—using the above
proactive failure detection as input, and the above described dynamic provisioning of
traditional and nontraditional resources to provide the ability to keep the machine
running in the presence of continual failures by reallocating resources.

22

Category 2: Hardware support for full system security. “Defense in depth” security is
needed so that security does not rely solely on access control to the machine. Also
needed is development of end-to-end methodologies including integrated hardware to
protect all components of the machine.
Category 3: Proactive failure detection—building on the above continual monitoring
and analysis tools to provide the ability to predict failures.

4.1.4.4 Cross-Cutting Considerations

System management functionality crosses all aspects of the vertical integration—performance,
usability/programmability, resilience, and power. System management directly impacts consistency and
total cost of ownership as well. In addition, system management relies heavily on accumulating,
integrating, and analyzing disparity data from all system components as well as all applications wanting
to use the system. Multilevel analysis of system usage, subsystem activities, and component and
subsystem health are needed to provide dynamic resource provision and to facilitate consistent and correct
execution of application tasks.

4.1.5 External Environments

The term external environments refers to the essential interfaces to remote computational resources (e.g.,
data repositories, real-time data streams, high-performance networks, and computing clouds) that
advanced applications may need to access and utilize. The use of such resources is already typical for
many high-end applications, and they form a critical part of the working environment for most, if not all,
major research communities.

In the following, “distributed data repositories” are discussed. This discussion complements the views
presented in, for example, Section 4.3.3, Application Support: Scientific Data Management. In particular,
while in Section 4.3.3 the main focus is on data management issues and challenges in the data center, this
section discusses data management issues (i.e., data access/integration) with regard to external data
repositories (data grids/clouds) and how the exascale roadmap can pave the way toward a transparent,
efficient, and integrated management of scientific databases distributed across data centers, data grids,
data clouds, and other external data repositories. Cross-references with other parts of this roadmap can be
identified in Section 4.3.2 (with special regard to metatools and new data analysis approaches), Section
4.4 (cross-cutting dimensions such as resilience, performance. and programmability), and Section 4.1.2
(I/O systems with special regard to active storage and online analysis as well as scalable file systems).

4.1.5.1 Technology and Science Drivers for External Environments

Exascale cyber infrastructures will face important and critical challenges, both from computational and
data perspectives. Increasingly complex and parallel scientific codes will lead to the production of a huge
amount of data. For instance, climate change scientists are expected to generate hundreds of exabytes of
data (distributed across several centers) through heterogeneous storage resources (located in data centers
as well as in external environments such as data grids and data clouds) for access, analysis, post-
processing, and other scientific activities. Collections of data will be stored at different sites and made
available to users for further analysis.

The large volume of data and the time needed to locate, access, analyze, and visualize this data will
greatly impact the scientific productivity. Significant improvements in the data management field
therefore will be critical to increase research productivity in solving complex scientific problems.

Since external environments will play an important role in the scene, several challenges must be taken
into account in developing the exascale roadmap context. The first challenge at such large scale is to
provide efficient, scalable, resilient and transparent access to the external (with regard to the data center)

23

and distributed (from a geographical point of view) data repositories. Exascale applications will have to
efficiently manage and access data inside/outside the data center with a high level of performance and
through common interfaces able to decouple fabric/middleware layers from the application one. Data
centers will increasingly need access to external data repositories to take advantage of a wide set of data
collections. This should be made transparent, and this transparency represents a key challenge because the
heterogeneity of the data environments is expected to further increase as it’s directly connected with
technology evolution.

Since external environments will play an important role in the scene, several challenges must be taken
into account in developing the exascale roadmap context.

§ The first challenge at such large scale is to provide efficient, scalable, resilient, and transparent
access to the external (with regard to the data center) and distributed (from a geographical point
of view) data repositories. Exascale applications will have to efficiently manage and access data
inside/outside the data center with a high level of performance and through common interfaces
able to decouple fabric/middleware layers from the application one. Data centers will increasingly
need access to external data repositories to take advantage of a wide set of data collections. This
should be made transparent, and this transparency represents a key challenge because the
heterogeneity of the data environments is expected to further increase as it’s directly connected
with technology evolution.

§ Related challenges that will become critical will be replication and distribution. At exascale, huge
data repositories will be replicated and distributed across several sites to increase data
availability, provide higher levels of fault tolerance and locality. For example, in the climate
change domain, the CMIP5 data repositories will be replicated across the United States and
Europe, and future scenarios will strongly rely on replication needs and schemas. Distribution and
replication are expected to be strongly exploited in the near future; and, because of the scale and
evolution of future exabyte systems, they represent a relevant challenge.

§ Considering the wide variety of external data repositories available worldwide, uniform access in
terms of common interfaces will be fundamental. The wide set of interfaces to data services is
already a challenge. Because of the large-scale environment, the heterogeneity of the platforms,
and the complexity of the exascale system, interoperability will play an important role in making
highly feasible, transparent, and productive the interaction among all the involved components
and services available inside data centers, data grid environments, and data clouds.

§ Data portals are today the entry points to vast data collections for several institutions, data
centers, and data clouds. In the exabyte era, stronger support and integration of scientific,
collaborative, and social aspects are expected in the context of new scientific gateways. Social
networking capabilities, poorly exploited today for scientific purposes, are strongly needed to
increase the level of discussions, feedback, exchange of scientific results, and dissemination
among groups. What is missing today is low-level and pervasive interoperability to enable data
repositories in data centers, data grids, and data clouds to be transparently accessed and easily
integrated in order to exploit new multidimensional and multidisciplinary research opportunities.

§ Data knowledge and discovery will play a critical role as the number of data collections and the
volume of data stored in distributed (heterogeneous) repositories becomes larger. A high number
of (heterogeneous) metadata/ontologies sources (from different institutions/centers) are
anticipated, which describe the available data collections with regard to different domains.
Metadata provenance will increasingly become fundamental, in order to identify, trace, and
record the history of data and the related processing and analysis steps in such a multifaceted
environment. Automatic metadata extraction needs to be improved to support the data publication

24

process at exascale data production rates. Semantic interoperability needs to be further addressed
to make data integration a reality.

§ Open access will become the key for effective sharing of data. At present, several restrictions and

access policies make real sharing and easy access to the available data collections complicated,
creating several nonconnected (isolated) islands of data repositories. This problem must be
solved, while taking into account that access and usage policies must be preserved as well. What
is missing is transparent and uniform management of such aspects across several countries and
institutions.

4.1.5.2 Alternative R&D Strategies for External Environments

Access to data repositories in grid and cloud environments raises numerous challenges. In most cases, an
evolutionary approach seems adequate if we consider the status of existing middleware and technologies
and the production environments that have been built on top of them in several international initiatives in
Europe, the United States, and Japan. Obviously, the scale and the requirements in the exabyte era will
need a reengineering, extension, and improvement of several modules to make the integration feasible.
New efforts must be devoted to the intermediate layers (e.g., middleware) to have more interoperable,
robust, and complete support to access the external data environments at exascale.

Since access to data grids and data clouds is a key element for external environments, the design of
common interfaces (for middleware components) will be fundamental. What is crucial is the coexistence
of standards and de facto standards and scientific and commercial actors, which makes more complex the
entire realm. Stronger efforts in interoperability and standardization need to be globally sustained with a
co-design approach supported by commercial and scientific partners. Such an approach will enable
effective access to a larger set of external data repositories and environments. Metadata standards,
domain-based ontologies. and the associated standardization and discussion processes must be strongly
addressed. Such efforts will allow us to better describe, at exascale, data related to different scientific
domains through a widely accepted, known, and adopted set of information.

Metadata standardization will be an enabling process for effective access and sharing of data, since it
addresses search and discovery of data collections across different data sources. It is also a driving factor
for interoperability, obviously implying the need to develop new tools, software, and services able to deal
with such a new standard at exascale.

Also critical is further investigation into new algorithms, protocols, replication schemas, placement
strategies, consistency protocols, lifetime issues, and dynamic aspects. At this layer, a standardized access
to the external data environments will be needed, access that can be exploited to decouple replication
aspects from the access ones.

4.1.5.3 Recommended Research Agenda for External Environments

The recommended research agenda focuses on three areas:

1. Access to external data repositories

§ Stronger effort in data delivery mechanisms, parallel data transfer, compression algorithms,
efficient data protocols and data access services

§ More pervasive use of new and higher performance networks

§ Further activities on standard interfaces that will provide a stronger level of interoperability
among different data repositories—an effective collaboration and co-design between industrial
and scientific partners is recommended

25

§ Further work to make the middleware more robust, to transparently access heterogeneous data
environments in data centers, data grids, and data clouds

2. Replication and distribution of data

§ Further investigation on new algorithms, protocols, replication schemas, and placement strategies,
which are crucially needed at such large scale

§ Dynamic replication strategies based on historical information and usage patterns

§ Stronger need to deal with several kinds of transient failures (e.g., network and storage failures)
providing efficient recovery procedures in case of faults, and better addressing resilience

3. Scientific data gateways

§ Collaborative, easy-to-use, integrated, social-based features, tailored on user access patterns and
levels that are highly configurable

§ Complex and distributed dataflow support

§ Knowledge mining and discovery, starting from advanced and integrated decision support
systems

§ Ability to represent the virtual place where people can work together; create communities;
exploit a wide set of tools; and analyze, visualize, and compare data coming from data centers,
grids, or cloud environments.

In short, the roadmap for distributed data repositories must move toward extremely integrated,
interoperable, and interdisciplinary data environments, where the transparent integration of
heterogeneous data sources (inside and outside the data center) will allow, at exascale, a better and deeper
understanding of complex phenomena and problems.

Timeframe Targets and Milestones – Distributed Data Repositories

2010-11

Workshops focused on the main topics of the Research Agenda for distributed data
repositories.

Metadata management, harvesting capabilities, ontology management, dynamic
replica management, improved search and discovery capabilities, standardization
activities on data services

2012-13
Advanced web access and workflow capabilities for scientific data portals,
federated data management, interoperability among data services, semantic data
integration services

2014-15

Resilient services for distributed data repositories, advanced ontology management,
operational data gateways integrated, collaborative and community-oriented,
stronger level of interoperability, new data analysis services, advanced support for
semantic and scalable search and discovery across distributed scientific databases,
integrated (cross-domain) data platforms. Distributed, efficient, and resilient data-
mining support.

2016-17
Operational interoperability related to heterogeneous data-oriented environments,
production level data services, social collaborative virtual environments, and
distributed knowledge-based systems.

26

2018-19

Full data integration and interoperability among heterogeneous environment (data
centers, data grids, clouds environments). Cross-domain, real-time, and interactive
data and knowledge discovery, access, processing, mining, analysis, and
visualization.

4.1.5.4 Cross-Cutting Considerations

Four cross-cutting considerations have been identified.

Performance: Efficient access to external environments is crucial, especially if this step is part of complex
workflows that start/run inside the data centers and exploit external data sources to enrich their processing
and analysis. To have data grids or clouds as part of the system, high-performance network connections
are strongly needed, as well as high-performance data transfer protocols.

Resilience: External environments relates to distributed environments (i.e., data grids) are characterized
by many software (i.e., services) and hardware (i.e., routers, switches, storages) components.
Consequently there could be transient and permanent errors and issues everywhere in the global scenario
to be addressed at runtime. Making hardware and software components resilient is a strong challenge for
external data environments.

Scalability: At such large scale the number of potential users and actors in this milieu, as well as the
number of data collections, will be high. This situation implies the need to have a scalable architecture
able to deal with a growing community and an increasing volume of data, without decreasing the level of
quality of service and efficiency.

Programmability: The applications developers cannot be expected to manage, at a low level, distribution,
replication, load balancing, and other issues explicitly in their codes. Complex aspects of distributed
services need to be available as high-level APIs to allow end users to optimize their code, perform tuning
operations, and improve their applications.

4.2 Development Environments
The application development environment is the software that the user has to program, debug, and
optimize programs. It includes programming models, frameworks, compilers, libraries, debuggers,
performance analysis tools, and, at exascale, probably fault tolerance.

4.2.1 Programming Models

4.2.1.1 Technology and Science Drivers for Programming Models

Several challenges have been identified, and possible approaches for addressing these challenges have
been suggested.

§ Exascale systems are expected to have a huge number of nodes. Even within the node, much
parallelism will exist in many core architectures and accelerators such as GPGPU. Programming
models and languages should support the use of such huge levels of parallelism.

§ Exascale systems may consist of several kinds of components, including conventional multicore
CPUs, many-core chips, and general and application-specific accelerators, resulting in
heterogeneity. Programming models and languages should alleviate the programming difficulties
arising from such heterogeneity.

§ Exascale systems will consist of a huge number of components, which will increase the failure
rate. Programming models can provide a way to handle such failures with fault resilience
mechanisms.

27

§ Memory bandwidth will be important in exascale systems. Programming models and languages
should provide models to exploit the data locality to make use of complex memory hierarchies.

§ The programming model will need to address emerging and on-going applications trends. For
example, algorithms and applications are increasingly adaptive. Exascale computations will
perform massive amounts of I/O; the programming model will need to enable highest levels of
I/O performance. New application domains may require new programming models.

§ The use of deep, large software stacks require the capability to detect and isolate errors at various
stages (code development, production, compile time, runtime) and report them at an appropriate
level of abstraction.

4.2.1.2 Alternative R&D Strategies for Programming Models

The following strategies are proposed:

§ Hybrid vs. uniform: A hybrid programming model is a practical way to program exascale
systems that may have architectural heterogeneity. Uniform programming models provide a
uniform view of the computation. They reduce the need for the application developer to be aware
of the details of the architectural complexity and are often considered to be more productive.
Their provision is a challenge, however.

§ Evolutionary vs. revolutionary approaches: Specification of incremental improvements to the
existing models is a safe approach. Revolutionary approaches may be attractive, but risky.

§ Domain specific vs. general programming models: For some application areas, domain-specific
models may provide performance and portability with higher productivity than general purpose
programming models offer.

§ Widely embraced standards vs. single implementations: While the latter have the advantage of
rapid development and implementation, the former are based on the experience of a wider
community and are often required by application groups.

4.2.1.3 Recommended Research Agenda for Programming Models

Research is needed into a variety of promising programming models for exascale computing, including
system-wide models that provide a uniform approach to application development across an entire
platform, as well as hybrid programming models that combine two or more programming APIs. Such
models will need to provide a range of means for the expression of high levels of concurrency and locality
and may be capable of supporting application-specific fault tolerance. Enhancements to existing
programming interfaces as well as new programming approaches should be explored. For new models,
interoperability with existing HPC programming interfaces is highly desirable. Programming models that
facilitate productive application development are to be encouraged. Other desirable characteristics are
performance transparency and the ability to support incremental application migration.

 Timeframe Targets and Milestones – Programming Models

2010-11
Interoperability between established programming models for HPC (MPI, OpenMP
in particular)
Initial workshops to discuss potential exascale programming models

2012-13

Fault-tolerant MPI
Standard programming model for heterogeneous nodes
System-wide programming model(s) for petascale platforms available

28

2014-15
Candidate programming models for exascale systems defined

2016-17
Candidate programming models for exascale systems implemented

2018-19
Exascale programming model(s) adopted

	

4.2.1.4 Cross-Cutting Considerations

Major characteristics of exascale architectures will have a significant impact on the nature of the
programming models that are designed to facilitate the creation of exascale-level applications. Hence
major departures from the envisaged range of system architectures may necessitate a rethinking of the
dominant features of an exascale programming model.

The programming model must facilitate efficient support for massive levels of I/O by applications and
must enable the application developer to write fault-aware applications.

The implementation technology will need to be developed to realize the programming models that are
defined for exascale computing. The compiler translation will be critical and will need to be of
exceptional quality. The runtime system will be expected to provide significant support to the compiler by
providing features for managing compute threads, implementing a variety of mechanisms for
synchronization, scheduling computations, supporting efforts to balance the workload, executing
correctness checks that have been deferred to runtime, collecting performance data, and more.

Applications and libraries will be created using the programming models defined for exascale computing.
The programming model will be expected to provide a sufficient range of features to enable the
expression of their concurrency and locality and the orchestration of the actions of different threads across
the system. The model also must facilitate the composition of different modules and library routines.

A variety of programming-model-aware tools will be required to enable productive application
development, translation, and deployment. For instance, tools to support application development might
reduce the effort involved in identifying portions of code suitable for execution on certain system
components. Tools for debugging will need to be created that are aware of the model’s semantics;
performance analysis and tuning tools will need to be created that reduce the effort involved in program
optimization and are aware of the specific factors that influence program performance under a given
programming model. In addition, user annotations may need to be defined to support the actions of the
compilers and tools.

4.2.2 Frameworks

4.2.2.1 Technology and Science Drivers for Frameworks

Effective use of exascale systems will place many new demands on application design and
implementation. Left alone, each application team will face a daunting collection of infrastructure
requirements, independent of the science requirements. Frameworks (when properly developed) have
successfully provided a common collection of interfaces, tools, and capabilities that are reusable across a
set of related applications. In particular, challenging computer science issues—which are often orthogonal
to science issues—can be encapsulated and abstracted in a way that is easy for applications to use, while
still maintaining or even improving performance.

A focused effort on frameworks for exascale systems is needed for the following reasons.

29

• We have a large body of existing scalable applications that we want to migrate toward exascale.
• Many novel exascale-class applications are expected.
• Frameworks provide the best cost and time approach to application development.
• Exascale computing provides a new opportunity for multiscale, multiphysics, and

multidisciplinary applications.
4.2.2.2 Alternative R&D Strategies for Frameworks

Two R&D strategies are considered for frameworks.

No frameworks: Most successful frameworks are constructed in response to substantial experience
developing individual components, where these components have substantial common requirements,
natural interoperability relationships, or both. It is certainly possible to ignore the commonalities and
relationships and focus on one-of-a-kind applications. Initially this strategy may appear attractive because
it provides the shortest path to single application completion. As more applications are developed,
however, this strategy produces redundant, incompatible, and suboptimal software that is difficult to
maintain and upgrade, ultimately limiting the number of exascale applications, their quality, and their
ability to be improved over their lifetime.

Clean-slate frameworks: If exascale systems eventually require a completely new programming model,
the approach we will use to establish exascale frameworks will differ from the case where existing
applications are refactored. In this case, the framework will be best constructed to solve a minimally
interesting problem. Then existing applications will be mined for their useful software fragments. This
strategy was required for many applications when making the transition from vector multiprocessors to
MPI.

4.2.2.3 Recommended Research Agenda for Frameworks

Successful development of exascale-class frameworks will require a decade of effort. Among the critical
research topics that must be addressed to achieve this goal are the following:

§ Identification and development of cross-cutting algorithm and software technologies: For the
existing scalable application base and for new applications, there will be common requirements
for moving to exascale systems. For example, partitioning and load-balancing algorithms for
exascale systems and usage of many-core libraries are common needs.

