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Abstract	  
Over the last twenty years, the open source community has provided more and more software on which 
the world’s High Performance Computing (HPC) systems depend for performance and productivity.  The 
community has invested millions of dollars and years of effort to build key components.  But although the 
investments in these separate software elements have been tremendously valuable, a great deal of 
productivity has also been lost because of the lack of planning, coordination, and key integration of 
technologies necessary to make them work together smoothly and efficiently, both within individual 
PetaScale systems and between different systems. It seems clear that this completely uncoordinated 
development model will not provide the software needed to support the unprecedented parallelism 
required for peta/exascale computation on millions of cores, or the flexibility required to exploit new 
hardware models and features, such as transactional memory, speculative execution, and GPUs. This 
report describes the work of the community to prepare for the challenges of exascale computing, 
ultimately combing their efforts in a coordinated International Exascale Software Project. 
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1. Introduction 
The technology roadmap presented here is the result of more than a year of coordinated effort within the 
global software community for high-end scientific computing. It is the product of a set of first steps taken 
to address a critical challenge that now confronts modern science and is produced by a convergence of 
three factors: (1) the compelling science case to be made, in both fields of deep intellectual interest and 
fields of vital importance to humanity, for increasing usable computing power by orders of magnitude as 
quickly as possible; (2) the clear and widely recognized inadequacy of the current high end software 
infrastructure, in all its component areas, for supporting this essential escalation; and (3) the near 
complete lack of planning and coordination in the global scientific software community in overcoming 
the formidable obstacles that stand in the way of replacing it. At the beginning of 2009, a large group of 
collaborators from this worldwide community initiated the International Exascale Software Project 
(IESP) to carry out the planning and the organization building necessary to solve this vitally important 
problem.  

With seed funding from key government partners in the United States, European Union and Japan, as well 
as supplemental contributions from some industry stakeholders, we formed the IESP around the following 
mission: 

The guiding purpose of the IESP is to empower ultra-high resolution and data-intensive 
science and engineering research through the year 2020 by developing a plan for (1) a 
common, high-quality computational environment for petascale/exascale systems and (2) 
catalyzing, coordinating, and sustaining the effort of the international open source 
software community to create that environment as quickly as possible.  

There exist good reasons to think that such a plan is urgently needed. First and foremost, the magnitude of 
the technical challenges for software infrastructure that the novel architectures and extreme scale of 
emerging systems bring with them is daunting [13, 16]. These problems, which are already appearing on 
the leadership-class systems of the US National Science Foundation (NSF) and Department of Energy 
(DOE), as well as on systems in Europe and Asia, are more than sufficient to require the wholesale 
redesign and replacement of the operating systems, programming models, libraries, and tools on which 
high-end computing necessarily depends.  

Second, the complex web of interdependencies and side effects that exist among such software 
components means that making sweeping changes to this infrastructure will require a high degree of 
coordination and collaboration. Failure to identify critical holes or potential conflicts in the software 
environment, to spot opportunities for beneficial integration, or to adequately specify component 
requirements will tend to retard or disrupt everyone’s progress, wasting time that can ill afford to be lost. 
Since creating a software environment adapted for extreme-scale systems (e.g., NSF’s Blue Waters) will 
require the collective effort of a broad community, this community must have good mechanisms for 
internal coordination.  

Third, it seems clear that the scope of the effort must be truly international. In terms of its rationale, 
scientists in nearly every field now depend on the software infrastructure of high-end computing to open 
up new areas of inquiry (e.g., the very small, very large, very hazardous, very complex), to dramatically 
increase their research productivity, and to amplify the social and economic impact of their work. It 
serves global scientific communities who need to work together on problems of global significance and 
leverage distributed resources in transnational configurations. In terms of feasibility, the dimensions of 
the task—totally redesigning and recreating, in the period of just a few years, the massive software 
foundation of computational science in order to meet the new realities of extreme-scale computing—are 
simply too large for any one country, or small consortium of countries, to undertake on its own. 

The IESP was formed to help achieve this goal. Beginning in April 2009, we held a series of three 
international workshops, one each in the United States, Europe, and Asia, in order to work out a plan for 
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doing so. Information about, and the working products of all these meetings, can be found at the project 
website, www.exascale.org. In developing a plan for producing a new software infrastructure capable of 
supporting exascale applications, we charted a path that moves through the following sequence of 
objectives:  

1. Make a thorough assessment of needs, issues and strategies: A successful plan in this arena 
requires a thorough assessment of the technology drivers for future peta/exascale systems and of 
the short-term, medium-term, and long-term needs of applications that are expected to use them. 
The IESP workshops brought together a strong and broad-based contingent of experts in all 
areas of HPC software infrastructure, as well as representatives from application communities 
and vendors, to provide these assessments. As described in more detail below, we also leveraged 
the substantial number of reports and other material on future science applications and HPC 
technology trends that different parts of the community have created in the past three years. 

2. Develop a coordinated software roadmap: The results of the group’s analysis have been 
incorporated into a draft of a coordinated roadmap intended to help guide the open source 
scientific software infrastructure effort with better coordination and fewer missing components. 
This document represents the current version of that roadmap.  