§ Refactoring for many-core: In anticipation of many-core programming model decisions, we must
still make progress in preparing for exascale systems by understanding the common requirements
of many-core programming that will be true regardless of the final choice in programming model.

The table below, which gives the initial timeline for major activities and deliverables, focuses on the
following elements:

Workshops: The computational science and engineering communities have many existing frameworks,
some multi-institutional but most centered at a single institution. As a result, the practices, tools, and
capabilities of each framework vary greatly, as does the scope of visibility outside the host institution.
The first priority for successful exascale framework development must be a series of workshops. The first
workshop will bring together people from existing framework efforts, developers of enabling
technologies (programming models, algorithms and libraries), and application stakeholders who must
ultimately use and develop within the proposed frameworks to perform analyses of capabilities and gaps.
Subsequent workshops will focus on specific R&D issues necessary for success.

Breadth-first frameworks: The next major effort will be the development of two to three frameworks:
one for libraries and one or two specific application domains. Although programming models, libraries,

30

and fault-resilient capabilities will probably not be mature, this initial breadth-first approach will facilitate
co-design of the framework with these enabling tools to ensure compatibility. This effort will also focus
on mining capabilities from existing applications as appropriate as well as provide a first definition of the
common tool-chain.

Full-scope, additional frameworks: In subsequent years, the programming model, libraries, and fault-
resilient strategies should mature, allowing the initial frameworks to solidify these aspects of the design
and implementation. Shortly after, or perhaps concurrently, several new domain-specific frameworks can
begin, utilizing the design decisions and tool-chain established by the first frameworks.

Deployment: In the first years of exascale capabilities, all frameworks should be in a state to demonstrate
exascale capabilities on the first available exascale-class systems.

Timeframe Targets and Milestones –-- Frameworks

2010-11

Workshops: 2010, 2011, regularly after.
• Bring together members from key existing framework efforts, algorithm/library

developers, programming models.
• Workshop 1:

– Capabilities/gaps analysis.
– First opportunities for multi-institutional frameworks.
– Best practices from existing efforts.
– Common tool chain requirements.
– Possible win-win scenarios.

• Workshop 2:
– Plan for programming model evaluations.
– Development of library data model semantics.

• Workshop 3:
– Applications-driven resilience models.

2012-13

Develop first two applications and first library frameworks, 2013.
• Mining of components from existing capabilities.

– Implementation of common tool chain, programming model, first
resilience harness, library interfaces.

• Breadth-first approach.

2014-15

Full development of exascale-specific framework features:
• Mature framework-library data layout semantics.
• Fully capable fault resilience capabilities.
• Fully defined common toolchain.

2016-17
Development of two to three additional appllication frameworks, 2017.

• Leveragiing of infrastructure/design knowledge from first efforts.
• Development of intercomponent coupling capabilities (e.g., data sharing).

2018-19 Demonstration of full-scale application capabilities across all frameworks on exascale
system, 2019.

31

4.2.2.4 Cross-Cutting Considerations

Framework efforts will be greatly affected by evolving programming models, libraries, and new
algorithm development, as well as fault-resilient requirements and capabilities. Although MPI will likely
be part of the picture, with a node programming model underneath, a radical new programming and
execution model may be needed. In all cases, a framework will be important for rapidly deploying a
critical mass of application capabilities.

Ultimately, any frameworks we develop must have buy-in from application development teams, those
domain scientists who are encoding the physics and engineering models. Without their full support, our
frameworks will be irrelevant. Computational domain scientists must be part of the framework
development process as needed to obtain this support.

Frameworks and the libraries they provide must be part of the software stack for petascale, trans-
petascale, and exascale systems. This approach is essential for providing application developers with a
common software environment at several scales of computing.

4.2.3 Compilers

4.2.3.1 Technology and Science Drivers for Compilers

Compilers will be a critical component of exascale software solutions. Not only will they be required to
implement new and enhanced programming models and to generate object code with exceptional quality,
but they will also need to support the process of program adaptation, tuning, and debugging. The high
number of potentially simpler (in-order) cores and the existence of specialized components will increase
the importance of the compiler.

Compilers for uniform programming models that span entire systems will need to manage the distribution
of data, locality of computation, and orchestration of communication and computation in such a manner
that all components of the machine perform useful computations. With substantial support from the
runtime library, they may also be required to balance the workload across the system components.
Compilers for node programming models may be required to generate code that runs across a large
collection of general-purpose cores or across a node that may be configured with general-purpose cores
along with one or more specialized accelerators.

Memory hierarchies will be highly complex; memory will be distributed across the nodes of exascale
systems and will be NUMA within the individual nodes, with many levels of cache and possibly
scratchpad memory. Compilers will be expected to generate code that exhibits high levels of locality in
order to minimize the cost of memory accesses. Compilers also may need to explicitly manage the
transfer of data between different subcomponents within nodes.

4.2.3.2 Alternative R&D Strategies for Compilers

The alternative R&D strategies described for programming models apply equally to compilers, since they
provide a major part of the implementation of the programming models. By ensuring interoperability
between different languages and programming models, compilers can be key to mitigating the risk
involved in selecting an emerging programming model and may increase the adoption of new models by
offering an incremental path from existing or proposed models (e.g., MPI, OpenMP, UPC, X10, Chapel).

4.2.3.3 Recommended Research Agenda for Compilers

Advances in compiler technology are key to the provision of programming models that offer both
performance and productivity characteristics. The following topics should be pursued:

32

§ Techniques for the translation of new exascale programming models and languages supporting
high productivity and performance, hybrid programming models, and programming models that
span heterogeneous systems.

§ Powerful optimization frameworks. Implementing parallel program analyses and new,
architecture-aware optimizations, including power, will be key to the efficient translation of
exascale programs. Improved strategies for automatic parallelization are needed, as are
techniques for determining regions of code that may be suitable for specific hardware
components.

§ Experimentation with new optimizations and online feedback-based optimizations, benefiting
from recent experiences with just-in-time compilation. Other topics include generation of
multiple code versions; more aggressive, speculative optimizations; and incorporation of
lightweight strategies for modifying code on the fly.

§ Support of strategies for enabling fault tolerance. For example, compilers may be able to help
reduce the amount of data involved in checkpointing.

§ Standard interfaces facilitating interactions between the compiler and the development and
execution environment. Such interfaces could enable tools or application developers to drive the
translation process in new ways and enable the compiler to drive the actions of tools during
runtime, for example to gather specific kinds of performance data. Compilers should be capable
of automatically instrumenting code.

§ Compiler-based tools for application development. Such tools could support the application
development process, help interpret the impact of the compiler’s translation on the application’s
runtime behavior, and explain how the application developer might improve the results of this
translation.

§ Innovative techniques. Compilers may be able to benefit from autotuning, may incorporate
methods for learning from prior experiences, may exploit knowledge of suitable optimization
strategies that is gained from the development and execution environments, and may apply novel
techniques that complement traditional translation strategies.

 Timeframe Targets and Milestones -- Compilers

2010-11
MPI-aware compilers supporting MPI implementations.
Initial interface specified to enable compilers to interact with performance and
runtime correctness-checking tools.

2012-13 Compiler support for hybrid programming models

2014-15
Standard heterogeneous programming model implemented
System-wide high-level programming model implemented

2016-17
Exascale programming model implemented
Standard interfaces for interactions between compilers and other tools in
development and execution environment

2018-19
Refinement of architecture awareness
Compilers that interact smoothly with performance and runtime tools

33

4.2.3.4 Cross-Cutting Considerations

Compilers must no longer be viewed as a black box but rather as open translation infrastructures that must
be capable of interoperating with all elements of the development and execution environment, especially
the runtime system and tools.

The runtime system will be expected to provide significant support to the compiler by providing a number
of features for managing compute threads, implementing a variety of mechanisms for synchronization,
scheduling tasks and other computations, and supporting efforts to balance the workload.

Compilers need to generate efficient code for the target architecture. Therefore they need to be developed
in an architecture-aware manner. The use of explicit cost models may simplify the generation of code for
different hardware configurations.

4.2.4 Numerical Libraries

4.2.4.1 Technology and Science Drivers for Libraries

Numerical libraries underpin any science application developed for high-performance computing and
offer the potential to exploit the underlying computer systems without the application developer
necessarily understanding the architectural details. Hence, science drivers are more or less automatically
built in. However, we may expect new applications to emerge with exascale systems, and libraries should
adapt accordingly.

The technology drivers for library development include hybrid architectures, programming models,
accuracy, fault detection, energy budget, memory hierarchy and the relevant standards. Numerical
libraries depend on the formation of various standards that will be needed to ensure the widespread
deployment of the software components. The libraries will be equally dependent on the operating system
and the computer architecture features and how they are communicated to the library level.

4.2.4.2 Alternative R&D Strategies for Libraries

The alternative research and development strategies for libraries will be driven by the operating system
and software environment provided on given architectures. We can assume that we will see models such
as message-passing libraries, global address space languages, and message-driven work queues. Since all
three models likely will occur at some level in future systems, matching implementations need to be
developed concurrently. In particular, the three programming models should be interoperable to permit
the widest deployment.

4.2.4.3 Recommended Research Agenda for Libraries

Existing numerical libraries will need to be rewritten and extended in light of the emerging architectural
changes. The technology drivers will necessitate the redesign of the existing libraries and will force re-
engineering and implementation of new algorithms. Because of the enhanced levels of concurrency on
future systems, algorithms will need to embrace asynchrony to generate the number of required
independent operations.

The research agenda will need to include the following:

1. Hybrid and hierarchical based software: efficient implementations need to be aware of the
underlying platform and memory hierarchy for optimal deployment.

2. Autotuning: Libraries need to have the ability to adapt to the possibly heterogeneous
environment in which they have to operate.

3. Fault-oblivious and error-tolerant implementations: The libraries need to be resilient with
regard to the increased rate of faults in the data being processed.

34

4. Mixed arithmetic for performance and energy saving: The libraries must be able to find optimal
mapping of required precision in terms of speed, precision, and energy usage.

5. Architectural-aware algorithms that adapt to the underlying architectural characteristics: The
libraries must be able to act on given architectural information to select or generate optimal
instantiations of library routines.

6. Energy-efficient implementations to optimize the energy envelope for a given implementation:
The libraries should have the ability to take the total power usage into account and optimize for
this parameter.

7. Algorithms for minimizing communications: Such algorithms are essential because
communications play such an important role in performance and scalability.

8. Algorithms for shared-memory architectures: These algorithms have long been a staple, but
they will have a prominent role on future exascale systems as a way to mitigate the impact of
increased iteration counts in Schwarz-type algorithms.

9. Fusion of library routine implementations: Libraries often introduce artificial separations into
the code, based on the function of each routine. Techniques that permit the fusion of such
routines (e.g., of the loops in two consecutive library calls) will be needed.

Timeframe Targets and Milestones – Numerical Libraries

2010-12

Standards for hybrid (heterogeneous) computing are needed immediately.

2011: Milestone: Heterogeneous software libraries

2012: Milestone: Language issues addressed

2012-14
Standards required for architectural characteristics.

2013: Milestone: Architectural transparency

2014-16
2015: Milestone: Self-adapting for performance

Standards required for energy awareness

2016-17
2016: Milestone: Energy awareness

Standard for fault tolerance required

2018-19
2018 Milestone: Fault tolerance

2019: Milestone: Scaling to billion way

4.2.4.4 Cross-Cutting Considerations

Libraries will require standards to build on. These will include standards for power management,
architectural characteristics, programming for heterogeneous environments and fault tolerance.
Establishing such standards presupposes that the information regarding the underlying architecture,
energy usage, and so forth, will be available as parameters to be used within the library implementations.

The libraries need to provide language bindings for existing as well as newly emerging languages. At the
same time, the calling sequences for their routines should fit in with the various programming models
available for exascale environments.

35

4.2.5 Debugging

4.2.5.1 Technology Drivers for Debugging

Historically debugging has meant the process by which errors in program code are discovered and
addressed. The scale of modern parallel computers has pushed the boundaries of that definition in two
ways. Massive concurrency at terascale and petascale has led to profound challenges in the ability of a
software debugger to encompass the entire parallel application consisting of thousands of processes.
Additionally, it has initiated the need to debug not just the code but machine and OS environments where
bugs and contention outside the program code itself may be the underlying cause of faults seen at the
application layer.

With exascale computing, we formally broaden the scope of debugging to including finding problems in
the execution of program code by identifying and addressing application incorrectness as well as
application failure and critical application performance bottlenecks that may be either reproducible or
transient. These faults and bottlenecks may have their origins in the code itself or may be consequences of
hardware or software conditions outside the control of the application. As an example and evident already
at the petascale, a failed switch adapter on a remote node may cause failures in other jobs or may bring
communication to a near standstill. For bulk synchronous parallel codes it normally takes only one slow
task to limit the overall performance of the code.

The following aspects of exascale technology will drive decisions in debugging:

§ Concurrency-driven overhead in debugging

§ Scalability of debugger methodologies (data and interfaces)

§ Concurrency scaling of the frequency of external errors/failures

§ Heterogeneity and lightweight operating systems

These technology drivers are specific instances of the more broadly stated technology trends in exascale
of concurrency, resiliency, and heterogeneity within a node. If ignored, debugging at exascale will
become more and more costly, increasing the human effort applied to debugging and diminishing the
investment in HPC resources by requiring more machine hours to be devoted to costly debug sessions.
The research strategy for exascale debugging therefore must aim to streamline the debugging process by
making it more scalable and more reliable.

4.2.5.2 Alternative R&D Strategies for Debugging

Exascale is a regime in which the rate of hardware faults will make debugging, in the expanded context
mentioned above, a persistently needed real-time activity. We therefore suggest a strategy that “plans to
debug” at compile time and also addresses the data management problems presented by dramatically
higher concurrencies. The utility in debugging in a separate session will be limited since a large class of
bugs may not be reproducible. Exascale will require the ability to “debug without stopping.” Scalability in
debugging has been addressed in previous generations of HPC systems. Research to advance the state of
the art in scalability will be required.

Instead of pursuing the development of debuggers as monolithic applications capable of running other
user applications in a debug environment, we propose research and development to improve the
information sources from which a variety of debugging frameworks can benefit. This strategy borrows a
lesson learned in the performance tools community, which has largely moved away from each tool having
its own means of deriving machine function (reading counters, registers, etc.) toward development of
robust APIs that deliver that information in a portable manner. For example, PAPI provides a common
interface for performance information upon which performance tools may be built.

36

To build such scalable and reliable sources of information for debugging, we suggest vertical integration
with compiler, library, runtime, OS, and I/O layers. This integration achieves two important goals at the
same time. First, it expands the perspective into the application from multiple directions by providing
multiple layers or contexts in which to debug. Specific aspects of codes such as just communication, I/O,
specific libraries, or even user-defined quantities or data structures will allow the debugging process to
zero in on the anomaly or fault in question. Composition of these data sources will allow for cross-
checking and hypothesis testing as to the origin of a fault or bottleneck. This contrasts with the idea of
using a debugger to step through executing code on an instruction or subroutines basis and moves in the
direction of having the debugging framework become advisory and participatory in the production and
execution of codes.

Second, vertical integration that delivers portable standards for gathering and acting on debug information
provides efficiency in the design and maintenance of debugging tools. Instead of developing an end-to-
end solution within each debugger, we imagine a lowered barrier to entry to the design of special purpose,
custom-fitted debuggers that draw on reliable, scalable, and portable mechanisms for monitoring and
controlling application codes. Moving from a one-size-fits-all perspective on debugging to modularly
selectable approaches will enhance the ability for applications to incorporate the handling of faults and
problem scenarios internally. Currently, a large mismatch exists between what the layers underlying the
application tell the application about faults and what the application needs to know.

4.2.5.3 Recommended Research Agenda for Debugging

Debugging technology needs to grow away from monolithic applications toward runtime libraries and
layers that detect problems and aggregate highly concurrent debugging information into a categorical
rather than task based context. Pursuing this path raises a variety of research challenges whose solution
will be critical to finding a successful approach to debugging at exascale:

§ Methods for scalable clustering of application process/thread states – Many millions of synopses
can be made understandable by clustering into types or categories. Debuggers will need to have
the ability to search through this volume of data to find the “needle in the haystack” in order to
speed root cause determination.

§ Debugging without stopping (resilient analysis of victim processes) – Support for debugging will
be needed in cases where one node has died, and OS and runtime methods are able to migrate
and/or reschedule failed tasks, keeping the application alive. Debuggers will need interoperability
with system and runtime fault tolerance technologies.

§ Vertical integration of debug and performance information across software layers – It will be
necessary to find ways to move debugging into multiple levels of application development, build,
and execution in order to get a fuller picture of application problems. Consistent standards in the
design of these interfaces will be needed to make debuggers and tools more portable as well as
easer to develop and maintain.

§ Layered contexts or modes of debugging – Instead of a one-size-fits-all approach, developers will
need to be able to select custom levels of debug in order to connect the dots between potential
bugs and their causes. “All the data all the time” will not be an option for full-scale exascale
debugging. Intelligent selection from a menu of reliable data sources will have to be able to target
the specifics of a potential bug.

§ Automatically triggered debugging – Instead of debugging test cases in a separate session, some
exascale debugging must be delivered as problems unfold. Users will have to be able to advise
the application about objectives from which deviation is considered a bug. A debugging
framework with these capabilities would enable applications to advise the user about problem

37

indicators, for example, expanding memory footprint, incorrectness, and sudden changes in
performance.

By focusing on the ability of debugging frameworks to scale and communicate well, this agenda will
lower the barriers to debugging, lower the human and machine costs of debugging, and enhance the trust
in the reliability of scientific output from exascale systems.

Timeframe Targets and Milestones – Debugging Tools

2010-11
Planning and workshops
Lightweight debugging at 1e5 cores

2012-13 Support for heterogeneity in nodes
2014-15 Simulation at 106 cores
2016-17 Software development to support 1e6 core production debugging
2018-19 Near-production exascale

	

4.3 Applications
While IESP may not focus on developing applications per se, they are nevertheless the reason for the
existence of such systems. It may be that exascale systems are specialized machines, co-designed with
specific families of applications in mind. Therefore, IESP needs to invest in the technology that makes
these applications feasible.

4.3.1 Application Element: Algorithms

4.3.1.1 Technology and Science Drivers for Algorithms

Algorithms must be developed to deal with the architectural realities in an exascale system. In addition,
algorithmic innovation can provide efficient alternatives to computer hardware, addressing issues such as
reliability and power.

Scalability is perhaps the most obvious driver for algorithms. Contributing to scalability are problems in
concurrency, latency, and load balancing. Because an exascale system will have 108 to 109 threads, simply
creating enough concurrency from an application can become a challenge (a 10003 mesh has one point per
thread on such a system; the low computation/communication ratio of such a problem is typically
inefficient). Even current systems have a 103–104cycle hardware latency in accessing remote memory.
Hiding this latency requires algorithms that achieve a computation/communication overlap of at least 104
cycles; exascale systems are likely to require a similar degree of latency hiding (because the ratio of
processor and memory speeds are expected to remain about the same). Many current algorithms have
synchronization points (such as dot products/allreduce) that limit opportunities for latency hiding (e.g.,
Krylov methods for solving sparse linear systems). These synchronization points must be eliminated.
Moreover, static load balancing rarely provides an exact load balance; experience with current terascale
and near-petascale systems suggests that this is already a major scalability problem for many algorithms.

Fault tolerance and fault resilience are also drivers for algorithms. While hardware and system software
solutions to managing faults are possible, it may be more efficient for the algorithm to contribute to
solving the fault resilience problem. Experience shows applications may not detect faults (which may also
be missed by the hardware); we need to evaluate the role of algorithms in detecting faults. Detecting
faults in hardware requires additional power and memory. Regardless of which component detects a fault,
must be repaired. The current general-purpose solutions (e.g., checkpoint/restart) are already demanding

38

on high-end platforms (e.g., requiring significant I/O bandwidth). We need to evaluate the role of
algorithms in repairing faults, particularly transient (e.g., memory upset) faults. In addition, one can
imagine a new class of algorithms that are inherently fault-tolerant, such as those that converge
stochastically. The advantage of robustness on exascale platforms will eventually override concerns over
computational efficiency.

Because of the likely complexity of an exascale system, algorithms must be developed that are a good
match to the available hardware. One of the most challenging demands is power; algorithms that
minimize power use need to be developed. This will require performance models that include energy.
Note that this may be combined with other constraints, since data motion consumes energy. As many
proposals for exascale systems (and power-efficient petascale systems) exploit heterogeneous processors,
algorithms will need to be developed that can make use of these processor structures. The current
experience with GPGPU systems, while promising for some algorithms, has not shown benefits with
other algorithms. Heterogeneous systems also require different strategies for use of memory and
functional units. For example, on some hardware it may be advantageous for algorithms to exploit
multiple levels of precision. Exascale systems are likely to have orders of magnitude less memory per
core than current systems (though still large amounts of memory). Power constraints may reduce the
amount of fast memory available, adding to the need for latency hiding. Thus we need algorithms that use
memory more efficiently, for example, more accuracy per byte, fewer data moves per result. The choice
of algorithm for a particular application may depend sensitively on details of the memory hierarchy and
implementation; portability between diverse architectures will require algorithms that can automatically
adjust to local hardware constraints.

The final driver is this need to re-examine the classes of applications that are suitable for exascale
computing. Because exascale systems are likely to be different from simple extrapolations of petascale
systems, some application areas may become suitable again; others (because of the extreme scale and
degree of concurrency) may become possible for the first time.

A major concern is that an exascale system may be very different from current systems and will require
new approaches.

4.3.1.2 Alternative R&D Strategies for Algorithms
All strategies for developing algorithms for exascale systems must start with several “strawman exascale
architectures” that are described in enough detail to permit the evaluation of the suitability of current
algorithms on potential exascale systems. There are then two basic strategies: (1) refine existing
algorithms to expose more concurrency, adapt to heterogeneous architectures, and manage faults and (2)
develop new algorithms.

In refining algorithms, a number of strategies may be applied. Developing new algorithms requires
rethinking the entire application approach, starting with the choice of mathematical model and
approximation methods used. It is also important to re-evaluate existing methods, such as the use of
Monte Carlo; reconsider tradeoffs between implicit and explicit methods; and replace FFT with other
approaches that can avoid the all-to-all communication. In creating algorithms that are fault tolerant, a
key approach is to use or create redundant information in the algorithm or mathematical model. To make
effective use of likely exascale hardware, methods that make more efficient use of memory, such as
higher-order methods, as well as the development of more predictive analytic performance models, will
be key.

4.3.1.3 Recommended Research Agenda for Algorithms
A research agenda is shown in the table below, along with comments providing more detail about each in
the enumerated list below. Not captured in this table is the need to follow two broad strategies: an
evolutionary one that updates current algorithms for exascale (following the approaches that have

39

successfully been followed to take us to petascale) and one that invests in higher risk but higher payoff
development of new algorithms. In either case, it is important to develop performance models (and thus
strawman exascale architecture designs) against which algorithm developments can be evaluated. In
addition, it is all too easy for applications to define algorithm “requirements” that overly constrain the
possible solutions. It is important to re-evaluate application needs, for example, evaluating changes to the
model or approximation to allow the use of exascale-appropriate algorithms.

Against this background, the critical research challenges that need to be addressed for application
algorithms that build on the X-stack are as follows:

§ Gap analysis – need to perform a detailed analysis of the applications, particularly with respect to
quantitative models of performance and scalability

§ Scalability, particularly relaxing synchronization constraints

§ Fault tolerance and resilience, including fault detection and recovery

§ Heterogeneous systems – algorithms that are suitable for systems made of functional units with
very different abilities

Timeframe Targets and Milestones – Algorithms

2010-11

Gap analysis. Needs to be completed early to guide the rest of the effort.
Evaluation of algorithms needed for applications. Needs to be initiated early and
completed early to guide allocation of effort and to identify areas where apps
need to rethink the approach (cross-cutting issue). Needs to develop and use
more realistic models of computation (quantify need).

2012-13

Algorithms for intranode scaling
Algorithms for internode scaling
Evaluation on petascale systems

Better scaling in node count and within nodes can be performed using petascale
systems in this Timeframe (so it makes sense to deliver a first pass in this
Timeframe).

2014-15

Prototype algorithms for heterogeneous systems
Heterogeneous systems are available now but require both programming model
and algorithmic innovation; while some work has already been done, others may
require more time. This can be viewed as “a significant fraction of algorithms
required for applications expected to run at exascale have effective algorithms
for heterogeneous processor systems.”

2016-17

Fault resilience
Fault resilience is a hard problem; this assumes that work starts now but will
take this long to meet the same definition as for heterogeneous systems – “a
significant fraction of algorithms have fault resilience.”

40

2018-19

Efficient realizations of algorithms on exascale architectures
Efficient implementation includes the realization in exascale programming
models and tuning for real systems, which may involve algorithm modifications
(since the real architecture will most likely be different from the models used in
earlier developments). In addition, the choice of data structures may also change,
depending on the abilities of compilers and runtimes to provide efficient
execution of the algorithms.

4.3.1.4 Cross-Cutting Considerations
The ability to design and implement efficient and novel algorithms for exascale architectures will be
closely tied to improvements in many cross-cutting areas. Examples include the following:

The development of libraries that recognize and exploit the presence of mixed precision mathematics will
spur the creation of algorithms that effectively utilize heterogeneous hardware. Ideally, the user could
specify the required precision for the result, and the algorithm would choose the best combination of
precision on the local hardware in order to achieve it. The actual mechanics would be hidden from the
user.

The creation of debugging tools that expose cache use, load imbalance, or local power utilization will be
critical for the implementation of self-optimizing algorithms in each of these areas. Currently available
methods of debugging large-scale codes to catch, for example, load-balancing issues are manpower
intensive and represent a significant barrier to the development of efficient algorithms.

Runtime systems that make available to the running code information about MTBF on the hardware can
allow for auto-adjustment of defensive restart strategies. The I/O strategy for even a petascale simulation
must be carefully optimized to avoid wasting both compute and storage resources. The situation will only
be more critical at exascale.

Tuning of algorithms for performance optimization will benefit from compilers and programming
languages that can recognize and utilize multiple levels of parallelism present in the hardware. Current
strategies for optimization on HPC architectures result in either one-off, hand-tuned codes or portable and
inefficient codes, since it is difficult to express multiple possible levels of parallelism into the structure of
the code. The increased portability allowed by some measure of autotuning will maximize the ROI on
code development and thus lower the effective cost of entry into HPC.

4.3.2 Application Support: Data Analysis and Visualization

4.3.2.1 Technology and Science Drivers for Data Analysis and Visualization

Modern scientific instruments—for example, in synchrotron science, high energy physics, astronomy, and
biotechnology—are all experiencing exponential growth in data generation rates through a combination of
improved sensors, increases in scale, widespread availability, and rapid advances in the supporting
information technology. Model simulations—for example, in climate, CFD, materials science, and
biological science—are also producing vast amounts of data as they scale with the exponential growth in
HPC performance. Experimental science, modeling, and simulation are routinely generating petabyte-
scale data sets. Exabyte-scale data sets are now part of the planning process for major scientific projects.

The increasing scale and complexity of simulations and the data they produce will be a key driver of the
research agenda in the area of data analysis and visualization. These will force new approaches to
coupling analysis and visualization computations to the larger datasets. Considerations of dataset size will
also drive innovations in analysis techniques, allowing for the advancement of current technology and
requiring the research and development of new solutions. Analysis and visualization will be limiting
factors in gaining insight from exascale data.

41

Interactive data exploration will also become increasingly important as dataset scale and complexity
continue to grow. However, it will become increasingly difficult to work interactively with these datasets,
thus requiring new methods and technologies. These solutions will need to supply the scientist with
salient reductions of the raw data and new methods for information and process tracking.

4.3.2.2 Alternative R&D Strategies for Data Analysis and Visualization

Several strategies for enabling data analysis and visualization at exascale are available to us. One strategy
would be to continue to incrementally improve and adapt existing technologies (visualization and analysis
algorithms, data management schemes, end-to-end resource allocation). This adiabatic expansion of
current efforts is well traveled and has a lower barrier to entry than others, but it may not provide
adequate solutions in the long run.

Inevitably, some combination of existing technologies and the integration of the four approaches
described next will serve important roles in the necessary R&D enterprise.

§ New algorithms – It would make sense to pursue development of entirely new algorithms that fit
well with new large and complex architectures. This approach will be increasingly difficult,
owing to the need to explicitly account for larger pools of heterogeneous resources.

§ New data analysis approaches – New mathematical and statistical approaches must be identified
for analysis of exabyte data sets.

§ Integrated adaptive techniques – Development of integrated adaptive techniques will enable on
the fly and learned pattern performance optimization from fine to coarse grain. This strategy
would provide a range of means to extract meaningful performance improvements implicitly,
rather than by explicit modeling of increasingly complex systems.

§ Pro-active software methods – Another strategy is to expand the role of supporting visualization
environments to include more pro-active software: model- and goal-aware agents, estimated and
fuzzy results, and advanced feature identification. This strategy will require abdicating some
responsibility to autonomous system software in order to more rapidly sift through large amounts
of data in search of hidden elements of discovery and understanding.

§ Metatools – With a focus on mitigating the increasing burden of high-level organization of the
exploration and discovery process, it would be advantageous to invest in methods and tools for
keeping track of the processes and products of exploration and discovery. These will include aids
to process navigation, hypothesis tracking, workflows, provenance tracking, and advanced
collaboration and sharing tools.

§ Collaboration – Deployment of a global system of large-scale, high-resolution (100 Mpixel)
visualization and data analysis systems based on open-source architectures will link universities
and research laboratories and facilitate collaborations.

4.3.2.3 Recommended Research Agenda for Data Analysis and Visualization

Many of the innovations required to cope with exascale data analysis and visualization tasks will require
considerable development and integration in order to become useful. At the same time, most would be of
considerable utility at the petascale. Consequently, it is not only required but could provide up-front
benefits to aggressively develop the proposed methods so that they can be deployed early, at least in
prototype form, for extensive use in research situations and rigorously evaluated by the application
community.

Among the research topics that will prove critical in achieving this goal are the following:

§ Identification of features of interest in exabytes of data

42

§ Visualization of streams of exabytes of data from scientific instruments

§ Integrating simulation, analysis, and visualization at exascale

Ongoing activities supporting adiabatic expansion of existing techniques onto new hardware architectures
and R&D of new algorithms will continue throughout the time span. The major milestones and timetable
reflected in the following table would be supported by development of many of the ideas at smaller scale,
beginning as soon as possible.

Timeframe Targets and Milestones – Data Analysis and Visualization

2010-11

Planning and workshops
• Assess current tools and technologies
• Perform needs and priority analysis across multiple disciplines
• Identify common components
• Identify new mathematical and statistical research needed for analysis of

exabyte data sets
• Integrate analysis and visualization into scientific workflows
• Develop exascale data analysis and visualization architecture document
• Commence initial set of projects for common components and domain

specific data analysis and visualization libraries
• Plan deployment of a global system of large-scale, high-resolution (100

Mpixel) visualization and data analysis systems to link universities and
research laboratories

2012-13

Develop 1.0 common component data analysis and visualization libraries
Develop 1.0 priority domain-specific data analysis and visualisation libraries

 Begin deployment of a global system of large-scale, high-resolution (100 Mpixel)
visualization and data analysis systems
 Achieve data analysis and visualization at 105 cores with petabyte data sets
 Provide support for heterogeneity in nodes

2014-15
Integrate data analysis and visualization tools in domain-specific workflows
Achieve data analysis & visualization at 106 cores with 10–100 petabyte data sets

2016-17
Complete 2.0 domain specific data analysis and visualization libraries and workflows
Complete 2.0 common component data analysis and visualisation libraries
Achieve data analysis and visualization at 106 cores with near-exascale data sets

2018-19 Roll out data analysis and visualization at exascale

4.3.2.4 Cross-Cutting Considerations

Architecture at coarse and fine grain. Analysis and visualization can use any or all of the computational,
storage, and network resources in a computational environment. Methods developed to address the

43

driving technology and science issues are likely to intersect with the design and implementation of future
architectures at all granularities, from wide-area considerations to heterogeneity of available processing
elements. Also, compiler and debugging tools appropriate for software development on exascale systems
will need to be developed to meet the needs of the timetable outlined above.

Opportunistic methods. Many emerging approaches to analysis and visualization leverage opportunities
that arise from data locality (e.g., in situ methods), synergies of happenstance (as in analysis embedded in
I/O libraries and data movers), and unused capacity (e.g., background analysis embedded in I/O servers).
These will each require coordination with fine-grained execution of the numerical algorithms used in the
simulation, ongoing read/write operations, and system-level resource scheduling. Researchers should
consider using exascale performance to rapidly perform model simulations, with data analysis and
visualization integrated into the simulation to avoid storing vast amounts of data for later analysis and
visualization. This strategy would affect the development of domain-specific simulation codes.
End-to-end or global optimizations. Improvements in understanding algorithms for large-scale
heterogeneous architectures and the related advances in runtime and compiler technologies are likely to
afford new opportunities for performance optimization of the combined simulation and analysis
computations. These and other benefits may accrue from taking a more holistic view of the end-to-end
scientific discovery pipeline. Integrating data analysis and visualization into domain-specific exascale
scientific workflows will be essential to maximizing the productivity of researchers working on exascale
systems.

4.3.3 Application Support: Scientific Data Management

4.3.3.1 Technology and Science Drivers for Scientific Data Management

Management, analysis, and mining of large data sets already present challenging problems, but these
activities are critical in petascale systems and will be even more so for exascale systems. Most science
applications at this scale will be extremely data intensive; individual simulations are expected to produce
petabytes of data and, when combined with multiple executions, the data could approach exabyte scales.
Thus, managing scientific data has been identified by the scientific community as one of the most
important emerging needs because of the sheer volume and increasing complexity of data. The potential
impact of exascale computing will be measured not just in the power it can provide for simulations but
also in the capabilities it provides for managing and making sense of the data produced. Clearly needed is
an end-to-end approach that encompasses all stages, from the initial data acquisition to the final analysis
of the data. Many common questions arise across various application disciplines. Are data management
tools available that can manage data at this scale? Although scalable file systems are important as
underlying technologies, they are not suitable as a user-level mechanism for scientific data management.
What are the scalable algorithm techniques for statistical analysis and mining of data at this scale? Are
there mathematical models? Does the “store now and analyze later” model work at this scale? What are
the models and tools for indexing, querying, and searching these massive datasets and for knowledge
discovery? What are the tools for workflow management? An emerging model relies ever more on teams
working together to organize new data, develop derived data, and produce analyses based on the data, all
of which can be shared, searched, and queried. What are the models for such sharing, and what are
designs for such databases or data warehouses? Data provenance is another critical issue at this scale.
What are scalable data formats, and what are the formats for metadata?

4.3.3.2 Alternative R&D Strategies for Scientific Data Management

Scientific data management covers many subfields, from data formats, workflow tools, and query to data
mining and knowledge discovery. For most of the subfields, R&D strategies must simultaneously
consider the scalable I/O and storage devices for the required scaling for exascale systems.

44

Data Analysis and Mining Software and Tools: Knowledge discovery from massive datasets produced or
collected will require sophisticated, easy-to-use, yet scalable tools for statistical analysis, data processing,
and data mining. Scalable algorithms and software must be developed that can handle multivariate,
multidimensional (and large number of dimensions), hierarchical, and multiscale data at massive scales.
Scalable tools based on these algorithms must be developed with a capability to incorporate other
algorithms. Traditionally, analytics and mining specification languages have been sequential and are
unable to scale to massive datasets. Parallel languages for analysis and mining that can scale to massive
data sets will be important. Data mining and analysis scalability can also be addressed via the use of
accelerators such as GPGPUs and FPGAs; and the development of scalable algorithms, libraries, and
tools that can exploit these accelerators will be important. Techniques for on-line analytics, active storage
models, and co-processing models should be developed that can run concurrently (potentially on a
subsystem) with the simulations and can exploit the multicore nature of the systems. Also, maximizing
the use of data while it is available should be investigated.

Scientific Workflow Tools: Scientific workflow is defined as a series of structured activities, computation,
data analysis, and knowledge discovery that arise in scientific problem-solving. That is, it is a set of tools
and software that allow a scientist to specify end-to-end control and data flow as well as coordination and
scheduling of various activities. Designing scalable workflow tools with easy-to-use interfaces will be
important for exascale systems, both for performance and for scientific productivity as well as for
effective use of these systems. Scaling of workflow tools will entail enhancements of current designs
and/or developing new approaches that can effectively use scalable analytics and I/O capabilities and that
can incorporate query processing. New design mechanisms, including templates, semantic types, and user
histories will simplify workflow design and increase dependability. As a part of workflow tools, the
creation, management, querying, and use of data provenance must be investigated.

Extensions of Databases Systems: Commercial database systems such as those based on relational or
object models (or derivation thereof) have proved unsuitable for organizing, storing, or querying scientific
data at any reasonable scale. Although it is an alternative for pursuing data management solutions, it is
not likely to be successful.