3. Provide a framework for organizing the software research community: With a reasonably stable 
and complete version of the roadmap in hand, we will endeavor to develop an organizational 
framework to enable the international software research community to work together to navigate 
the roadmap and reach the appointed destination—a common, high quality computational 
environment that can support extreme-scale science on extreme-scale systems. The framework 
will include elements such as initial working groups, outlines of a system of governance, 
alternative models for shared software development with common code repositories, and 
feasible schemes for selecting valuable software research and encouraging its translation into 
usable, production-quality software for application developers. This organization must also 
foster and help coordinate R&D efforts to address the emerging needs of users and application 
communities. 

4. Engage and coordinate with the vendor community in cross-cutting efforts: To leverage 
resources and create a more capable software infrastructure for supporting exascale science, the 
IESP is committed to engaging and coordinating with vendors across all of its other objectives. 
Industry stakeholders have already made contributions to the workshops (i.e., objectives 1 and 2 
above) and we expect similar, if not greater participation, in the effort to create a model for 
cooperation as well as coordinated R&D programs for new exascale software technologies. 

5. Encourage and facilitate collaboration in education and training: The magnitude of the changes 
in programming models and software infrastructure and tools brought about by the transition to 
peta/exascale architectures will produce tremendous challenges in the area of education and 
training. As it develops its model of community cooperation, the IESP plan must, therefore, also 
provide for cooperation in the production of education and training materials to be used in 
curricula, at workshops and on-line.  

This roadmap document, which focuses on objectives 1 and 2 above, represents the main result of the first 
phase of the planning process. Although some work on tasks 3–5 has already begun, we plan to solicit, 
and expect to receive in the near future, further input on the roadmap from a much broader set of 
stakeholders in the computational science community. This version of the roadmap begins that process by 
including more extensive input from the science application community, international funding agencies, 
and vendor partners. The additional ideas and information we gather as the roadmap is disseminated are 
likely to produce changes that need to be incorporated into future iterations of the document as plans for 
objectives 3–5 develop and cooperative research and development efforts begin to take shape.  
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2. Destination of the IESP Roadmap 
The metaphor of the roadmap is intended to capture the idea that we need a representation of the world, 
drawn from our current vantage point, in order to better guide us from where we are now to the 
destination we want to reach. Such a device is all the more necessary when a large collection of people, 
not all of whom are starting from precisely the same place, need to make the journey. In formulating such 
a map, agreeing on a reasonably clear idea of the destination is obviously an essential first step. Building 
on the background knowledge that motivated the work of IESP participants, we define the goal that the 
roadmap is intended to help our community reach as follows:  

By developing and following the IESP roadmap, the international scientific software research 
community seeks to create a common, open source software infrastructure for scientific computing 
that enables leading-edge science and engineering groups to develop applications that exploit the 
full power of the exascale computing platforms that will come on-line in the 2018–2020 timeframe. 
We call this integrated collection of software the extreme-scale/exascale software stack, or X-stack.  

Unpacking the elements of this goal statement in the context of the work performed so far by the IESP 
reveals some of the characteristics that the X-stack must possess, at minimum:  

§ The X-stack must enable suitably designed science applications to exploit the full resources of the 
largest systems: The main goal of the X-stack is to support groundbreaking research on 
tomorrow’s exascale computing platforms. By using these massive platforms and X-stack 
infrastructure, scientists should be empowered to attack problems that are much larger and more 
complex, make observations and predictions at much higher resolution, explore vastly larger data 
sets, and reach solutions dramatically faster. To achieve this goal, the X-stack must enable 
scientists to use the full power of exascale systems. 

§ The X-stack must scale both up and down the platform development chain: Science today is done 
on systems at a range of different scales, from departmental clusters to the world’s largest 
supercomputers. Since leading research applications are developed and used at all levels of this 
platform development chain, the X-stack must support them well at all these levels.  

§ The X-stack must be highly modular, so as to enable alternative component contributions:  The 
X-stack is intended to provide a common software infrastructure on which the entire community 
builds its science applications. For both practical and political reasons (e.g., sustainability, risk 
mitigation), the design of the X-stack should strive for modularity that makes it possible for many 
groups to contribute and accommodate more than one choice in each software area.  

§ The X-stack must offer open source alternatives for all components in the X-stack: For both 
technical and mission oriented reasons, the scientific software research community has long 
played a significant role in the open source software movement. Continuing this important 
tradition, the X-stack will offer open source alternatives for all of its components, even though it 
is clear that exascale platforms from particular vendors may support, or even require, some 
proprietary software components as well. 

3. Technology Trends and Their Impact on Exascale 
The design of the extreme-scale platforms that are expected to become available in 2018 will represent a 
convergence of technological trends and the boundary conditions imposed by over half a century of 
algorithm and application software development. Although the precise details of these new designs are 
not yet known, it is clear that they will embody radical changes along a number of different dimensions as 
compared to the architectures of today’s systems and that these changes will render obsolete the current 
software infrastructure for large-scale scientific applications. The first step in developing a plan to ensure 
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that appropriate system software and applications are ready and available when these systems come on 
line, so that leading edge research projects can actually use them, is to carefully review the underlying 
technological trends that are expected to have such a transformative impact on computer architecture in 
the next decade. These factors and trends, which we summarize in this section, provide essential context 
for thinking about the looming challenges of tomorrow’s scientific software infrastructure; therefore, 
describing them lays the foundation on which subsequent sections of this roadmap document builds. 