Design of New Database Systems: A potential approach to database systems for scientific computing is to
investigate completely new approaches that scale in performance, usability, query, data modeling, and an
ability to incorporate complex data types in scientific applications and that eliminate the overconstraining
usage models, which are impediments to scalability in traditional databases. Scalable file systems will be
critical as an underlying software layer, but not as a user-level interface for data management purposes. It
is critical to move to dataset-oriented paradigms for data management, in which the file systems serve the
data management layer and need to be optimized for limited functionality needed by the data management
layer, which in turn presents an intuitive, easy-to-use interface to the user for managing, querying and
analyzing data with a capability for the users to embed their functions within the data management
systems.

Scalable Data Format and High-Level Libraries: Scientists use different data formats, mainly driven by
their ability to specify the multidimensional, multiscale, often sparse, semi-structured, unstructured, and
adaptive data. Examples of these formats and corresponding libraries include netCDF and HDF and their
corresponding parallel (PnetCDF and PHDF) versions. Changes in these have been driven mainly by
backward compatibility. Approaches to adapt and enhance these formats and scale the data access
libraries must be investigated. Furthermore, new storage formats that emphasize scalability and the use of
effective parallel I/O, along with the capabilities to incorporate analytics and workflow mechanisms, are
important areas for research and development. Although the use of new storage devices such as SCM has
been discussed in the context of I/O systems, their use in redesigning or optimizing storage of data and

45

metadata for performance and effective querying high-level data formats and libraries should be pursued,
especially given that accessing metadata is a major bottleneck.

Search and Query Tools: Effective searching and querying of scientific data are critical. New technology
is needed for efficient and scalable searching and filtering of large-scale, scientific multivariate datasets
with hundreds of searchable attributes to deliver the most relevant data and results. Users may be
interested in querying specific events or the presence or absence of certain data subsets. Furthermore,
filtering of data based on certain query specifications is important, including capabilities to combine
multiple data sets and query across them.

Wide-Area Data Access, Movement, and Query Tools: Wide-area data access is becoming an increasingly
important part of many scientific workflows. In order to most seamlessly interact with wide-area storage
systems, tools must be developed that can span various data management techniques across a wide area,
integrated with scalable I/O, workflow tools, and query and search techniques.
4.3.3.3 Recommended Research Agenda for Scientific Data Management

The recommended research agenda for scientific data management systems includes all items above
except for “Extensions to Database Systems.”

Timeframe Targets and Milestones – Scientific Data Management

2010-11
• Extensions and redesign of scalable data formats
• Extend capabilities of workflow tools to incorporate analytics
• Design of data mining and statistical algorithms for multiscale data

2012-13

• Design and definition of scientific database systems
• Workflow tools with fault-resiliency specification capabilities
• Integration of scalable I/O techniques with wide-area SDM technologies

2014-15

• Analytics and mining for active storage Systems, including functionality for users to
embed their functions.

• Scalable implementations of high-level libraries for various high-level data formats
• Scalable query and search capabilities in scientific database systems

2016-17

• Comprehensive parallel data mining and analytics suites for scalable clusters with
GPGPU and other accelerators

• Extensive capabilities for managing data provenance within the workflow and other
SDM tools

• On-line analytics capability and its integration with workflow tools

2018-19 • Real-time knowledge discovery and insights
• Comprehensive scientific data management tools

4.3.3.4 Cross-Cutting Considerations

Scientific data management clearly has cross-cutting considerations with scalable storage and I/O,
visualization techniques and tools, operating systems, fault-resiliency mechanisms, the communication
layer, and, to some extent, programming models.

46

4.4 Cross-Cutting Dimensions
4.4.1 Resilience
Since exascale systems are expected to have millions of processors and hundreds of millions of cores,
resilience will be necessary for the exascale applications. If the relevant components of the X-stack are
not fault tolerant, then even relatively short-lived applications are unlikely to finish, or worse, may
terminate with an incorrect result. In other words, insufficient resilience of the software infrastructure
would likely render extreme scale systems effectively unusable. The amount of data needing to be
checkpointed and the expected rate of faults for petascale and larger systems are already exposing the
inadequacies of traditional checkpoint/restart techniques. The trends predict that, for exascale systems,
faults will be continuous and across all parts of the hardware and software layers, which will require new
programming paradigms. Because there is no compromise for resilience, the challenges it presents need to
be addressed now for solutions to be ready when exascale systems arrive.

4.4.1.1 Technology Drivers for Resilience

Five technology drivers have been identified.

§ Exponential increases in the number of sockets, cores, threads, disks, and memory size are
expected.

§ Because of the size and complexity, there will be more faults and a large variety of errors (soft
errors, silent soft errors, transient and permanent software and hardware errors) everywhere in the
system. Some projections consider than the full-system mean time to failure will be in the range
of one minute.

§ Silent soft errors will become significant and raise the issues of result and end-to-end data
correctness.

§ New technologies such as Flash memory (SSD), phase-change RAM, and accelerators will raise
both new opportunities (stable local storage, faster checkpointing, faster checkpoint compression,
etc.) and new problems (capturing the state of accelerators).

§ Intel has estimated that additional correctness checks on chip will increase power consumption
15–20%. The need to significantly reduce the overall power used by exascale systems is likely to
reduce the reliability of components and reduce the mean time to failure of the overall system.

4.4.1.2 Gap Analysis

This section briefly identifies the technology gaps that must be overcome in moving from current high-
performance computing to the exascale.

§ Existing fault tolerance techniques (global checkpoint/global restart) will be impractical at the
exascale. New techniques for saving and restoring state need to be developed into practical
solutions.

§ The most common programming model, MPI, does not offer a paradigm for resilient
programming. A failure of a single task often leads to killing the entire application.

§ Present applications and system software are neither fault tolerant nor fault aware and are not
designed to confine errors/faults, to avoid or limit their propagation, and to recover from them
when possible.

§ There is no communication or coordination between the layers of the software stack in error/fault
detection and management, nor coordination for preventive or corrective actions.

47

§ Errors, fault root causes, and propagation are not well understood.

§ There is almost never verification of the results from large, long-running simulations.

§ There are no standard metrics, no standardized experimental methodology, and no standard
experimental environment to stress resilience solutions and compare them fairly.

4.4.1.3 Alternative R&D Strategies

Resilience can be attacked from different angles:

• Global recovery versus fault confinement and local recovery

• Fault recovery versus fault avoidance (fault prediction + migration)

• Transparent (system managed) versus application directed

• Recovery by rollback versus replication

Since rollback recovery, as we know it today, will be not applicable by 2014–2016, research needs to
progress on all techniques that help to avoid global coordination and global rollback.

4.4.1.4 Recommended Research Agenda for Resilience

The recommended research agenda follows two main tracks:

1. Extend the applicability of rollback toward more local recovery – scalable, low overhead, fault
tolerant protocols, integration of SSD and PRAM for checkpointing, reducing checkpoint size
(new execution state management), error and fault confinement and local recovery, consistent
fault management across layers (including application and system software interactions),
language support and paradigm for resilience, and dynamic error handling by applications

2. Fault-avoidance and fault-oblivious software to limit the recovery from rollback – improve RAS
collection and analysis (root cause); improve understanding of error/fault and their propagation
across layers; develop situational awareness, system-level fault prediction for time optimal
checkpointing and migration, fault-oblivious system software, and fault-oblivious applications

Timeframe Targets and Milestones -- Resilience

2010-12

Target 1: Extension of the applicability of rollback recovery

• Design of scalable, low-overhead, fault-tolerant protocols
• Integration of checkpoint size reducing techniques (compiler, incremental,

compression, etc.)
• Demonstration of partial-local replication as complement to rollback

2013-15

Target 1: Extension of the applicability of rollback recovery

• Integration of Phase-change RAM technologies
• Implementation of error and fault confinement, local recovery, TMR (cores)
• Development of fault-aware system software
• Provision of language support and paradigm for resilience
• Developoment of application and system software interactions (standard API)
• Consistency across layers (CIFTS or CIFTS like mechanisms)

48

Target 2: Fault-avoidance and fault-oblivious software

• RAS collection and analysis (root cause), situational awareness
• Hardware and software integration

2016-19

Target 2: Fault-avoidance and fault-oblivious software

• System-level fault prediction for time-optimal checkpointing and migration
• Fault-oblivious system software
• Fault-oblivious applications

4.4.2 Power Management

4.4.2.1 Technology Drivers for Power Management

Power has become the leading design constraint for future HPC system designs. In thermally limited
designs, power also forces design compromises that lead to highly imbalanced computing systems (such
as reduced global system bandwidth). The design compromises required for power-limited logic will
reduce system bandwidth and consequently reduce delivered application performance and greatly limit
the scope and effectiveness of such systems. From a system management perspective, effective power
management systems can substantially reduce overall system power without reducing application
performance, and therefore make fielding such systems more practical and cost-effective. The existing
power management infrastructure has been derived from consumer electronic devices and fundamentally
never had large-scale systems in mind. Without comprehensive cross-cutting technology development for
a scalable active power management infrastructure, power consumption will force design compromises
that will reduce the scope and feasibility of exascale HPC systems.

From an applications perspective, active power management techniques improve application performance
on systems with a limited power budget by dynamically directing power usage only to the portions of the
system that require it. For example, a system without power management would melt if it operated
memory interfaces at full performance while also operating the floating-point unit at full performance—
forcing design compromises that limit the memory bandwidth to 0.01 bytes/flop according to the DARPA
projections. In this thermally limited case, however, one can deliver higher memory bandwidth to the
application for short periods of time by shifting power away from other components. Whereas the
projected bandwidth ratio for a machine would be limited to 0.01 bytes/flop without power management,
the delivered bandwidth could be increased to 1 byte/flop for the period of time where the application is
bandwidth limited, by shifting the power away from floating point (or other components that are under-
utilized in the bandwidth-limited phase of an algorithm). Therefore, power management is an important
part of enabling better delivered application performance through dynamic adjustment of system balance
to fit within a fixed power budget.

From a system management perspective, power is a leading component of system total-cost-of-ownership.
Every megawatt of reduced power consumption translates to a savings of $1M/year on even the least
expensive energy contracts. For systems that are projected to consume hundreds of megawatts, power
reduction makes fielding of such systems more practical. HPC-focused power management technology
can have a much broader impact across the large-scale computing market. High-end servers, which are
the building blocks of many HPC systems, were estimated to consume 2% of North American power
generation capacity as of 2006, and this factor is growing. By 2013, IDC estimates that HPC systems will
be the largest fraction of the high-end server market. Hence, the direct impact of improved power
management technology is to reduce the operating cost for exascale HPC systems, but the broader impact
is to reduce power consumption of the largest and fastest growing sector of the computing technology
market (HPC systems) and reduce carbon emissions for all server technology.

49

The current state-of-the-art power management systems are based on features developed for the
consumer-electronics and laptop markets, which make local control decisions to reduce power.
Unfortunately, the technology to collect information across large-scale systems and make control
decisions that coordinate power management decisions across the system is not well developed, nor are
reduced models of code performance for optimal control. Furthermore, the interfaces for representing
sensor data for the control system, describing policies to the control system, and distributing control
decisions are not available at scale. Effective system-wide power management will require development
of interface standards to enable both vertical (e.g., between local components and integrated system) and
horizontal (e.g., between numerical libraries) integration of components. Standardization is also a
minimum requirement for broad international collaboration on development of software components. The
research and development effort required to bring these technologies into existence will touch on nearly
every element of a large-scale computing system design—from library and algorithm design to system
management software.

4.4.2.2 Alternative R&D Strategies for Power Management

Fundamentally, power management technology attempts to actively direct power towards useful work.
The goal is to reduce system power consumption without a corresponding impact on delivered
performance. This is accomplished primarily through two approaches

1. Power down components when they are underutilized: Examples include Dynamic Voltage and
Frequency Scaling (DVFS), which reduces the clock rate and operating voltage of components
when the OS directs it to. Memory systems also support many low-power modes when operating
at low loads. Massive Arrays of Redundant Disks (MAID) allow disk arrays to be powered down
incrementally (subsets of disks) to reduce power. In the software space, operating systems or
libraries use information about the algorithm resource utilization to set power management policy
to reduce power.

2. Explicitly manage data movement: Both algorithms and hardware subsystems are used to manage
data movement to make the most effective use of available bandwidth (and hence power).
Examples from the hardware space include solid state disk caches to lower I/O power for
frequently accessed data, offloading of work to accelerators, and software-managed memory
hierarchies (local stores). Examples from the software space include communication avoiding
algorithms, programming models that abstract use of local stores, and libraries that can adapt to
current power management states or power management policy.

Current power management features are derived primarily from consumer technology, where the power
savings decisions are all made locally. For a large parallel system, locally optimal solutions can be
tremendously nonoptimal at the system scale. When nodes go into low-power modes, opportunistically
based on local decisions, they create a jitter that can substantially reduce systemscale performance.
Therefore, localized automatic power management features are often turned off on production HPC
systems. Moreover, the decision to change system balance dynamically to conserve power requires
advance notice because there is latency for changing between different power modes. Hence, the control
loop for such a capability requires a predictive capability to make optimal control decisions. Therefore,
new mechanisms that can coordinate these power savings technologies at system scale will be required to
realize an energy-efficiency benefit without a corresponding loss in delivered performance.

A completely adaptive control system requires a method for sensing current resource requirements,
making a control decision based on an accurate model for how the system will respond to the control
decision, and then distributing that control decision in a coordinated fashion. Currently, the control loop
for accomplishing this kind of optimal control for power management is fundamentally broken. Predictive
models for response to control decisions are generally hand-crafted (a time-consuming process) for the

50

few examples that exist. There is no common expression of policy or objective. There is no
comprehensive monitoring or data aggregation. More important, there is almost no tool support for
integration of power management into libraries and application codes. Without substantial investments to
create system-wide control systems for power management, standards to enable vertical and horizontal
integration of these capabilities, and the tools to facilitate easier integration of power management
features into application codes, there is little chance that effective power management technologies will
emerge. The consequence will be systems that must compromise system balance (and hence delivered
application performance) to fit within fixed power constraints, or systems that have impractical power
requirements.

4.4.2.3 Recommended Research Agenda for Power Management

The R&D required for the X-stack to enable comprehensive, system-wide power management is
pervasive and will touch on a broad variety of system components. The cross-cutting research agenda
includes the following elements.

Operating System/Node Scale Resource Management: Operating systems must support quality-of-
service management for node-level access to very limited/shared resources. For example, the OS must
enable coordinated/fair sharing of the memory interface and network adaptor by hundreds or even
thousands of processors on the same node. Support for local and global control decisions requires
standardized monitoring interfaces for energy and resource utilization (PAPI for energy counters).
Standard control and monitoring interfaces enable adaptable software to handle diversity of hardware
features/designs. Future operating systems must also manage new power-efficient architectures;
heterogeneous computing resources, including devices such as GPUs, embedded CPUs, and nonvolatile
low-power memory and storage; and data movement and locality in memory hierarchy.

Systemscale Resource Management: Power performance monitoring and aggregation are needed that
scale to a 1 billion-core system. System management services require standard interfaces to enable
coordination across subsystems and international collaboration on component development. Many power
management decisions must be executed too rapidly for a software implementation and hence must be
expressed as a declarative policy rather than a procedural description of actions. Therefore, policy
descriptions must be standardized to do fine-grained management on chip. In particular, standards are
required for specifying reduced models of hardware power impact and algorithm performance to make
logistical decisions about when and where to move computation as well as the response to adaptations.
These include analytical power models of system response and empirical models based on advanced
learning theory. Also needed are scalable control algorithms to bridge the gap between global and local
models. Systems to aggregate sensor data from across the system (scalable data assimilation and
reduction) must make control decisions and distribute those control decisions in a coordinated fashion
across large-scale systems hardware. Both online and offline tuning options based on advanced search
pruning heuristics should be considered.

Algorithms: We must investigate energy-aware algorithms that base order of complexity on energy cost
of operations rather than FLOPs. A good example of this approach is communication-avoiding
algorithms, which trade off FLOPS for communication to save energy. Since the optimal trade-off is
context specific however, we must enable libraries to be annotated for a parameterized model of energy to
articulate a policy to manage those trade-offs on different system architectures. Standardizing the
approach to specifying lightweight models to predict response to resource adjustment will be important to
this effort.

Libraries: To create cross-architecture compatible, energy-aware libraries, library designers need to use
their domain-specific knowledge of the algorithm to provide power management and policy hints to the
power management infrastructure. This research agenda requires that performance/energy efficiency

51

models and power management interfaces in software libraries be standardized. Such standardization will
ensure compatibility of the management interfaces and policy coordination across different libraries
(horizontal integration) as well as support portability across different machines (vertical integration).

Compilers: Compilers and code generators must be able to automatically instrument code for power
management sensors and control interfaces to improve the programmability of such systems. Compiler
technology can be augmented to automatically expose “knobs for control” and “sensors” for monitoring
of nonlibrary code. A more advanced research topic is to find ways to automatically generate reduced
performance and energy consumption models to predict response to resource adaptation.

Applications: Applications require more effective declarative annotations for policy objectives and
interfaces to coordinate with advanced power-aware libraries and power management subsystems.

The proposed research agenda targets the following key metrics for improving overall effectiveness of
exascale systems.

§ Performance: Scalable, lightweight, and cross-software hierarchy performance models (analytic
models and empirical models) need to be constructed that enable predictive control of application
execution, so that we can find ways of reducing power without having a deleterious impact on
performance.

§ Programmability: The applications developers cannot be expected to manage power explicitly
due to the overwhelming complexity of the hardware mechanisms. Making power management
accessible to application and library architects requires coordinated support from compiler,
libraries, and system services.

§ Composability: There must be standards to enable system components and libraries that are
developed by different research groups to work in coordinated fashion with underlying power
systems. Standardization of monitoring and control interfaces minimizes the number of
incompatible ad-hoc approaches and enables an organized international effort.

§ Scalability: We must be able to integrate information from the OS, the system-level resource
manager, and applications and libraries for a unified strategy to meet objectives.

Timeframe Targets and Milestones – Power Management

2010-11

Energy monitoring Interface Standards

Energy-aware/communication avoiding algorithms

§ System management
§ Algorithms
§ Libraries
§ Compilers and frameworks
§ Applications

2012-13
Local OS-managed, Node-Level, Energy Efficiency Adaptation

System-level standard interfaces for data collection and dissemination of control
requests

52

2014-15

Compatible Energy-Aware Libraries Using Standardized Interfaces

Ability to annotate libraries for parameterized model of energy to articulate a policy to
manage trade-offs (different architectures)

Standardized approach to expressing lightweight performance models for predictive
control (analytic models and empirical models)

Scalable algorithms for adaptive control

2016-17
Automated Code Instrumentation (Compilers, Code Generators, Frameworks)

Standardized models of hardware power impact and algorithm performance to make
logistical decisions (when/where to move computation + response to adaptations)

2018-19
Automated System-Level Adaptation for Energy Efficiency

Scale up systems to 1 billion-way parallel adaptive control decision capability

4.4.3 Performance Optimization

4.4.3.1 Technology and Science Drivers for Performance Optimization

Exascale systems will consist of increasingly complex architectures with massive numbers of potentially
heterogeneous components and deeper memory hierarchies. Meanwhile, hierarchies of large, multifaceted
software components will be required to build next-generation applications. Taken together, this
architectural and application complexity is compounded by the fact that future systems will be more
dynamic in order to respond to external constraints such as power and failures. As reduced time-to-
solution is still the major reason to use supercomputers, powerful integrated performance modeling,
prediction, measurement, analysis, and optimization capabilities will be required to efficiently operate an
exascale system.