3.1 Technology Trends 
In developing a roadmap for the X-stack software infrastructure, the IESP has been able to draw on 
several thoughtful and extensive studies of impacts of the current revolution in computer architecture [13, 
15]. As these studies make clear, technology trends over the next decade – broadly speaking, increases of 
1000X in capability over today’s most massive computing systems, in multiple dimensions, as well as 
increases of similar scale in data volumes – will force a disruptive change in the form, function, and 
interoperability of future software infrastructure components and the system architectures incorporating 
them. The momentous nature of these changes can be illustrated for several critical system-level 
parameters: 

§ Concurrency– Moore’s law scaling in the number of transistors is expected to continue through 
the end of the next decade, at which point the minimal VLSI geometries will be as small as five 
nanometers. Unfortunately, the end of Dennard scaling means that clock rates are no longer 
keeping pace, and may in fact be reduced in the next few years to reduce power consumption. As 
a result, the exascale systems on which the X-stack will run will likely be composed of hundreds 
of millions of arithmetic logic units (ALUs). Assuming there are multiple threads per ALU to 
cover main-memory and networking latencies, applications may contain ten billion threads. 

§ Reliability – System architecture will be complicated by the increasingly probabilistic nature of 
transistor behavior due to reduced operating voltages, gate oxides, and channel widths/lengths 
resulting in very small noise margins. Given that state-of-the-art chips contain billions of 
transistors and the multiplicative nature of reliability laws, building resilient computing systems 
out of such unreliable components will become an increasing challenge. This cannot be cost-
effectively addressed with pairing or TMR; rather, it must be addressed by X-stack software and 
perhaps even scientific applications. 

§ Power consumption – Twenty years ago, HPC systems consumed less than a megawatt. The Earth 
Simulator was the first such system to exceed 10 MW. Exascale systems could consume over 100 
MW, and few of today’s computing centers have either adequate infrastructure to deliver such 
power or the budgets to pay for it. The HPC community may find itself measuring results in terms 
of power consumed, rather than operations performed. The X-stack and the applications it hosts 
must be conscious of this situation and act to minimize it. 

Similarly dramatic examples could be produced for other key variables, such as storage capacity, 
efficiency, and programmability.  

More important, a close examination shows that changes in these parameters are interrelated and not 
orthogonal. For example, scalability will be limited by efficiency, as are power and programmability. 
Other cross correlations can be perceived through analysis. The DARPA Exascale Technology Study [13] 
exposes power as the pacesetting parameter. Although an exact power consumption constraint value is not 
yet well defined, with upper limits of today’s systems on the order of 5 megawatts, increases of an order 
of magnitude in less than 10 years will extend beyond the practical energy demands of all but a few 
strategic computing environments. A politico-economic pain threshold of 25 megawatts has been 
suggested (by DARPA) as a working boundary. With dramatic changes to core architecture design, 
system integration, and programming control over data movement, best estimates for CMOS-based 
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systems at the 11-nanometer feature size is a factor of 3 to 5 times this amount. One consequence is that 
clock rates are unlikely to increase substantially in spite of the IBM Power architecture roadmap with 
clock rates between 0.5 and 4.0 GHz a safe regime and a nominal value of 2.0 GHz appropriate, at least 
for some logic modules. Among the controversial questions is how much instruction-level parallelism 
(ILP) and speculative operation is likely to be incorporated on a per processor core basis and the role of 
multithreading in subsuming more of the fine-grained control space. Data movement across the system, 
through the memory hierarchy, and even for register-to-register operations will likely be the single 
principal contributor to power consumption, with control adding to this appreciably. Since future systems 
can ill afford the energy wasted by data movement that does not advance the target computation, 
alternative ways of hiding latency will be required in order to guarantee, as much as possible, the utility of 
every data transfer. Even taking into account the wastefulness of today’s conventional server-level 
systems and the energy gains that careful engineering has delivered for systems such as Blue Gene/P, an 
improvement on the order of 100X, at minimum, will still be required. 

As a result of these and other observations, exascale system architecture characteristics are beginning to 
emerge, though the details will become clear only as the systems themselves actually develop. Among the 
critical aspects of future systems, available by the end of the next decade, which we can predict with some 
confidence are the following:  

§ Feature size of 22 to 11 nanometers, CMOS in 2018 

§ Total average of 25 picojoules per floating point operation 

§ Approximately 10 billion-way concurrency for simultaneous operation and latency hiding 

§ 100 million to 1 billion cores 

§ Clock rates of 1 to 2 GHz  

§ Multithreaded, fine-grained concurrency of 10- to 100-way concurrency per core 

§ Hundreds of cores per die (varies dramatically depending on core type and other factors) 

§ Global address space without cache coherence; extensions to PGAS (e.g., AGAS) 

§ 128-petabyte capacity mix of DRAM and nonvolatile memory (most expensive subsystem) 

§ Explicitly managed high-speed buffer caches; part of deep memory hierarchy 

§ Optical communications for distances > 10 centimeters, possibly intersocket 

§ Optical bandwidth of 1 terabit per second  

§ Systemwide latencies on the order of tens of thousands of cycles 

§ Active power management to eliminate wasted energy by momentarily unused cores 

§ Fault tolerance by means of graceful degradation and dynamically reconfigurable structures 

§ Hardware-supported rapid thread context switching 

§ Hardware-supported efficient message-to-thread conversion for message-driven computation 

§ Hardware-supported, lightweight synchronization mechanisms 

§ 3-D packaging of dies for stacks of 4 to 10 dies each including DRAM, cores, and networking 

Because of the nature of the development of the underlying technology most of the predictions above 
have an error margin of +/-50% or a factor of 2 independent of specific roadblocks that may prevent 
reaching the predicted value. 
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3.2 Science Trends 
A basic driver of the IESP is the fact that the complexity of advanced challenges in science and 
engineering continues to outpace our ability to adequately address them through available computational 
power. Many phenomena can be studied only through computational approaches; well-known examples 
include simulating complex processes in climate and astrophysics. Increasingly, experiments and 
observational systems are finding that not only are the data they generate exceeding petabytes and rapidly 
heading toward exabytes, but the computational power needed to process the data is also expected to be in 
exaflops range.  

A number of reports and workshops have identified key science challenges and applications of societal 
interest that require computing at exaflops levels and beyond [1-11, 14, 17]. Here we summarize some of 
the significant findings on the scientific necessity of exascale computing; we focus primarily on the need 
for the software environments needed to support the science activities. DOE held eight workshops in the 
past year that identified science advances and important applications that will be enabled through the use 
of exascale computing resources. The workshops covered the following topics: climate, high-energy 
physics, nuclear physics, fusion energy sciences, nuclear energy, biology, materials science and 
chemistry, and national nuclear security. The US National Academy of Sciences published the results of a 
study in the report “The Potential Impact of High-End Capability Computing on Four Illustrative Fields 
of Science and Engineering” [14]. The four fields were astrophysics, atmospheric sciences, evolutionary 
biology, and chemical separations.  

Likewise, NSF has embarked on a petascale computing program that has funded dozens of application 
teams through its Peta-Apps and PRAC programs, across all areas of science and engineering, to develop 
petascale applications, and is deploying petaflops systems, including Blue Waters, expected to come on-
line in 2011. It has commissioned a series of task forces to help plan for the transition from petaflops to 
exaflops computing facilities, to support the software development necessary, and to understand the 
specific science and engineering needs beyond petascale.  

Similar activities are seen in Europe and Asia, all reaching similar conclusions: significant scientific and 
engineering challenges in both simulation and data analysis already exceed petaflops and are rapidly 
approaching exaflop-class computing needs. In Europe, the Partnership for Advanced Computing in 
Europe (PRACE) involves twenty partner countries, supports access to world-class computers, and has 
activities aimed at supporting multi-petaflops and eventually exaflops-scale systems for science. The 
European Union (EU) is also planning to launch projects aimed at petascale and exascale computing and 
simulation. Japan has a project to build a 10-petaflop system and has historically supported the 
development of software for key applications such as climate. As a result, scientific and computing 
communities, and the agencies that support them in many countries, have been meeting to plan joint 
activities that will be needed to support these emerging science trends. 

To give a specific and timely example, a recent report2 states that the characterization of abrupt climate 
change will require sustained exascale computing in addition to new paradigms for climate change 
modeling. The types of questions that could be tackled with exascale computing (and cannot be tackled 
adequately without it) include the following: 

§ ¨How do the carbon, methane, and nitrogen cycles interact with climate change?” 

§ ¨How will local and regional water, ice, and clouds change with global warming?” 

§ ¨How will the distribution of weather events, particularly extreme events, determine regional 
climate change with global warming?”  

                                                
2 Science Prospects and Benefits of Exascale Computing, ORNL/TM-2007/232, December 2007, page 9, 
http://www.nccs.gov/wp-content/media/nccs_reports/Science%20Case%20_012808%20v3__final.pdf 
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§ ¨What are the future sea-level and ocean circulation changes? “ 

Among the findings of the astrophysics workshop and other studies are that exascale computing will 
enable cosmology and astrophysics simulations aimed at the following: 

§ Measuring the masses and interactions of dark matter  

§ Understanding and calibrating supernovae as probes of dark energy 

§ Determining the equation of state of dark energy 

§ Measuring the masses and interactions of dark matter 

§ Understanding the nature of gamma-ray bursts 

Energy security. The search for a path forward in assuring sufficient energy supplies in the face of a 
climate-constrained world faces a number of technical challenges, ranging from issues related to novel 
energy technologies, to issues related to making existing energy technologies more (economically) 
effective and safer, to issues related to the verification of international agreements regarding the emission 
(and possible sequestration) of CO2 and other greenhouse gases. Among the science challenges are the 
following: 

§ Verification of “carbon treaty” compliance 

§ Improvement in the safety, security, and economics of nuclear fission 

§ Improvement in the efficiency of carbon-based electricity production and transportation  

§ Improvement in the reliability and security in the (electric) grid  

§ Nuclear fusion as a practical energy source 

Computational research will also play an essential role in the development of new approaches to meeting 
future energy requirements (e.g., wind, solar, biomass, hydrogen, and geothermal), which in many cases 
will require exascale power. 