4.4.3.2 Alternative R&D Strategies for Performance Optimization

In the exascale regime the challenges of performance instrumentation, analysis, modeling, and
engineering will be commensurate with the complexity of the architectures and applications. An
instrumented application is nothing but an application with modified demands on the system executing it.
This makes current approaches for performance analysis still feasible in the future as long as all involved
software components are concurrent and scalable. In addition to increased scalability of current tools and
the use of inherently more scalable methods such as statistical profiling, techniques such as automatic or
automated analysis, advanced filtering, on-line monitoring, clustering, and analysis as well as data mining
will be of increased importance. A combination of various techniques will have to be applied.

Another alternative is a more performance-aware and model-based design and implementation of
hardware and software components from the beginning, instead of trying to increase the performance of a
functionally correct but poorly performing application after the fact.

In addition to user-controlled analysis and tuning, especially on higher-level (internode) components of
the X-stack, self-monitoring, self-tuning frameworks, middleware, and runtime schedulers—especially at
node levels—are necessary. Autotuning facilities will be of great importance here.

Worse, all of these approaches might not work for machine architectures that are radical departures from
today’s machines. This situation likely will need fundamentally different approaches to performance
optimization.

53

In the performance modeling area, new methodologies will be needed that go beyond a static description
of the performance of applications running on the system, to capture the dynamic performance behavior
under power and reliability constraints. Performance modeling will also be a main tool for the co-design
of architectures and applications.

4.4.3.3 Recommended Research Agenda for Performance Optimization

The following considerations are key for a successful approach to performance at exascale:

§ Continued development of scalable performance measurement, collection, analysis (online
reduction and filtering, clustering), and visualization (hierarchical) facilities. Here, performance
analysis needs to incorporate techniques from the areas of feature detection, signal processing,
and data mining.

§ Support for modeling, measurement, and analysis of heterogeneous hardware systems.

§ Support for modeling, measurement and analysis of hybrid programming models (mixing MPI,
PGAS, OpenMP, and other threading models, accelerator interfaces).

§ Automated/automatic diagnosis and autotuning.

§ Reliable and accurate performance analysis in the presence of noise, system adaptation, and
faults. This work will require inclusion of appropriate statistical descriptions.

§ Performance optimization for metrics other than time (e.g., power).

§ Performance observability and control by hardware and software components through appropriate
interfaces and mechanisms (e.g., counters). The aim is to provide sufficient performance details
for analysis if a performance problem unexpectedly escalates to higher levels. Vertical integration
across software layers (OS, compilers, runtime systems, middleware, and application) will be
needed for this task.

§ Design of programming models with performance analysis in mind. Software and runtime
systems must expose their model of execution and adaptation as well as their corresponding
performance through a (standardized) control mechanism in the runtime system.

Timeframe Targets and Milestones – Performance Optimization

2012-13

• Support for hybrid programming models (mixing MPI, PGAS, OpenMP, and
other threading models, accelerator interfaces)

• Support for modeling, measurement, and analysis, and autotuning on/for
heterogeneous hardware platforms

2014-15
• Handling of observation of million-way concurrency
• Predictive exascale system design

2016-17
• Handling of observation of hundreds of million-way concurrency
• Characterize performance of exascale hardware and software for application

enablement
2018-19 • Handling of observation of billion-way concurrency

4.4.3.4 Cross-Cutting Considerations

In order to ensure performance analysis and optimization at exascale, the various components and layers
of the X-stack must be transparent with respect to performance. This performance in transparency will

54

result in escalation of unforeseen problems to higher layers, including the application. It is not a new
problem, but certain properties of an exascale system significantly increase its severity and significance.

§ At this scale, there always will be failing components in the system with a large impact on
performance. A real-world application will never run on the exact same configuration twice.

§ Load-balancing issues limit the success even on moderately concurrent systems, and the
challenge of locality will become another severe issue that has to be addressed by appropriate
mechanisms and tools.

§ Dynamic power management (e.g., at the hardware level inside a CPU) will result in performance
variability between cores and across different runs. The alternative of running at lower speed
without dynamic power adjustments may not be an option in the future.

§ The unknown expectation of the application performance at exascale will make it difficult to
detect a performance problem if it is escalated undetected to the application level.

§ The ever-growing higher integration of components into a single chip and the use of more and
more hardware accelerators make it more difficult to monitor application performance and move
performance data out of the system unless special hardware support will be integrated into future
systems.

§ Performance comes from all layers of the X-stack, so an increased integration with the different
layers, especially the operating systems, compilers, and runtime systems will be essential.

An integrated and collaborative approach clearly is needed to handle performance issues and correctly
detect and analyze performance problems.

4.4.4 Programmability
Programmability is the cross-cutting property that reflects the ease by which application programs may be
constructed. Although quantitative metrics are uncertain (e.g., SLOC) in their effectiveness, a qualitative
level of effort in programmer time may reflect relative degree, noting that there is no “bell jar”
programmer by which to make absolute comparisons. Programmability itself involves three stages of
application development: (1) program algorithm capture and representation, (2) program correctness
debugging, and (3) program performance optimization. All levels of the system, including the
programming environment, the system software, and the system hardware architecture, affect
programmability. The challenges to achieving programmability are myriad, related both to the
representation of the user application algorithm and to underlying resource usage.

§ Parallelism – sufficient parallelism must be exposed to maintain exascale operation and hide
latencies. It is anticipated that 10 billion-way operation concurrency will be required.

§ Distributed Resource Allocation and Locality Management – to make such systems
programmable, the tension must be balanced between spreading the work among enough
execution resources for parallel execution and colocating tasks and data to minimize latency.

§ Latency Hiding – intrinsic methods for overlapping communication with computation must be
incorporated to avoid blocking of tasks and low utilization of computing resources.

§ Hardware Idiosyncrasies – properties peculiar to specific computing resources such as memory
hierarchies, instruction sets, and accelerators must be managed in a way that circumvents their
negative impact while exploiting their potential opportunities without demanding explicit user
control.

§ Portability – application programs must be portable across machine types, machine scales, and
machine generations. Performance sensitivity to small code perturbations should be minimized.

55

§ Synchronization Bottlenecks – barriers and other overconstraining control methods must be
replaced by lightweight synchronization overlapping phases of computation.

4.4.4.1 Technology and Science Drivers for Programmability

As a cross-cutting property of exascale systems, programmability is directly affected by all layers of the
system stack. The programming model and language provide the application programming interface to the
user, determine the semantics of parallel computing, and deliver the degree of control and abstraction of
the underlying parallel execution system. The compiler assists in extracting program parallelism,
establishing granularity of computing tasks, and contributing to task scheduling and allocation. The
runtime system is critical to exploiting runtime information and determines the level of dynamic adaptive
optimization that can be exploited. The operating system supports the runtime system by providing
hardware resources on demand and providing robust operation. And, while not part of the software
system, the architecture directly affects programmability by fixing the overhead costs, latency times,
power requirements, memory hierarchy structures, heterogeneous cores, and other machine elements that
determine many of the challenges to programming and execution.

4.4.4.2 Alternative R&D Strategies for Programmability

The two general strategies for programmability are evolutionary, based on incremental extensions to
conventional programming models, and revolutionary, based on a new model of computation that directly
addresses the challenges to achieving exascale computing. The evolutionary strategy is expected to be
pursued as part of community efforts to extend common practices as far into the trans-petaflops
performance regime as possible. The MPI-3 Forum, the HPCS program, and the roadmaps for Cray and
IBM indicate possible trajectories of such incremental approaches. Hybrid programming models derived
from the integration of MPI and OCL or UPC have been suggested to achieve higher levels of scalability
through hierarchical parallelism while retaining compatibility with existing legacy codes, libraries,
software environments, and skill sets. However, it is uncertain as to how far the evolutionary approach
can be extended to meet the escalating challenges of scalability, reliability, and power. The evolutionary
strategy also assumes incremental extensions to current operating systems, primarily Unix derivatives
(e.g., Linux), that can improve efficiency of synchronization and scheduling while retaining the basic
process, Pthreads, and file model.

The revolutionary path follows historical patterns of devising new paradigms to address the opportunities
and challenges of emergent enabling technologies and the architectures devised to exploit them.
Revolutionary programming models and contributions at other system layers can be created to minimize
the programming burden of the programmer by employing methods that eschew the constraints of earlier
techniques while reinforcing the potential of future system classes.

4.4.4.3 Recommended Research Agenda for Programmability

Unlike programming models and languages, programmability spans all components of the system stack,
both system software and hardware architecture, that in any way influence the usability of the system to
craft real-world applications and have them perform correctly and with optimal performance through
minimum programmer time and effort. Thus, while research in programmability must include factors of
programming models, languages, and tools, it will also consider compilers, runtime systems, operating
systems, and hardware architecture structures and semantics.

New Model of Computation: In synthesizing the effects of potentially all system layers on
programmability, a single unifying conceptual framework is required to provide the governing principles
establishing the functionality and interoperability of the system components to operate in synergy and
realize critical performance properties. CSP, the common scalable execution model for STEM application
targeted systems, is already unduly stressed in support of present multicore/many-core heterogeneous

56

systems and cannot, in its current form, be expected to achieve the required functionality for scalability,
efficiency, and dynamic scheduling. Therefore, research must be conducted to devise a new, overarching
execution model either as a dramatic extension of current practices or an entirely new (likely based in part
on experimental prior art) model of computation explicitly derived to address the unique challenges of
exascale computing.

New Programming Models and Methods: Research into new programming models and ultimately
APIs, tools, and methods will be required in order to provide the user interface to construct new
application (and system software) programs and to determine which responsibilities of control of exascale
systems will devolve directly to the user and which will be assigned to lower levels of the system, thus
relieving the user of these burdens (but possible inhibiting needed control as well). An important property
of any new programming model is a clear separation of logical functionality from performance attributes;
such a separation distinguishes those aspects of code specification that convey across multiple platforms
unchanged (portability) from those that must be adjusted on a per platform basis for performance
optimization (tuning). Preferably, all machine-specific program optimizations will be accomplished by
lower system layers. New programming models will have to greatly expand the diversity of parallelism
forms and sizes over conventional control semantics to dramatically increase by many orders of
magnitude exploitable concurrency. Additionally, whether entirely new or an extended derivative, the
next-generation exascale programming models will have to interoperate with legacy codes, both
application (e.g., numerical libraries) and systems software (e.g., parallel file systems), for ease of
transition of community mission critical workloads to the new classes of exascale systems architecture.
Future models need to include semantic constructs in support of the broad range of dynamic graph-based
algorithms whose access, search, and manipulation can be very different from more prosaic vectors and
matrices for which current systems have been optimized. Emergent programming methods will require
new tools and environments to make the best use of them from a programmer perspective.

New Runtime Systems: Research into advanced runtime systems will be an important means of
dramatically improving programmability supporting dynamic software behavior, such as load balancing,
thread scheduling, processing and memory resource allocation, power management, and recovery from
failures. Only runtime systems (and operating systems to some degree) can take advantage of on-the-fly
system status and intermediate application software state that cannot be predicted at compile time alone.
This situation will be particularly true for systems of up to a billion cores and constantly changing system
configurations. In particular, new runtime software will move most programming practices from a static
methodology to dynamic adaptive techniques exploiting runtime information for improved performance
optimization. Examples include the lightweight thread scheduling, context switching, and suspension
management, as well as interthread synchronization, management of deep memory hierarchies, and
namespace management. For dynamic graph-based problems, data-directed execution using the graph
structure to efficiently define the parallel program execution will require runtime support.

New Compiler Support: While much of the responsibility of future compilers will reflect prior
techniques for back-end support, many new responsibilities will accrue as well to drive the exascale
systems of the future. Advanced compiler techniques and software will be required for automatic runtime
tuning to match hardware architecture specific properties (e.g., cache sizes), for heterogeneous
architectures, to interface with and support advanced runtime systems, to detect alternative forms of
parallelism, for employing advanced synchronization semantics and primitives, to take advantage of more
sophisticated messaging methods (e.g., message-driven mechanisms), and to involve new forms of active
global address space and its management.

X-Gen Architectures: Although the actual development of exascale architectures is beyond the scope of
the IESP program agenda, research in critical system software and programming methods will be
sensitive to and have to respond to the emergence of new architectures. Of particular concern are methods

57

to reduce the temporal and power overheads of parallel control mechanisms, optimize the exploitation of
heterogeneous core architectures, support fail-safe reconfigurable system structure techniques for fault
tolerance, engage in active power management, and support self-aware resource management.

New Operating System: While the execution model is the machine, as seen from the semantic
perspective, the operating system is the machine from the usage viewpoint. The OS owns the system,
manages its resources, and makes them available to the program layer as well as provides many services
to that layer. A new operating system will be essential for the X-gen architectures and their supporting
programming environments, including APIs, compilers, and greatly expanded runtime software. One of
the most important attributes of a new OS is its order-constant scaling property such that it can operate at
speed, independent of the scale of number of processor cores or memory banks. A second critical property
is the management of an advanced class of global address space that can support multiple applications
sharing all resources in the presence of the need for dynamic allocation and data migration, even as it
provides interjob protection. The new OS must support the greatly expanded role of the runtime system,
even as it takes on the added complexity of dealing with heterogeneous cores and deeper memory
hierarchies. The old view of conventional processes and parallel OS threads will have to be revised,
supporting much more lightweight mechanisms offered by the underlying architectures while yielding
many responsibilities to the runtime software driven by application requirements and new programming
models. The operating system will have to provide much more information about system operational state
so that self-aware resource management techniques can be more effectively developed and applied for
fail-safe, power-efficient scalable operation.

4.4.4.4 Cross-Cutting Considerations

Programmability is a cross-cutting factor affected by all layers of the system stack including software and
hardware. It also is interrelated with other cross-cutting factors such as performance and potentially
resilience. Whether there exists a relationship between programmability and power management is
uncertain. However, when writing system software, one clearly needs to develop power management
software for the operating system and possibly the runtime system.

Programmability and performance are tightly coupled. For high-performance computing, a major factor
affecting programmability has been performance optimization. This relates to the exposure of application
parallelism, locality management and load balancing, and memory hierarchy management. These
components are expected to be even more important for exascale systems. The complexity at that extreme
scale will require that the responsibility for all but parallelism (and even not all of that) be removed from
the programmer and handled by a combination of compiler and runtime in cooperation with the operating
system and system architecture.

With respect to reliability, it may be valuable for the programmer to have the option of dictating the
required recourse in the presence of faults, such as recovery or prioritized actions (in the case of urgent/
real-time computing). However, default options should be prevalent and used most of the time, in order to
minimize programmer intervention and therefore improve programmability.

4.5 Summary of X-Stack Priorities
Below we present a prioritized list of research and development items for each software component area
in the X-stack. To assure that software efforts receive appropriate attention, we use two attributes for each
effort:

§ Uniqueness to exascale: Some efforts are concerned with exascale systems and have little
relevance for less capable systems. Other efforts are relevant to exascale but will likely impact
lesser systems (i.e., petascale and upper-end terascale); we refer to this as “spanning.” And some
efforts are important to all future scales of computing.

58

§ Criticality for exascale: During early classification discussions, we determined that uniqueness to
exascale was insufficient for prioritizing activities. In particular, although there are efforts that are
not unique to exascale, some of these are essential for successful exascale computing. We classify
an items criticality as either critical, unknown/indeterminate, or non-critical.

The following are examples:

§ Application-managed resilience - uniquely exascale and critical: Resilience is an issue for
many efforts. Historically, resilience has not required applications to do anything but
checkpoint/restart. At present, there is general agreement that the entire software stack, including
user and library code, will need to explicitly address resilience beyond the classic
checkpoint/restart approach.

§ Many-core mathematical libraries –not uniquely exascale but critical: Many-core
configuration is an essential element of all exascale plans, but libraries for many-core
configurations are also critical for all levels of computing. Although exascale requirements may
exceed those of scales, we should recognize and leverage other funding sources for this kind of
work, clearly identifying and funding the uniquely exascale aspects of this work.