Industrial applications, such as simulation-enhanced design and production of complex manufactured 
systems and rapid virtual prototyping, will also be enabled by exascale computing.  To characterize 
materials deformation and failure in extreme conditions will require atomistic simulations on engineering 
time scales that are out of reach with petascale systems. 

A common theme in all of these studies of the important science and engineering applications that are 
enabled by exaflops computing power is that they have complex structures and present programming 
challenges beyond just scaling to many millions of processors. For example, many of these applications 
involve multiple physical phenomena spanning many decades of spatial and temporal scale. As the ratio 
of computing power to memory grows, the “weak scaling,” which has been exploited for most of the last 
decade, will increasingly give way to “strong scaling,” which will make scientific applications 
increasingly sensitive to overhead and noise generated by the X-stack. These applications are increasingly 
constructed of components developed by computational scientists worldwide, and the X-stack must 
support the integration and performance portability of such software. 

3.3 Key Requirements Imposed by Trends on the X-Stack 
The cited trends in technology and applications will impose severe constraints on the design of the X-
stack. Below are cross-cutting issues that will affect all aspects of system software and applications at 
exascale. 

§ Concurrency:  A 1000x increase in concurrency for a single job will be necessary to achieve 
exascale throughput. New programming models will be needed to enable application groups to 
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address concurrency in a more natural way. This capability will likely have to include “strong 
scaling” because growth in the volume of main memory will not match that of the processors. 
This in turn will require minimizing any X-stack overheads that might otherwise become a 
critical Amdahl fraction. 

§ Energy:  Since much of the power in an exascale system will be expended moving data, both 
locally between processors and memory as well as globally, the X-stack must provide 
mechanisms and APIs for expressing and managing data locality. These will also help minimize 
the latency of data accesses. APIs also should be developed to allow applications to suggest other 
energy saving techniques, such as turning cores on and off dynamically, even though these 
techniques could result in other problems, such as more faults/errors. 

§ Resiliency:  The VLSI devices from which exascale systems will be constructed will not be as 
reliable as those used today. All software, and therefore all applications, will have to address 
resiliency in a thorough way if they are to be expected to run at scale. Hence, the X-stack will 
have to recognize and adapt to errors continuously, as well as provide the support necessary for 
applications to do the same. 

§ Heterogeneity:  Heterogeneous systems offer the opportunity to exploit the extremely high 
performance of niche market devices such as GPUs and game chips (e.g., STI Cell) while still 
providing a general-purpose platform. An example of such a system today is Tokyo Tech’s 
Tsubame, which incorporates AMD Opteron CPUs along with Clearspeed and Nvidia 
accelerators. Simultaneously, large-scale scientific applications are also becoming more 
heterogeneous, addressing multiscale problems spanning multiple disciplines. 

§ I/O and Memory:  Insufficient I/0 capability is a bottleneck today. Ongoing developments in 
instrument construction and simulation design make it clear that data rates can be expected to 
increase by several orders of magnitude over the next decade. The memory hierarchy will change 
based on both new packaging capabilities and new technology. Local RAM and NVRAM will be 
available either on or very close to the nodes. The change in memory hierarchy will affect 
programming models and optimization.  

3.4 Relevant Politico-Economic Trends  
The HPC market is growing at approximately 11 percent per year. The largest-scale systems, those that 
will support the first exascale computations at the end of the next decade, will be deployed by government 
computing laboratories to support the quest for scientific discovery. These capability computations often 
consume an entire HPC system and pose difficult challenges for concurrent programming, debugging and 
performance optimization. Thus, publicly funded computational scientists will be the first users of the X-
stack and have a tremendous stake in seeing that suitable software exists, which is the raison d’être for 
IESP. 

In the late 1980s, the commercial engineering market place, spanning diverse fields such as computer 
aided engineering and oil reservoir modeling, used the same computing platforms and often the same 
software as the scientific community. This is far less the case today. The commercial workload tends to 
be more capacity oriented, involving large ensembles of smaller computations. The extreme levels of 
concurrency necessary for exascale computing suggests that this trend may not change, so it is not clear 
how much demand for those features of the X-stack unique to exascale computing from commercial HPC 
users. On the other hand, the HPC vendor community is eager to work with, and leverage the research and 
development effort of, the IESP software community. To that end, plans for cooperation and coordination 
between the IESP software and the HPC vendor community are being developed; we summarize the 
current state of this discussion in Section 6. 
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4. Formulating Paths Forward for X-Stack Component 
Technologies  

In this section of the roadmap, the longest and most detailed, we undertake the difficult task of translating 
the critical system requirements for the X-stack, presented in Section 3, into concrete recommendations 
for research and development agendas for each of the software areas and necessary components of the X-
stack. The roadmapping template we used roughly follows the approach described in the excellent study 
from Sandia National Laboratories by Garcia and Bray [12]. Accordingly, the discussion of each 
component or area is divided into the following parts:  

§ Technology and science drivers: The impacts of the critical technology trends and science 
requirements must be described and analyzed for each software area and/or component of the X-
stack. These impacts represent technology and science drivers for each such area/component of 
the X-stack, and each must be evaluated in terms of how well or poorly current technologies 
address the target requirements and where the obstacles to progress lie.  