The table below lists each of the X-stack components along with their needed capabilities. Each
component capability is followed, to the right, by its uniqueness and criticality at exascale level. The
following scale is used:

Uniqueness Criticality
Unique = 3 Critical = C
Spanning = 2 Unknown = U
Nonunique = 1 Noncritical= N

X-‐Stack	 Components	 Needed	 Capabilities	
Exascale	
Uniqueness	

Exascale	
Criticality	

Frameworks	

Resilience	 API	 and	 utilities	 3	 C	
Multi-‐institutional/multiproject	 collaboration	 plan	 2	 U	
Tool	 chain	 development/selection	 2	 U	
Programming	 model	 evaluation/adoption	 	 2	 C	
Data	 placement	 2	 C	
Multicomponent	 simulation	 utilities	 2	 U	
Access	 to	 third-‐party	 libraries	 1	 C	

Numerical	 Libraries	

Fault-‐oblivious,	 error-‐tolerant	 software	 3	 C	
Asynchronous	 methods	 2	 C	
Overlap	 data	 and	 computation	 3	 U	
Self-‐adapting	 hybrid	 and	 hierarchical	 based	
algorithms	 	 1	 C	
Hybrid	 and	 hierarchical-‐based	 algorithms	 (e.g.,	
linear	 algebra	 split	 across	 multicore	 and	 GPU)	 1	 U	
Algorithms	 that	 minimize	 communications	 3	 C	
Architecture-‐aware	 algorithms/libraries	 3	 C	
Autotuning-‐based	 software	 1	 U	
Standardization	 activities	 	 1	 U	
Energy-‐efficient	 algorithms	 2	 U	

59

Mixed	 arithmetic	 1	 U	

Algorithms	

Scalability	 2	 N	
Fault	 tolerance/resilience	 1	 N	
Conforming	 to	 architectural	 requirements	 3	 N	
New	 areas/uses	 of	 algorithms	 1	 U	

Debugging	

Concurrency	 and	 architecture	 driven	 high	
frequency	 of	 errors/failures	 3	 C	
Scalability	 of	 debugger	 methodologies	 (data	
volumes	 and	 interfaces)	 3	 C	
Focus	 on	 multilevel	 debugging,	 communicating	
details	 of	 faults	 between	 software	 layers	 3	 U	
Synthesis	 of	 fault	 information	 into	 understanding	
in	 the	 context	 of	 apps	 and	 architecture	 3	 C	
Specialized	 lightweight	 operating	 systems	 2	 N	
Automatic	 triggers,	 need	 compile	 time	 bridge	 to	
debugging	 that	 removes	 need	 to	 rerun	 2	 N	
Scalable	 clustering	 of	 apps	 process	 states	 and	
contexts,	 filter/search	 within	 debugger	 2	 N	
Vertical	 integration	 of	 debug	 and	 per	 information	
across	 software	 layers	 2	 N	
Excision	 of	 buggy	 code	 snippets	 to	 run	 at	 lower	
concurrencies	 1	 N	
Heterogeneity	 1	 N	

I/O	

Customization	 with	 I/O,	 purpose-‐driven	 I/O	 3	 C	
New	 I/O	 models,	 SW,	 runtime	 systems	 and	 libs	 3	 C	
Intelligent/proactive	 caching	 mechanisms	 for	 I/O	 3	 N	
Fault-‐tolerant	 mechanisms	 3	 C	
I/O	 into	 programming	 models	 and	 languages	 3	 N	
Balanced	 architectures	 with	 newer	 devices	 2	 N	
File	 systems	 or	 alternative	 mechanisms	 2	 N	
Active	 storage	 2	 N	
Wide-‐area	 I/O	 and	 integration	 of	 external	 storage	
systems	 2	 N	
Special-‐purpose	 network	 protocols	 for	 parallelism	 2	 N	
Balanced	 architectures	 with	 newer	 devices	
embedded	 with	 the	 node	 1	 N	

Scientific	 data	
management	

Scalable	 data	 analysis	 and	 mining	 SW	 and	 tools	 3	 C	
Scalable	 data	 format	 and	 high-‐level	 libraries	 3	 C	
Scientific	 workflows	 tools	 2	 C	
Search	 and	 query	 tools	 2	 N	
Wide-‐area	 data	 access	 movement	 and	 query	 tools	 2	 N	
Scientific	 databases	 2	 N	

Programming	 models	
Exascale	 programming	 model	 3	 C	
Scalable,	 fault-‐tolerant	 MPI	 3	 C	
Applications	 development	 tools	 3	 N	

60

Heterogeneous	 node	 programming	 model	 2	 C	
Domain-‐specific	 programming	 models	 2	 N	
Language	 features	 for	 massively	 parallel	 I/O	 2	 U	
Language	 support	 for	 adaptive	 computation	 2	 N	
Interoperability	 between	 models	 1	 2N	

Compilers	

Implement	 exascale	 languages	 3	 C	
Support	 for	 resilience	 3	 C	
Implement	 heterogeneous	 programming	 models	 2	 C	
Support	 for	 massive	 I/O	 2	 C	
New	 optimization	 frameworks	 2	 N	
Interactions	 between	 compilers	 and	 tools,	 runtime	 2	 C	
Dynamic	 compilation,	 feedback	 optimization	 	 2	 N	
Autotuning-‐based	 software	 2	 N	
Enhancements	 to	 existing	 languages/APIs	 1	 N	
Automatic	 parallelization	 1	 N	

Operating	 Systems	

Define	 the	 base	 OS	 (Standard	 API)	 3	 C	
APIs	 for	 resilience	 (access	 to	 RAS,	 etc)	 3	 C	
Collective	 OS	 operations	 3	 N	
Scalable	 system	 simulation	 environment	 2	 C	
Improved	 APIs	 for	 scalable	 performance	
monitoring	 and	 debugging	 2	 C	
New	 APIs	 for	 energy	 management	 2	 U	
Improved	 APIs	 for	 explicit	 memory	 management	 1	 C	
Improved	 APIs	 for	 threading	 1	 U	

Performance	

Extremely	 scalable	 performance	 methods	 and	
tools	 3	 C	
Performance	 measurement	 and	 modeling	 in	
presence	 of	 noise/faults	 3	 C	
Automated/automatic	 diagnosis	 and	 autotuning	 2	 N	
Predictive	 future	 large-‐scale	 system	 design	 2	 C	
Vertical	 integration	 across	 SW	 layers	 2	 N	
Performance-‐aware	 design	 and	 implementation	 2	 U	
Performance	 optimization	 for	 other	 metrics	 than	
time	 2	 U	
Support	 for	 heterogeneous	 hardware	 and	 hybrid	
programming	 models	 1	 C	

Power	

Power	 performance	 monitoring	 and	 aggregation	
that	 scales	 to	 1	 billion	 core	 system	 3	 C	
Power	 control	 system	 3	 C	
Scalable	 control	 algorithms	 to	 bridge	 gap	 between	
global	 and	 local	 power	 models	 2	 C	
Power-‐aware	 and	 scalable	 resource	 control	 and	
scheduling	 2	 C	
Optimally	 tuned	 system	 power	 based	 on	 control	
loop	 1	 N	

61

Power	 instrumentation	 and	 control	
standardization	 1	 N	

Programmability	

New	 models	 of	 computation	 3	 C	
New	 runtime/OS	 interface	 for	 environment	 aware	
programming	 2	 C	
Programmability	 to	 decouple	 exascale	 system	
issues	 from	 applications	 programming	 1	 C	

Resilience	

Performance	 measurement	 and	 modeling	 in	
presence	 faults	 	 3	 C	
Better	 fault	 tolerance	 protocols	 2	 C	
Fault	 isolation/confinement	 2	 C	
NV-‐RAM	 for	 local	 state,	 cache	 of	 file	 system	 2	 C	
Replication	 (TMR,	 backup	 core)	 2	 U	
Proactive	 actions	 (migration)	 2	 U	
Domain-‐specific	 API	 and	 utilities	 for	 frameworks	 2	 C	
Applications-‐guided	 fault	 management	 2	 C	
Language/compiler/runtime	 support	 for	 resilience	
(fault-‐aware	 programming,	 API	 from	 OS,	 RAS)	 2	 C	
Fault-‐tolerant	 MPI	 2	 C	
Fault-‐oblivious,	 error-‐tolerant	 numerical	 libraries	 2	 C	
Resilient	 applications	 and	 algorithms	 1	 N	
Fault-‐oblivious	 system	 software	 2	 C	
Fault-‐aware	 system	 software	 and	 API	 for	 resilience	 2	 C	
Prediction	 for	 time	 optimal	 checkpoint/migration	 2	 U	
Fault	 models,	 event	 log	 standardization	 root	 cause	
analysis	 2	 C	
Resilient	 I/O,	 storage,	 and	 file	 systems	 2	 C	
Situational	 awareness	 2	 C	
Experimental	 environment	 2	 C	
Fault	 isolation/confinement	 +	 local	 management	 2	 C	

Runtime	 Systems	

Load	 balance	 3	 C	
Asynchrony,	 overlap	 2	 C	
Hierarchical	 execution	 models	 and	 scheduling	 3	 N	
Scaling/optimization	 of	 communications	 3	 C	
Memory	 management	 and	 locality	 scheduling	 2	 C	
Heterogeneity:	 scheduling	 2	 U	
Fine-‐grained	 mechanisms	 at	 node	 level	 1	 U	

5. Application Perspectives and Co-Design Vehicles
Standing at the beginning of the road to exascale, application communities that are highly motivated to
take that road are well aware of the challenges confronting them. Many of the applications for which
exascale systems will be built exist today in high-performance implementations. But all of them will have
to be rewritten substantially, in terms of data structures, algorithms, and possibly even mathematical
formulations; any new applications under development should be formulated from the start with exascale
in mind. As applications custodians and exascale customers, we respond by considering how particular

62

applications—so-called co-design vehicles, or CDVs, after the principal new programming paradigm in
the exascale regime—will migrate to the exascale. Here, we summarize several factors that we believe are
key to exascale success for application communities. We then present the concept of CDVs; describe
some of their issues, limitations, and requirements; and give the first examples of what we hope will be a
diverse portfolio of CDVs that can help drive the X-stack development process and start producing
exascale science at the earliest possible date.

5.1 From Here to Exascale: An Application Community View
The application leaders who have been informing the development of the IESP roadmap over the past
year recognize a certain disconnect between the planning effort the IESP has initiated and the current state
of major science applications. Specifically, although the shared goal is to enable exascale science on
exascale systems by the end of the decade, the reality is that today only a scant few applications can
successfully exploit the power of current and emerging petascale systems. The difficulties involved in
finding the support and recruiting the interdisciplinary teams needed to create such leading-edge
applications is, no doubt, part of the explanation for this disconnect. But these same difficulties, perhaps
in even higher degree, will confront the communities aiming toward exascale.

At the same time, participating application representatives have expressed a clear desire for exascale
computational power in order to make fundamental progress in their respective areas. The sources of this
desire are largely intrinsic to the process of scientific exploration: scientists want to resolve their models
at their full, natural range of length or time, to accommodate physical effects with greater fidelity, to
create models with degrees of freedom in all relevant dimensions, to better isolate artificial boundary
conditions or better approach realistic levels of dilution, to combine multiple complex models, to solve
inverse problems, or perform data assimilation, to perform optimization or control and to quantify
uncertainty and make statistical estimates with orders of magnitude more accuracy.

The computational obstacles to achieving these goals are easy to quantify for some applications, such as
QCD, cosmology, and seismic inversion, which are already scaling extremely well and experiencing
processing bottlenecks. The situation is harder to quantify but equally important for less uniform
applications (e.g., reservoir monitoring) with complex geometry, adaptivity, and multiple phases with
different physics. Such differences between application groups make it clear that the former group will
not be able to adequately proxy for the latter in terms of defining X-stack requirements.

But some common obstacles, which are bound to become more prominent on the road to exascale, are
already appearing in the experience of many groups. At the level of hardware architecture, for example,
the most commonly envisioned path to exascale is thousandfold many-core at 1 GHz each, within a
tightly coupled network of about 1 million such nodes. However, memory bandwidth is already limiting
today’s low core count nodes to less than 10% of peak on most applications, whose kernels offer little
cache reuse (e.g., stencil operations or sparse matvecs). Processors are cheap, small in chip area
(compared to memory), and relatively low in power, so there is no harm in having them in excess most of
the time; but the opportunities for exploiting the main new source for performance are undemonstrated for
most applications. At the much higher and more abstract level of interdisciplinary research, while there
are opportunities for combining today’s individually high-capability simulations into more complex
simulations, there is no silver bullet for merging the data structures of the separate applications.
Moreover, given the current state of software infrastructure, the data copying inherent in the code
coupling will likely prevent exploitation of the apparent concurrency opportunities

Surveying such experiences in the light of projections by the IESP community about the probable path to
exascale, we have identified the following items as keys to success for many application communities:

§ Programming model: Prior to possessing exascale hardware, applications groups can prepare
themselves by exploring new programming models on many-core and heterogeneous nodes.

63

Attention to locality and reuse is valuable at all scales and will produce performance paybacks
today and in the future. New algorithms and data structures can be explored under the assumption
that FLOPs are cheap and moving data is expensive. Considering mixed-precision algorithms and
using lower precision wherever possible can also reduce bandwidth pressure.

§ Data I/O: Many communities are already struggling to cope with a growing deluge of data, and
this data flood presents both tremendous opportunities and challenges. In simple terms, an
exascale machine, once the data is loaded up, is a 32-petabyte fast store, with lots of processors to
graze over it. We expect that there will be many new and exciting applications to take advantage
of such storage, for example, data mining in climate modeling and astrophysics. Such
applications can begin to be explored today in miniature on petascale computers with 300
terabytes. But it is widely agreed that the I/O—reading data in and writing data out for analysis,
checkpointing, visualization, etc.—is already a bottleneck for some applications and is likely to
become one for many fields as data quantities escalate.

§ Fault tolerance: Applications people reluctantly recognize that fault tolerance is a shared
responsibility. It is too wasteful of I/O and processing cycles to handle faults purely automatically
through checkpoint/restart. Different types of faults may be handled different ways, depending on
the consequences evaluated by scientific impact. For example, application developers and users
can orchestrate strategic, minimal working set checkpoints.

§ Reproducibility: Applications people realize that bit-level reproducibility is unnecessarily
expensive most of the time. Although scientific outcomes must be runtime independent and
machine independent, we have no illusions about bit-level reproducibility for individual pairs of
executions with the same inputs. Since operands may be accessed in different orders, even
floating-point addition is not commutative in parallel and on homogeneous hardware platforms. A
new feature in the context of co-design, with an emphasis on low power (low-voltage switching),
is that lack of reproducibility may emerge for many other (hardware-based) reasons. If
applications developers are tolerant of irreproducibility for their own reasons (e.g., for validation
and verification through ensembles), then this has implications for considering less expensive,
less reliable hardware.

5.2 IESP Application Co-Design Vehicles
Co-design vehicles are applications that provide targets for, and feedback to, the software research,
design, and development efforts in the IESP. These are required because there are several possible paths
to exascale, with many associated design choices along the way. The earliest realizations will include
some of today’s terascale or petascale applications that have a clear need for exascale performance and
are sufficiently well understood that the steps required to achieve it can be mapped out. CDVs are
accordingly a key part of the exascale design and development process. However, the specific domain
applications themselves are not necessarily the scientific or societal drivers for developing exascale
capabilities.

A CDV must satisfy the following criteria:

1. It is a petascale or near-petascale application today with a demonstrated need for exascale
performance.

2. In progressing to exascale, it should achieve significant scientific goals in an area that is expected
to be a scientific or societal driver for exascale computing, such as basic physics, environment,
engineering, life sciences, or materials. Ideally, the results of the application should be amenable
to experimental validation. This criterion is designed to help ensure that the effort elicits the
necessary support from at least one agency.

64

3. It should offer realistic and a definable set of steps to exascale that can be mapped out over 10
years or less.

4. The community developing and supporting the CDV application should be experienced in
algorithm, software, and/or hardware developments and be willing to engage in the exascale co-
design process. In other words, there must be at least one organized research group, considered to
be among the leaders in the field, that is interested in and willing to work with the IESP.

5. The CDV should be modular and open enough to stimulate the development of additional
modules addressing related questions in the area.

6. Since the X-stack will need to be stressed along a number of different dimensions, the CDV
should fill a slot in the portfolio of extreme-scale application needed to test all these dimensions.

The IESP will identify a manageable portfolio of CDVs (e.g., 4 or 5) that span the full range of
anticipated software challenges. A short list of the most important science drivers in a specific
application’s domain will be articulated, and then a description provided of what the barriers and gaps
might be in these priority research directions (PRDs). The primary task for each candidate CDV is to
demonstrate the need for exascale and what will be done to address the PRDs. A major component of this
activity is to identify what new software capabilities will be targeted and to what purpose. Further, it is
necessary to describe how the associated software R&D can be expected to help the targeted application
benefit from exascale systems, in terms of accelerating progress on the PRDs. With regard to developing
an appropriate roadmap for this activity, it will be important to identify the timescale on which
involvement in the path to exascale R&D can produce significant exascale-enabled impact. The choice of
CDVs will be informed by the matrix of HPC applications versus software components (Section 5.3).

Different categories of CDVs include (1) societally relevant simulations (e.g., climate, patient-specific
medicine); (2) more likely readily scaled simulations (e.g., QCD, cosmology); (3) data-processing
problems (e.g., Square Kilometer Array in Australia, which generates 1 EB/s of data and needs FFTs per
image while data is streaming); and (4) surprise outsiders, not currently practical at the terascale or
petascale.

5.3 Initial Considerations for CDV Analysis
The application participants in the IESP have begun to develop an analysis of the issues, limitations, and
needs to be addressed to make good use of CDVs in the X-stack research and development process.

Issues for Scaling Up CDVs: The big question in terms of CDV scalability concerns whether the
software for co-design factors or whether all the inefficiency, over time, involves data copies at interfaces
between the components. In selecting CDV applications to move toward exascale, in a staged co-design
process, types that need to be examined include the following:

• Weak-scaling applications, up to distributed-memory limits and/or proportional to the number
of nodes

• Strong-scaling applications, beyond distributed-memory limits and/or proportional to cores
per node/memory unit

• Applications whose workflow scales, proportional to the number of instances (ensembles)
and/or in integrated end-to-end simulation

Limitations to Be Explored by CDVs:

65

• Strong scaling algorithms may be limited in terms of sufficient coarse-grained parallelism
and may encounter problems with load imbalance due to irregular task/data size; bulk
synchronous algorithms on 1 million nodes are not currently tolerant to load imbalance worse
than one part per million for a synchronous task.

• For acceptable single-node performance, compiler-generated code for hybrid/multicore may
be limited. Linear algebra kernels typically come with autotuning. But for nonstandard linear
algebra kernels, we will need the autotuning tools, not just their output.

Needs to Be Addressed by CDVs:

• CDV developers need tools to generate domain-specific languages and to provide for
powerful source-to-source transformations; to enhance composability in order to enable new
science and expand developer and user communities (which implies decreasing complexity
as we go to exascale); to write performance-portable code (retargetable) that can extend the
effective lifetime of code over generations of hardware; and to implement domain-specific
frameworks that both provide solutions of significant HPC problems and are interoperable, so
as to facilitate collaboration in an increasingly multidisciplinary future.

• Expanded or new programming models are needed that move more of the burden of
managing the scheduling of computation and placement of data to runtime; expand
intrinsically fault tolerant programming models to be relevant to a broader class of
algorithms; and increase the interoperability of programming models (GAS, MPI, Cilk,
HPCS, etc.) that we already have.

• CDV developers must understand the design space trade-offs associated with options for
power consumption and resilience, taking into account the nature of expected faults,
including common signaled faults and especially silent faults.

5.4 Representative CDVs
To provide specific examples of CDVs that conform to the selection criteria, we focus here on the high
energy physics/QCD and the plasma physics/fusion energy sciences areas. It should not be inferred that
these are the highest priority applications in the path-to-exascale portfolio. The IESP is considering a
range of applications as CDVs, including simulations with special relevance to vitally important problems
(e.g., climate change, patient-specific medicine), and applications that involve extremely data-intensive
analysis (e.g., the Square Kilometer Array in Australia). We expect to recruit more CDVs as IESP
partners in 2010 in order to stress all critical aspects of the X-stack.

5.4.1 High Energy Physics/QCD

Simulations of QCD, the theory of the strong interaction between quarks and gluons that are the basic
building blocks of hadrons, have played a pioneering role in the development of parallel and high-
performance computing since the early 1980s. Today, lattice QCD codes are among the fastest-
performing and most scalable applications on petascale systems. Through 30 years of efforts to control all
sources of numerical uncertainty and systematic errors, the current state of the art is that fully realistic
simulations are possible and starting to provide results for a range of quantities needed by the
experimental program, relating to the masses and decays of hadrons, with uncertainties at the few-percent
level. Expected discoveries at the LHC will drive the need to extend these simulations to other quantum
field theories that might describe new physics underlying electroweak symmetry breaking.