§ Alternative R&D strategies: Once the technology and science drivers are identified and studied, 
the different possible lines of attack on the problems and challenges involved, insofar as we can 
see them today, need to be described and explored.  

§ Research and development agenda recommendations: Alternative R&D strategies in each area 
need to be evaluated and ranked, and actual plans, including specific milestones, must be drawn 
up. Clearly these plans must take into account a variety of factors, many of which have been (or 
should be) described elsewhere in the roadmap. 

§ Cross-cutting Considerations: Many of the parts of the X-stack will have interdependencies and 
cross-cutting effects related to other component areas; allusions to these effects are likely to be 
laced or scattered through the previous three subsections. In many cases it will be desirable to 
break out a summary of these considerations as a separate section in order to highlight gaps or to 
ensure that activities are suitably coordinated. This version of the roadmap focuses on four such 
cross-cutting areas: resiliency, power/total-cost-of-ownership, performance, and programmability. 

4.1 System Software 

The system software list is often described as that software that manages system resources on behalf of 
the application but is usually transparent to the user. For the purposes of mapping the road to a viable X-
stack, we include under this heading the operating system, runtime system, I/O system, and essential 
interfaces to the external environment (e.g., data repositories, real-time data streams, and clouds). Each of 
these areas is treated in turn below. 

4.1.1 Operating Systems 

4.1.1.1 Technology Drivers for Operating Systems 

Increasing importance of effective management of increasingly complex resources – Exascale systems 
will increase the complexity of resources available in the system. Moreover, in order to attain the benefits 
offered by an exascale system, effective management of these resources will be increasingly important. 

As an example, consider the execution environment presented by an exascale system. Current systems 
provide hundreds of thousands of nodes with a small number of homogeneous computational cores per 
node. Exascale systems will increase the complexity of the computational resource in two dimensions. 
First, the core count per node will increase substantially. Second, the cores most likely will be 
heterogeneous (e.g., combining stream-based cores with traditional cores based on load/store). In addition 
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to increasing the complexity of the computational resources, the resources shared between the 
computational resources (e.g., the memory bus) can have a far greater impact on performance. 

Besides the changes in the resources provided by an exascale system, the programming models will 
undergo an evolution. In particular, non-MPI programming models will undoubtedly have increasing 
presence in exascale systems. The only trends clear at the present time are that there will be an increasing 
emphasis on datacentric computations and that programming models will continue to emphasize the 
management of distributed-memory resources. Given the evolution in programming models, we can also 
expect that individual applications will incorporate multiple programming models. For example, a single 
application may incorporate components that are based on MPI and other components that are based on 
shared memory. The particular combination of programming models may be distributed over time 
(different phases of the application) or space (some of the nodes run MPI; others run shared memory). 

The purpose of an operating system is to provide a bridge between the physical resources provided by a 
computing system and the runtime system needed to implement a programming model. Given the rapid 
change in resources and programming models, a common operating system must be defined for the 
exascale community. This will provide the exascale community with a common set of APIs that can be 
used by a runtime system to support fully autonomic management of resources, including adaptive 
management policies that identify and react to load imbalances and the intermittent loss of resources 
(resilience). In order to achieve this goal, the APIs supported by the operating system must expose low-
level resource APIs, and the runtime must be aware of the context (within the application) of a specific 
computation. 

4.1.1.2 Alternative R&D Strategies for Operating Systems 

Several approaches could be adopted in the development of a community operating system for exascale 
systems. One approach is to evolve an existing OS, for example, Linux, Plan 9, or IBM’s Compute Node 
Kernel. An alternative approach is to start with a new design to address the specific needs of exascale 
systems. The first approach has the advantage that the APIs provided by the OS have already been 
defined, and many runtime implementations have already been developed for the APIs. Moreover, these 
operating systems also provide drivers for many of the devices that will be used in exascale systems (e.g., 
the PCI bus). However, because the APIs are based on the resources provided by previous systems (many 
of these operating systems were defined nearly a half-century ago), they may not provide the appropriate 
access to the resources provided by an exascale system. In the end, it is likely that a hybrid approach, 
which builds on APIs and existing code bases and redesigns and modifies the most specialized 
components, will prevail.  

The operating system must maintain a high degree of flexibility. This flexibility can be accomplished 
only by minimizing the resource management strategies that are required by the operating system. 

4.1.1.3 Recommended Research Agenda for Operating Systems 

The first step in the development of a common OS for the exascale community is to develop a framework 
for the OS. This should be undertaken by a small collection of researchers who have significant 
experience in implementing HPC operating systems.  

One of the critical challenges in developing HPC operating systems is our inability to study the impact of 
resource management decisions “at scale.”  To remedy this problem, we will need to develop a full 
system simulation capability. A number of efforts are addressing parts of the full-system simulation 
capability; however, these efforts need to be coordinated to ensure that they provide the needed 
capability. 

The most critical APIs provided by the community OS will include APIs to support inter- and intranode 
communication, inter- and intranode thread management, and explicit management of the memory 
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hierarchy provided by the entire system. APIs to support energy management and resilience will also be 
critical. However, these APIs require more experience and, as such, their final definition should be 
deferred until the final stages of this research activity. 

The critical research areas in which substantial, if not groundbreaking, innovations will be required in 
order to reach this goal are the following: 

§ Fault tolerant/masking strategies for collective OS services  

§ Strategies and mechanisms for power/energy management  

§ Strategies for simulating full-scale systems  

§ General strategies for global (collective) OS services 

Timeframe Targets and Milestones – Operating Systems 

2010-11 
Community-defined framework for HPC operating systems that defines a set of core 
components and coarse-grained APIs for accessing the resources provided by an HPC 
system. 

2012-13 Scalable, full-system simulation environment that can be used to evaluate resource 
management mechanisms at scale.  

2014-15 APIs for fine-grained management of internode communication, thread management, 
and memory hierarchy management. 

2016-17 APIs for fine-grained management of power (energy) and resilience. 

2018-19 
At least one runtime system that provides global, autonomic management of the 
resources provided by an HPC system. This runtime system should provide for 
transparent resilience in the presence of failing resources. 

4.1.2 Runtime Systems 

4.1.2.1 Technology and Science Drivers for Runtime Systems 

The role of a runtime system is to act on behalf of the application in matching its algorithm’s 
characteristics and requirements to the resources that the system makes available in order to optimize 
performance and efficiency. By programming to the runtime system’s interface, application developers 
are freed from the mundane but often difficult jobs of task scheduling, resource management, and other 
low-level operations that would force them to think about the computer rather than the science they are 
trying to do. As the description of the technology trends and science requirements above suggests, it will 
be extremely challenging to create runtime systems that can continue to fulfill this role. The design of 
tomorrow’s runtime systems will be driven not only by dramatic increases in overall system hierarchy and 
high variability in the performance and availability of hardware components but also by the expected 
diversity of application characteristics, the multiplicity of different types of devices, and the large 
latencies caused by deep memory subsystems. Against this background, two general constraints on design 
and operation of X-stack runtime systems need to be highlighted: power/energy constraints and 
application development cost. The first constraint establishes the objective for X-stack runtimes as 
maximizing the achieved ratio of performance to power/energy consumption, instead of raw performance 
alone. The second constraint means that X-stack runtimes must focus on supporting the execution of the 
same program at all levels of the platform development chain, which is in line with the basic criteria for 
X-stack success (Section 2). 

The runtime system is the part of the software infrastructure where actual and more accurate information 
is available about system resources allocated to the application, its needs and potential performance; thus 



 
 
 

   
 
 

12 

this component has the potential to make better-informed decisions on behalf of the application. To 
achieve this goal, however, and successfully insulate application programmers from the complexities of 
extreme scale platforms, X-stack runtimes will have to incorporate much more intelligence than current 
technologies support. The real challenge will be to use this added intelligence effectively in the limited 
timeframe that is typically available while the application runs. Being in charge of the actual execution of 
the program, the runtime system is also a key component for resilience. Being in charge of the actual 
execution of the program, the runtime system is also a key component for resilience. For example, it 
should detect and forecast problems, and provide basic mechanisms that enable the application to 
"survive" faults and, subsequently, reallocate the potentially reduced set of resources so that performance 
is still maximized. 

4.1.2.2 Alternative R&D Strategies for Runtime Systems 

Several directions can and should be tried in order to create X-stack runtimes that achieve the targeted 
scale. The most obvious division of alternatives is in terms of degree of hierarchy, namely, a flat runtime 
model (e.g., message passing) and a hierarchical model (e.g., shared memory within a node and message 
passing across nodes). In the latter case, the runtime hierarchy can have the same underlying model at 
different levels or use different models at different levels. Flat and hierarchical alternatives are not totally 
opposed in direction, and a hybrid approach can certainly benefit from the flat approach pushing its 
capabilities to the limits. Another set of alternatives to explore are general-purpose runtime systems, on 
the one hand, and application type- or area-specific (or customizable) runtime systems, capable of more 
effectively exploiting platform resources relative to special sets of needs, on the other.  

4.1.2.3 Recommended Research Agenda for Runtime Systems 

Challenging research topics include heterogeneity, asynchrony, reduction of process management and 
synchronization overheads, provision of shared naming/addressing spaces, optimization of 
communication infrastructure, scheduling for parallel efficiency and memory efficiency, memory 
management, and application-specific customizability. These topics can be grouped into four priority 
research directions: 

§ Heterogeneity: 

o Research challenge: X-stack runtime systems will have to work on several different 
platforms, each of them heterogeneous, and this will certainly prove challenging. The 
objective will be to optimize the application’s utilization of resources for best 
power/performance by helping the application adapt to and exploit the level of granularity 
supported by the underlying hardware. 

o Anticipated research directions: Anticipated research includes unified/transparent accelerator 
runtime models; exploitation of systems with heterogeneous (functionality/performance) 
nodes and interconnects; scheduling for latency tolerance and bandwidth minimization; and 
adaptive selection of granularity. This type of research is also expected to be useful for 
homogeneous multicores. 

o Impact: Research in this area broadens the portability of programs, decoupling the 
specification of the computations from details of the underlying hardware, thereby allowing 
programmers to focus more exclusively on their science. 