Lattice QCD already has a long track record of acting as a CDV. Specifically, it meets all of the above
criteria for exascale co-design:

66

§ Lattice QCD codes sustain multi-teraflops performance today and appear capable of scaling
linearly through the petascale range. They are compute-limited, specifically demanding a balance
between compute and on-/off-node memory access speeds, so that scientific progress requires the
highest possible sustained performance. In order to deliver realistic and sufficiently precise
results for the range of quantities needed by today’s experiments, lattice sizes must at least
double, increasing the computational cost by a factor of more than 1000. Even larger lattices will
open up more hadronic quantities to first-principles computation and require performances well
into the exascale range.

§ As lattice QCD codes sustain multi-petaflops, the original goal of the field—to solve QCD at the
few-percent level for many of the simplest properties of hadrons—will be achieved. Not only will
this be a major milestone for theory, but it will also enable experiments to identify possible
discrepancies with the Standard Model and, hence, clues to new physics. In approaching
sustained exaflops, sufficiently large lattices will be employed to extend these computations to
multi-hadron systems, permitting nuclear physics to be computed also from first principles.
Depending on what is discovered at the LHC, petascale/exascale simulations may help explain
electroweak symmetry breaking.

§ The pathway to early exascale performance for QCD requires developing multilayered algorithms
and implementations to exploit fully (heterogeneous) on-chip capabilities, fast memory, and
massive parallelism. Optimized single-core and single-chip complex linear algebra routines,
usually via automated assembler code generation, and the use of mixed-precision arithmetic for
fast memory access and off-chip communications, will be required to maintain balanced
compute/memory access speeds while delivering maximum performance. Tolerance to and
recovery from system faults at all levels will be essential because of the long runtimes. In
particular, use of accelerators and/or GPGPUs will demand algorithms that tolerate hardware
without error detection or correction. The international nature of the science will demand further
development of global data management tools and standards for shared data.

§ The lattice QCD community has a successful track record in co-design, extending over 20 years
and three continents: for example, the QCDSP and QCDOC projects in the United States, the
series of APE machines in Europe, and CP-PACS in Japan. Notably, design features of QCDOC
influenced IBM’s Blue Gene. In all cases, QCD physicists were involved in developing both the
hardware and system software. Typically, these projects resulted in systems that achieved
performances for QCD comparable to the best that could be achieved at the time from
commercial systems. The community has also agreed on an international metadata standard,
QCDML.

As a CDV, lattice QCD has already been adopted by IBM for stress testing and verification of new
hardware and system software. Other cross-cutting outputs from a QCD CDV are likely to include
performance analysis tools, optimizing compilers for heterogeneous microprocessors, mechanisms for
automatic recovery from hardware/system errors, parallel high-performance I/O, robust global file
systems and data sharing tools, and new stochastic and linear solver algorithms.

5.4.2 Plasma Physics/Fusion Energy Sciences

Major progress in magnetic fusion research has led to ITER—a multi-billion-dollar burning plasma
experiment supported by seven governments (EU, Japan, US, China, Korea, Russia, and India)
representing over half of the world’s population. Currently under construction in Cadarache, France, it is
designed to produce 500 million watts of heat from fusion reactions for over 400 seconds with gain
exceeding 10, thereby demonstrating the scientific and technical feasibility of magnetic fusion energy.
Strong research and development programs are needed to harvest the scientific information from ITER to

67

help design a future demonstration power plant with a gain of 25. Advanced computations at the petascale
and beyond, in tandem with experiment and theory, are essential for acquiring the scientific understanding
needed to develop whole device integrated predictive models with high physics fidelity.

As a representative CDV, the fusion energy sciences (FES) area meets the criteria for exascale co-design:

§ FES applications currently utilize the leadership computing facilities at ORNL and Argonne as
well as advanced computing platforms at LBNL, demonstrating scalability of key physics with
increased computing capability. Two high-performance computing FES topics with significant
scientific impact were identified at the major DOE Workshop on Grand Challenges in FES &
Computing at the Extreme Scale (April 2009): high physics fidelity integration of multi-physics,
multiscale FES dynamics and burning plasmas/ITER physics simulation capability.

§ A productive FES pathway of over 10 years can be readily developed for exploitation of exascale.
This includes carrying out experimentally validated confinement simulations (including
turbulence-driven transport) and demonstrates the ability to include higher physics fidelity
components with increased computational capability. This is needed for both of the areas
identified as PRDs, with the following associated barriers and gaps:

o While FES applications for macroscopic stability, turbulent transport, edge physics
(where atomic processes are important), and others have demonstrated, at various levels
of efficiency, the capability of using existing LCFs, a major challenge is to
integrate/couple improved versions of large-scale HPC codes to produce an
experimentally validated, integrated simulation capability for the scenario modeling of a
whole burning plasma device such as ITER.

o New simulations of unprecedented aggregate floating-point operations will be needed for
addressing the larger spatial and longer energy-confinement time scales as FES enters the
era of burning plasma experiments on the reactor scale. Demands include dealing with
spatial scales spanning the small gyroradius of the ions to the radial dimension of the
plasmas (i.e., an order of magnitude greater resolution is needed to account for the larger
plasmas of interest such as ITER) and with temporal scales associated with the major
increase in plasma energy confinement time (~1 second in the ITER device) together
with the longer pulse of the discharges in these superconducting systems.

§ With regard to potential impact on new software development, each science driver for FES and
each exascale-appropriate application approach currently involves the application and further
development of current codes with respect to mathematical formulations, data structures, current
scalability of algorithms and solvers (e.g., Poisson solvers) with associated identification of
bottlenecks to scaling, limitations of current libraries used, and “complexity” with respect to
memory, flops, and communication. In addition key areas being targeted for significant
improvement over current capabilities include workflows, frameworks, verification and
validation methodologies including uncertainty quantification, and the management of large data
sets from experiments and simulations. As part of the aforementioned ongoing FES
collaborations with the LCFs, assessments are moving forward on expected software
developmental tasks for the path to exascale with the increasingly difficult challenges associated
with concurrency and memory access (data movement approaches) for new heterogeneous
architectures involving accelerators. Overall, new methods and exascale-relevant tools can be
expected to emerge from the FES application domain. With respect to potential impact on the
user community (usability, capability, etc.), the two FES PRDs noted earlier will potentially be
able to demonstrate how the application of exascale computing capability can enable the
accelerated delivery of much needed modeling tools. The timescale in which such impact may be

68

felt can be briefly summarized as follows for the FES application: 10 to 20 petaflops (2012) for
integrated plasma, core-edge coupled simulations and 1 exaflop (2018) for whole-system burning
plasma simulations applicable to ITER.

5.4.3 Strategic Development of IESP CDVs
The technology drivers for CDV applications are, for the most part, connected to advanced architectures
with greater capability but with formidable software development challenges. The need to address
concurrency issues and to deal with complex memory access/data movement challenges for emerging
heterogeneous architectures with accelerators is expected to drive new approaches for scalable algorithms
and solvers. For risk mitigation, alternative R&D strategies need to be developed for choosing
architectural platforms capable of effectively addressing the PRDs in the various domain applications
while exploiting the advances on the path to the exascale. Beneficial approaches include the following:

§ Developing effective collaborative alliances involving computer science and applied mathematics
(e.g., following the SciDAC model)

§ Addressing cross-cutting challenges shared by CDV applications areas through identification of
possible common areas of software development, appropriate methodologies for verification and
validation and uncertainty quantification, and the common need for collaborative
interdisciplinary training programs to deal with the critical task of attracting, training, and
assimilating young talent.

5.5 Matrix of Applications and Software Components Needs
The matrix below was created to stimulate and inform thinking about CDVs. Clearly all science areas and
engineering areas that contain potential CDVs need something in all the software areas, but for the
purposes of this exercise we tried to sort out areas of emphasis for each application domain, i.e., where we
expect the major challenges will be for that domain. For example, all areas need some I/O, but the ones
checked were deemed to need considerable I/O, based on the problems that exist today. Likewise, the
areas that have less software maturity (e.g., health and energy) have more Xs in the programming,
languages, and debugging columns.

Science and
Engineering
Disciplines

Subareas

N
ew

Program

m
ing

M
odels and N

ew

w
ays to specify

com
putation

Program
m

ability
- Im

proved C
ode

D
evelopm

ent and
A

pplication
B

uilding
E

nvironm
ents

R
esource

m
anagem

ent,
pow

er
m

anagem
ent

and w
orkflow

s

D
ynam

ic D
ata

Storage and
M

anagem
ent

L
ibraries that

exploit advanced
H

W
 and SW

features

R
esiliency and

Fault
M

anagem
ent

D
ebugging and

Perform
ance

T
uning at Scale

System

m
anagem

ent and
Security

Scalable
O

perating
System

s

Support for
A

pplication
M

odeling

Materials
Science

• Nano-
science

• Structural
Analysis

• Electronic
Structures

 X X X X X X X

Energy
Sciences

• Alternative
Fuels

• Nuclear
Fission

• Combustion
• Nuclear

Fusion
• Solar
• Energy

Efficiency

X X X X X X X

Chemistry • Molecular X X X X

69

Dynamics

70

Science and
Engineering
Disciplines

Subareas

N
ew

Program

m
ing

M
odels and N

ew

w
ays to specify

com
putation

Program
m

ability
- Im

proved C
ode

D
evelopm

ent and
A

pplication
B

uilding
E

nvironm
ents

R
esource

m
anagem

ent,
pow

er
m

anagem
ent

and w
orkflow

s

D
ynam

ic D
ata

Storage and
M

anagem
ent

L
ibraries that

exploit advanced
H

W
 and SW

features

R
esiliency and

Fault
M

anagem
ent

D
ebugging and

Perform
ance

T
uning at Scale

System

m
anagem

ent and
Security

Scalable
O

perating
System

s

Support for
A

pplication
M

odeling

Earth
Systems

• Climate
• Weather
• Earthquake/

Seismic
• Subsurface

Transport
• Water

Resources

X X X X X X X X X

Astrophysics
Astronomy

• Dark Energy
• Galaxy

Formation/In
teraction

• Cosmic
Microwave
Background
Radiation

• Supernova
• Sky Surveys

 X X X X X X X

Biology/Life
Systems

• Genomics
• Protein

Folding
• Evolution
• Ecology
• Organism

Engineering

X X X X X X X

Health
Sciences

• Drug Design
• Contagious

Disease
• Radiation-

related Health
• Medical

Records
• Comparative

Genomics

X X X X X X X

Nuclear and
High Energy
Physics

• QCD
• Neutrinos
• Accelerator

Design

X X X X X X

Fluid
Dynamics

• Internal
• External

X X X X X X

	

6. Perspectives on Cooperation between IESP and HPC
Vendor Communities

In order to meet the many challenges involved in programming exascale machines, the components of the
X-stack that the IESP community aims to produce must entrain a whole software ecosystem. As the size
of the ecosystem grows, vendors will be increasingly motivated to leverage and contribute to the
community’s efforts to satisfy that ecosystem’s requirements. In order to achieve this goal, however,

71

several challenges must be overcome, including (1) finding a suitable structure to agree on common APIs;
(2) producing a coordinated, interlocked effort between vendor partners, the IESP and scientific
communities, and HPC facilities, with meaningful deliverables and time tables; (3) balancing the time
needed for research and exploration to overcome the exascale hurdles with the need to produce timely,
concrete implementations that can be integrated by the vendor partners and used by the IESP and
scientific communities to run on the exascale systems; and (4) finding appropriate development, support,
intellectual property, and funding models that allow vendor partners to incorporate software produced by
the community, that can be supported by the community and funded by the interested government
agencies.

Recent discussions among vendors as part of the IESP process have produced a number of considerations
that need to be taken into account. We first expand on the likely challenges that need to be overcome for
vendor partners to utilize the research and development efforts of the IESP community. We then present a
taxonomy that describes the different models of development and support for software that might
structure cooperation within the X-stack ecosystem. Next we describe the requirements and methods of
such software. We conclude with a set of recommendations to help guide both the IESP community and
vendors to effectively collaborate to produce the kind of ecosystem this collective effort needs.

6.1 Challenging Issues for Vendor/Community Cooperation
Common APIs: It is critical to agree on common and open APIs. The development and evolution of
APIs must occur in a way that produces the kind of stability that IESP vendor partners need, but must also
be flexible enough to incorporate early research and exploration of alternatives. Waiting to achieve
agreement through slow-moving, formal standards processes may not be timely enough to meet the
expected needs of X-stack software. There are components of the system software that need to take into
account hardware-specific characteristics or that can be better tuned by exploiting hardware-specific
features. Because multiple vendor partners will be working on such low-level aspects, it becomes even
more important to the community to find a methodology to agree on common APIs, at least for the
exascale effort.

X-Stack Co-Development: The IESP community, vendor partners, and HPC facilities must work
together to produce the software stack. The IESP community’s message about the importance of vendor
participation should be communicated clearly and repeatedly. If it appears that the community is going to
fund all or most of the components of the X-stack, vendor partners will find it challenging to achieve the
levels of software testing expertise and resources required to work with their results.

Research Time vs. Development Time: Research and early investigation are necessary in addressing
exascale software challenges. It is also crucial that when the hardware becomes available, the software is
sufficiently mature. For the interim system, targeted for 2015, time is short for making decisions on high-
level issues (e.g., is programming model X the correct one for exascale?). It is important that funding
agencies realize the urgency in producing solicitations and making funding available for the early
investigations.

Support: Providing sufficient, on-going support for the components may be the largest nontechnical
challenge facing the HPC community. Software researchers have typically not provided the level of
support provided by vendor partners, and few research groups provide the level of support needed for
HPC facilities to meet their traditional quality of service requirements. Further, to date there has not been
a strong track record for the community coordinating with vendor partners tightly enough so the vendor
partners could include software components in their product plan. In order to produce the rich software
ecosystem the X-stack needs, a novel structure needs to be put in place to address these support issues.

72

6.2 Taxonomy of Development/Support Models
The vendor partners, funding agencies, and research and development community must have each
software component in the X-stack categorized in terms of two key characteristics: (1) who is expected to
develop/supply the component, and (2) who is expected to maintain and support the component. The
figure below shows the four quadrants defined by these characteristics and how some of the component
areas of the X-stack sort into them.

Elements in X-stack software roadmap categorized relative to supplier/support criteria from the vendor
perspective. Cross-cutting areas—resilience, power management, performance optimization, and
programmability—are not shown since they affect components at all layers and which may fall in different
quadrants. As components are designed, the project owners should clearly identify the appropriate category for
the component.

In Q1, the system provider both supplies and supports the component. This is the typical model of system
providers who supply a proprietary software stack. However, the software components in this quadrant
may also be open source, community-developed, co-developed, and/or third-party software components
for which the system provider also provides support. In this context, then, “supplies” basically means
“tests and packages for the system.” Linux and MPI are often in this category for vendor partners.

In Q2, the system provider supplies a community-developed component, and the community provides the
support. In this case, the system provider builds the component and supplies it to customers for each
installation. Although the system provider does not maintain or support the component, it may be one of
the contributors for that component in the community. PeTSC, ScaLAPACK, and gcc are examples from
this quadrant.

In Q3, the component is developed/supplied and supported by the community. The facility and/or end-
user obtains, builds, and installs the software on the system and works with the community for
maintenance and support. For example, NWCHEM and gnu software are in this quadrant.

In Q4, the component is developed by the community, but the system provider is expected to be
responsible to fully maintain and support the component. Examples in this quadrant are typically unique
to specific customers. From the perspective of the vendor partners, this quadrant is an undesirable

73

quadrant because, while they are expected to take responsibility for maintenance and support, they do not
have enough control to sufficiently influence the component development/support community or control
the destiny of the component. Consequently, facilities have difficulty obtaining the quality of support they
are interested in.

From the system provider’s perspective, components in Q1 and Q2 are appropriate as RFP requirements.
However, only components in Q1 are appropriate as strong acceptance criteria. The Q3 is extremely
difficult for the system providers and should be avoided whenever possible. There are no restrictions on
Q4 from the vendor partners, but there may be issues regarding the expectations of facilities managers
and scientific users, and some of these issues may require alternative resource and/or funding streams.

While the system providers may participate in developing software in any of the quadrants, it is likely that
system providers will be more active in the development of components in Q1 and Q2.

6.3 Requirements and Methods
The goals of the IESP effort challenge not only the technical capability of the HPC community but also
the social and economic models that the community uses to create, integrate, test, and support software
for emerging extreme-scale systems. Policies surrounding open source software offer one illustration of
the challenge. On one hand, many government funding organizations require that software developed
with public funds be available as open source. However, the absolute requirement for all software thus
created to be open source makes it difficult for the providers of systems and the facilities deploying and
supporting them as scientific tools to meet the quality of service objectives that the user community has
come to expect. Pulling in the other direction, however, is the recognition that the HPC community is
relatively small, while many hands are needed to craft viable solutions in the time available. This
recognition is one of the primary reasons for trying to harness the entire international community to the
effort. To engage everyone, there needs to be a shared and open way to work together. By its very nature,
proprietary code tends to thwart goals and reduce the number of hands that can contribute.

To describe this tension and evaluate the tradeoffs, we define the requirements that science users have for
the large X-stack software development effort, many of which we believe can be met by open software.
The goals and expectations of computing center management, the software research community, and the
scientific application users include the following:

§ The community does not want to be limited to proprietary solutions over which they have little or
no control. The features and improvements that have to wait for commercial providers to supply
them can be problematic. Often these providers have priorities not always aligned with the
HPC/exascale community, making improvements and/or corrections less timely and/or less
functional than needed.

§ Many aspects of exascale have a degree of uncertainty (risk) that strongly suggests having
alternatives for risk mitigation and being prepared to replace components of the software stack in
a timely manner.

§ Software developers, ranging from application developers to system tool and feature developers,
need well-defined and consistent APIs to which they can write code.

§ Government organizations need to be able to leverage their investments of public funds in
software development, so that results in one project or area can be reused for the multiple
exascale hardware targets and for other non-exascale projects or areas as well.

§ Government organizations need to be able to protect their investments of public funds in software
development from being lost. In the past, significant publicly funded software (and hardware)
investments have been lost when companies go out of business or change to other business
models.

74

§ Applications teams will be working to create highly scalable applications that run effectively on
multiple system targets. These application teams want to have a cross-platform, or easily portable,
programming and development environment to increase productivity.

§ Exascale systems will be advanced scientific instruments. As part of the scientific process,
scientists need to know how the devices work for scientific reproducibility and accuracy.
Treating the system software as a black box run by code that cannot be examined or verified does
not accomplish this goal.

System providers have their own requirements, some of which were expressed in the above provisioning
and support graphic. The primary requirement is that system providers not be held responsible or liable
for the correctness or performance of software over which they do not have control. Providers want the
freedom, based on their business models, to use open source and other software components to meet
requirements at their own risk. For example, they may decide to offer an open source component but
budget the effort to provide the necessary support themselves. On the other hand, providers should not be
held accountable for software they do not control. Sound business practices also dictate that providers be
able to protect their proprietary information (e.g., low-level system hardware design), as has historically
been the case.

The facilities that will deploy the exascale systems and help scientists make efficient use of the systems
have traditionally made both explicit and implicit quality of service commitments to users and have
accepted quality of service expectations/metrics from the funding agencies. Just like vendor partners,
facilities are hesitant to rely on casual support agreements (e.g., open source) to resolve problems and
make improvements in software that are critical to their success, particularly if they do not have the
resources to provide their own full support for the component. Facilities, as surrogates for government
stakeholders, also have to ensure the systems they deploy are the best value possible.

While there are overlaps, the methods below capture, to first order, the primary methods for developing
and supporting software.

§ Open source is defined, in the current context, as when all software is provided as buildable
source code, with licenses that allow full rights for others to change and use the software without
infringement to anyone’s intellectual property. Support for the software may be casual to
nonexistent. An example is the Perl scripting language.

§ Open source with formal support is an enhancement of the open source in which all software is
buildable source, as above, but in which there also exists a formal, or in some cases paid,
arrangement for support of the software. An example is Lustre.

§ Open software should be differentiated from open source. “Open software” refers to software
where all APIs are published and supported and are not changed arbitrarily or unduly, but the
buildable source code is not released with rights to use or modify. Open software allows software
developers to create software that interfaces with other component (including application codes)
and allows components to be replaced as long as the component has the same API.

§ Collaborative development is a method that extends to both joint development and joint
ownership of the software IP with a formal agreement defining roles, responsibilities, and rights.
These agreements typically define a way to provide on-going support as well as original
development. An example is the HPSS Collaboration.

§ Co-development is a method that captures more ad hoc arrangements for joint development and
support efforts. Co-development may co-exist with open software and/or open source. Examples
in this category include MPICH and the ACTS toolkit.

75

§ Proprietary development is the funded or unfunded development and support by an organization
that retains the IP rights. For example, DARPA HPCS efforts fund vendor partners to create
software that in some cases remain proprietary.

§ Proprietary development with code escrow is the funded or unfunded development and support
where the provider retains IP but formally agrees to release all software without restriction if
certain conditions occur, such as the provider leaving the business.

Requirement Open
Source

Open Source
with Formal
Support

Open
Software

Collaborative
Development

Co -
development

Proprietary
Development

Proprietary
Development
with Escrow

Community

Does not want to be
limited to a fully
proprietary solution

X X X X ?

Flexibility to
replace components
of the stack

X X X X ?

Open API X X X X X

Leverage Gov’t
investment

X X X X X

Protect Gov’t
investment

X X X X X X

Applications have
compatible
environment

X X X X X ? ?

Scientists need to
how their devices
work for
reproducibility

X X X ? ? ?

Provider

Not held responsible
for components that
they do not have
control over

 X X X X X

Protect other
provider proprietary
information

 X X X

Facility

Level of Quality X X X X X

Best Value X X X X X

76

Table 1 – Matrix mapping the requirements for exascale software to methods of software development and support.

Table 1 characterizes which software development and support methods address which requirements of
computing center managers, software research and development groups, and scientific application groups.
An X means the method substantially addresses the requirements. A question mark means it may, with
some restrictions, address the requirements. A blank space means the method does not support the
requirement.

This table shows that the Collaborative Development approach addresses all the requirements, because
there is shared responsibility and defined roles. More important, there is shared ownership of the
software, so if one partner drops out of the relationships, other partners can continue. Open Source with
Formal Support addresses all the requirements except for protecting the system provider from proprietary
details if the software components have to interface to the hardware system at the low level (e.g., low-
level interconnect features); in this case, releasing the code may implicitly release the proprietary
hardware details.

6.4 Software Testing
So far, for the sake of simplicity, we have focused on software component development and support. In
any large software development project, however, integration and testing (I&T) must be an integral and
well-planned effort to ensure success, often taking at least as much effort and time as the actual code
development. For the X-stack project, the situation is complicated by the fact that machines at this scale
are unique resources, so they are the only place where testing can be done. As a consequence, all exascale
and pre-exascale systems must, as part of their design, support the community I&T. Vendor partners are
expected to take the responsibility for I&T in Quadrants 1 and 2 and are concerned that there are either
explicit or implicit unfunded requirements for I&T in Quadrants 3 and 4. On the other hand, with a few
exceptions, funders and facilities do provide sufficient resources to do the appropriate level of I&T
without a vendor or facility incurring penalties.

In the case of X-stack, with the limited number of systems planned, the aggressive increase in scale, and
the potential radical departures in hardware and software, the IESP roadmap must have a credible plan
with clear responsibilities for integration and testing at expanding scales.

6.5 Recommendations
Discussion between the vendor partners, funding agencies, facilities, and IESP and the scientific
community has yielded the following recommendations.

1. The IESP community should produce a methodology for categorizing software components into the
development and support model they will fit. This should be broken down by each planned component,
for example, OS, runtime, programming models. It is also possible that different instantiations within a
component may be categorized differently. For example, within programming models, MPI and OpenMP
may be treated different than UPC. Therefore, this process may need to iterate to gain a meaningful
understanding of the X-stack creation and support plan. The result should be a “living document” and be
refined as more information is learned about each of the components.

2. Interlocking (between vendor partner, community, facility) milestones should be clearly defined. In
order to work effectively together and provide a mechanism for vendor partners to have confidence
including “not invented here” components into their product plan, these milestones will allow the vendor
partner, as the product roadmap progresses, to ensure the requirements are on track to meet the required
schedule. As illustrated in the requirement versus method grid (Sec. 6.3), the co-development model, with
joint ownership and responsibility with a formal agreement, meets the requirements.

77

3. The community should produce a model that allows for components to become mature before inclusion
into the product stack. Linux, for example, was not supported by vendor partners until it had been in
existence for at least ten years. While this amount of lead time may not be needed for all components, a
mechanism for allowing components to mature before inclusion is important.

4. As part of meeting co-development goals, the roadmap committee should interact with the application
groups to identify key application characteristics, early enough to enable the characteristics to influence
the hardware and software design tradeoffs. These characteristics can then be used as input into the
overall software architecture, requirements, and design; and hardware architecture teams can also use
them.

5. Funding agencies should apply resources to integration, testing, maintenance, and support as well as
development of X-stack software. Enabling the community to effectively deploy and utilize the X-stack
components requires a non-trivial investment of resources. Funding agencies, aware of this fact, need to
be prepared to help underwrite that investment. Furthermore, there must be a model in place that allows
the community to support that software. A good rule of thumb is that for every dollar dedicated to
researching and developing a component, there should be a dollar dedicated for testing, maintenance, and
support. Insuring the success of the IESP effort will require a well planned program of resource
integration and testing.

6. Open source licenses from non-profits and publicly funded efforts should be vendor friendly. The
pedigree of the code should track with contributor agreements, clearly indicating that the code is free of
IP entanglements from the start. The license should be “nonviral” in order to allow the software to be
included into vendor commercial products. In fact, this model should be encouraged, since it facilitates a
more sustainable software base, not just for exascale, but for other efforts as well.

7. The community should start working early on to draft IP agreements with the goal of producing the
bulk of the IP agreement that can be agreed to across countries, agencies, vendor partners, regions,
components, and so forth. This is likely to need an even longer lead-time than the technology, so starting
as soon as possible is highly recommended, since it will resolve many important questions and issues
earlier rather than later.

7. IESP Organization and Governance
Initial discussions of a long-term organization and governance model for the IESP took place at the April
2010 meeting in Oxford. A relatively large group of representatives from participating governmental
agencies, including representatives from the US (DOE, NSF, DARPA), European Commission, and Japan
(MEXT, RIKEN), as well as national funding agencies from the UK (EPSRC, BBSRC, STFC), France
(ANR, GENCI), Germany, and the Netherlands (NOW), considered potential governance models in
various aspects. Below we present some of the main considerations on which the views of the participants
converged.

7.1 Importance of a Business Case
Taking seriously the possibility of formally organizing the IESP and providing it with ongoing support
means, first and foremost, acknowledging the validity of basic questions about the need for such an
organization: Is the research and development of software for exascale systems really something new,
especially as compared to the road to petaflop/s computing? Why is a separate project or program
needed? What would happen if the funding agencies were to say, “Why bother: this regulates itself?”
Deliberations about IESP governance began with such questions, which were pursued in something of a
“devil’s advocate” spirit. Although we concluded that there is, indeed, something new and uniquely
challenging about the expected path to exascale software infrastructure, so that the IESP will require more
formal organization and ongoing funding, it was also clear that documenting a business case for this will

78

be essential in order to involve the funding agencies and provide them with the policy resources necessary
to enable them to raise the funding. The costs and benefits for doing a common (i.e., international) project
will have to be made clear.

Contents of a business case typically contain budget estimates, timelines, expected actors, roadmaps,
risks, and contingency plans. It is believed that each funding agency will need a general business case, but
should also have room for aspects in the business case that are of local importance to the country of the
funding agency. This approach will ensure compatibility of business cases between the funding agencies.
Another important aspect is the scope of IESP. There is some question, for example, as to whether the
IESP will end with the delivery of the first exascale system or whether it represents a distinctly new
phase, which happened to begin just last year, of a continuous movement that will extend into the future.

A third important aspect that should be addressed by a business case is what can be called a tree or
pyramid effect. Show that parts that are developed in IESP could and would be leveraged by a much
broader user community several years after deployment. Such effects make funding agency and vendor
interest stronger.

7.2 Application of Current Funding Mechanisms
One aspect to be addressed is the need for coordination of funding between the funding agencies (both
within and among nations), once the business case has been validated. Currently, some types of funding
calls can be identified, ranging from loose to much more regulated (loosely coupled, coordinated, joint, or
in a well-specified legal framework). Either coordinated or joint funding models are considered the best
options for the IESP. For example, a coordinated call might have characteristics such as the following:
issued at the same time, having the same text proposal, and including several subjects within one call.
Based on experience, it certainly seems feasible to have a few funding agencies working together to issue
a coordinated call; but the larger the set of funding agencies participating, the better the coordination
between the efforts will be. In this regard, an important aspect is the alignment of the subjects of the calls
to the priorities of the funding agencies. Coordinated or joint call models should enable such appropriate
alignments.

7.3 Governance Model
One of the key items of a working governance model for the IESP is the fact that the agencies funding the
effort will need to remain in control of what they fund, why, and when. We believe that IESP should
deliver to the funding agencies the analysis and planning resources that they will require to make such
coordinated solicitations regarding exascale software infrastructure possible. One approach might be to
have two separate tasks (and the entity to perform these tasks): one defining and one monitoring. The
defining task would constitute the software roadmap and the breakdown of this roadmap into components,
including timelines, procurable elements, and deliverables. This roadmap would need to take the business
case as input and could be viewed as a practical plan of execution for IESP. The monitoring task would
monitor progress on the roadmap, but across disciplines, borders, and agency domains, and would report
and advise the funding agencies. The funding agencies could then decide on continuation of funding
based on progress. Periodic updates and contingency plans will be needed. We view an approach based on
such defining and monitoring tasks as a plausible and realistic way to move forward.

7.4 Vendor Interaction
An important aspect of sustainable relationships between vendors and funding agencies is the
classification of software components with respect to ownership and ongoing or long-term support.
Vendor perspectives on these issues are discussed in detail in Section 6. From an agency perspective, in
the ideal situation, each software component of the X-stack would be open source. This approach was
strongly advocated, if not firmly posed, as a requirement by the funding agencies represented in our initial
discussions. But common sense dictates that some relaxation of this requirement will probably be

79

appropriate if the software comes closer to the individual hardware components (e.g., firmware) because
these components are likely to involve elements proprietary to the vendor. We also remark that this issue
is not directly relevant if a vendor is not funded for the development of that component. The open source
discussion has at least two facets. First, if X-stack research and development are to be funded by the
government with public funds, funding agencies take the view that the results of such publicly funded
research results should be open (source) to the people who paid for it. Second, the view that scientific
experiments must be described in all detail and be reproducible is now being expressed by the community
with increasing strength; to achieve this goal in research that uses exascale systems, all details of the
software will have to be known. This requirement is independent of the IP rights discussion. It is more a
matter of principle with respect to what constitutes valid scientific research. Licensing and IP issues are
obviously related to practical questions about how valid scientific methods can be implemented and
pursued in the coming era of exascale science. Although all details on these matters are not available yet,
it clearly makes sense to try to anticipate the consequences of different rule sets and to plan accordingly,
at an early stage of the IESP project. We plan to work with the results from the discussions of IESP
vendor partners (Sec. 6) to begin fashioning such a plan.

7.5 Timeline
The timeline for the process will depend on the end point(s), the funding models and the levels of national
and international cooperation and organization within the IESP. The end point(s) will be a function of the
long-term requirements and goals of the different funding agencies involved in the process. At this time
the first planned deployments are anticipated to be by the U.S. Department of Energy. This first
deployment sets the initial timeline for the overall software process.

In addition, there is clearly a need for a test and integration process and an intermediate scale facility to
prepare for the initial deployment, which is likely to occur in 2015. Given these two points in the process
and the current status, we can construct an initial timeline for the overall process. The early part of the
process and the final state can be reasonably defined. The intermediate stages are still subject to
considerable uncertainty.

The timeline below does not address other important issues about which discussions have already begun:
security (rely on community-developed software components), testing and integration facilities, practical
aspects of co-design, and funding of multiple approaches for similar software components. These items
are slated for further development and will be included in future timelines.

Timeframe Targets and Milestones – Performance Optimization

2010

• Initial mission-based software solicitations by DOE NNSA and Office of
Science in the fall, with an expected emphasis on conservative technology
choices

• Creation of software roadmap, including requirements based prioritization,
critical paths, funding and software clearinghouse, support models developed
among the group of international agencies involved

2011 • Initial solicitations for software development programs based on the software
roadmap for international partners

2012-13 • Initial software deliveries and evaluations

2014-15
• Delivery of final components of software stack, integration and testing in

process on non-exascale platforms
• Early technology delivery of a mini-exascale system of ~200 PF with a minimal

but functional software stack

80

2016-17
• Ability to handle observation of hundreds of million-way concurrency
• Characterization of performance of exascale hardware and software for

application enablement

2018-20
• Initial delivery of full system with a full, integrated software stack
• Ability to handle observation of billion-way concurrency
• At-scale testing, debugging, and early scientific runs

2020 • Exascale systems in production

81

8. Bibliography
 [1] "Architectures and Technology for Extreme Scale Computing," Department of Energy,

San Diego, CA, Scientific Grand Challenges Workshop Series, pp. December 8-10, 2009.
[2] "Challenges in Climate Change Science and the Role of Computing at the Extreme

Scale," Department of Energy, Washington, DC, Scientific Grand Challenges Workshop
Series, pp. 98, November 6-7, 2008.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/ClimateReport.pdf.

[3] "Cross-cutting Technologies for Computing at the Exascale," Department of Energy,
Washington, DC, Scientific Grand Challenges Workshop Series, pp. 99, February 2-4,
2009. http://extremecomputing.labworks.org/crosscut/CrosscutWSFinalReptDraft02.pdf.

[4] "Discovery in Basic Energy Sciences: The Role of Computing at the Extreme Scale,"
Department of Energy, Washington, DC, Scientific Grand Challenges Workshop Series,
pp. August 13-15, 2009.

[5] "Exascale Workshop Panel Meeting Report," Department of Energy, Washington, DC,
Scientific Grand Challenges Workshop Series, pp. 46, January 19-20, 2010.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/TrivelpieceExascaleWorkshop.pdf.

[6] "Forefront Questions in Nuclear Science and the Role of High Performance Computing
Summary Report - Summary Report," Department of Energy, Washington DC, pp.
January 26-28, 2009.
http://extremecomputing.labworks.org/nuclearphysics/PNNL_18739_onlineversion_opt.p
df.

[7] "Fusion Energy Science and the Role of Computing at the Extreme Scale," Department of
Energy, Washington, DC, Scientific Grand Challenges Workshop Series, pp. 245, March
18-20, 2009.
http://extremecomputing.labworks.org/fusion/PNNL_Fusion_final19404.pdf.

[8] "Opportunities in Biology at the Extreme Scale of Computing," Department of Energy,
Chicago, IL, Scientific Grand Challenges Workshop Series, pp. 69, August 17-19, 2009.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/BiologyReport.pdf.

[9] "Science Based Nuclear Energy Systems Enabled by Advanced Modeling and Simulation
at the Extreme Scale," Department of Energy, Washington, DC, Workshop Report, pp.
94, May 11-12, 2009. http://www.er.doe.gov/ascr/ProgramDocuments/Docs/SC-
NEWorkshopReport.pdf.

[10] "Scientific Challenges for Understanding the Quantum Universe and the Role of
Computing at Extreme Scale -- Summary Report," Department of Energy, Menlo Park
California, Scientific Grand Challenges Workshop Series, pp. 129, December 9-11, 2008.
http://extremecomputing.labworks.org/highenergyphysics/reports/HEPreport101609_fina
l.pdf.

[11] "Scientific Grand Challenges in National Security: The Role of Computing at the
Extreme Scale," Department of Energy, Washington, DC, Scientific Grand Challenges
Workshop Series, pp. 190, October 6-8, 2009.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/NNSAGrandChallengesReport.pdf
.

82

[12] M. L. Garcia and O. H. Bray, "Fundamentals of Technology Roadmapping " Sandia
National Laboratory, pp. 34, 1997.
http://www.sandia.gov/PHMCOE/pdf/Sandia'sFundamentalsofTech.pdf.

[13] P. M. Kogge and et al, "ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems," DARPA Information Processing Techniques Office,
Washington, DC, pp. 278, September 28, 2008.
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_r
eport_100208.pdf.

[14] National Research Council Committee on the Potential Impact of High-End Computing
on Illustrative Fields of Science and Engineering, "The Potential Impact of High-End
Capability Computing on Four Illustrative Fields of Science and Engineering,"
Washington, DC, pp. 142, 2008.

[15] V. Sarkar, et al., "ExaScale Software Study: Software Challenges in Extreme Scale
Systems," DARPA Information Processing Techniques Office, Washington DC., pp. 159,
September 14, 2009.
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECSS%20report
%20101909.pdf.

[16] V. Sarkar, W. Harrod, and A. E. Snavely, "Software challenges in extreme scale
systems," Journal of Physics: Conference Series pp. 012045, 2009.

[17] R. Stevens, T. Zacharia, and H. Simon, "Modeling and Simulation at the Exascale for
Energy and the Environment Town Hall Meetings Report," Department of Energy Office
of Advance Scientific Computing Reserach, Washington, DC, pp. 174, 2008.
http://www.sc.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf.