§ Load balance: 

o Research challenge: A key challenge is to adapt to the unavoidable variability in time and 
space (processes/processors) of future applications and systems. This will have to be done 
with the objective of optimizing resource utilization and execution time. 
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o Anticipated research directions: Directions include general-purpose, self-tuned runtimes that 
detect imbalance and reallocate resources (e.g., cores, storage, DVFS, bandwidth) within or 
across processes and other entities at the different levels; virtualization-based mechanisms to 
support load balancing; minimization of the impact of temporary resource shortages, such as 
those caused (at different granularity levels) by OS noise; and partial job preemptions.  

o Impact: Research in this area will result in self-tuned runtimes that will counteract, at fine 
granularity, unforeseen variability in application load and availability and performance of 
resources, thus reducing the frequency at which more expensive application-level rebalancing 
approaches will have to be used. Globally, this will significantly reduce the effort requested 
of the programmers to achieve efficient resource utilization and ensure that the resources that 
cannot be profitably used are returned to the system to be reallocated. 

§ Flat runtimes: 

o Research challenge:  A major challenge is to increase the scalability of existing and proposed 
models with respect to the resources required for their implementation and the overheads they 
incur. This includes the need to optimize the utilization that is currently achieved of internal 
resources such as adaptors and communication infrastructure. Also, typical practices today 
where globally synchronizing calls (barriers, collectives) represent big limitations at large 
scale will have to be addressed. 

o Anticipated research directions: Research will be needed in optimization of resources and 
infrastructure for implementing the runtime (e.g., memory used by message-passing libraries, 
overheads for process management and synchronization) and increased usage of prediction 
techniques to accelerate the runtime, or at least introduction of high levels of asynchrony and 
communication/computation overlap (i.e., asynchronous MPI collectives, APGAS 
approaches, data-flow task based approaches). Also needed will be hierarchical 
implementations of flat models (e.g., thread based MPI, optimization of collective operations) 
and adaptation of communication subsystems to application characteristics (routing, mapping, 
RDMA, etc.)   

o Impact: Research in this area will result in increased scalability of basic models. Techniques 
developed here will also be beneficial for the hierarchical approach. Globally, this will extend 
the lifespan of existing codes and will help absorb the shock that the transition to exascale 
represents. 

§ Hierarchical/hybrid runtimes: 

o Research challenge: A key challenge is how to properly match the potentially different 
semantics of the models at different levels as well as to ensure that the scheduling decisions 
taken at each of them have positive synergy. This matching between models must also 
consider the actual matching of the execution to the underlying hardware structure and ensure 
efficient utilization of the resources for any target machine. One of the challenges that 
motivates the hierarchical approach is constraining the size of the name/address spaces (i.e., 
ranks, amount of shared state) while still providing a fair level of concurrency and flexibility 
within each level. 

o Anticipated research directions: Anticipated research includes experimentation on different 
hierarchical integrations of runtimes to support models, such as MPI+other threading or task 
based models, threading models+accelerators, MPI+threading+accelerators, MPI+PGAS, and 
hierarchical task-based models with very different task granularities at each level; techniques 
to support encapsulation, modularity, and reuse; selection of appropriate number of entities 



 
 
 

   
 
 

14 

(processes/threads) at each level in the hierarchy and the mapping to actual hardware 
resources; and automatic memory placement, association, and affinity scheduling. 

o Impact: Research in this area will result in effectively matching the execution to the available 
resources, enabling smooth migration paths from today’s flat codes. 

 

Timeframe Targets and Milestones – Runtime Systems 

2010-11 

Asynchrony/overlap: Demonstrate for both flat and hierarchical models 3x scalability 
for strong scaling situations where efficiency would otherwise be very low (i.e., 30%)  
Why: Fighting variance is a lost battle: learn to live with it. Synchronous behavior is 
extremely sensitive to variance and does not forgive communication delays.  

2012-13 

Heterogeneity: Demonstrate that the “same” code can be run on different 
heterogeneous systems. 
Locality-aware scheduling: demonstrate that automatic locality aware scheduling can 
get a factor of 5x in highly NUMA memory architectures. 
Why: By then, everybody will have experienced that rewriting the same application 
for every new platform is not a viable alternative. Machines will have deep, 
noncoherent memory hierarchies, and we have to demonstrate we know how to use 
them. 

2014-15 

Optimizing runtime: general-purpose runtime automatically achieving load balance, 
optimized network usage, and communication/computation overlap, minimization of 
memory consumption at large scale, maximization of performance to power ratio, 
malleability, and tolerance to performance noise/interference on heterogeneous 
systems. 
Why: Complexity of systems will require automatic tuning support to optimize the 
utilization of resources, which will not be feasible by static, user-specified schedules 
and partitionings. 

2016-17 

Fault-tolerant runtime: tolerating injection rates of 10 errors per hour (cooperating 
with application provided information and recovery mechanisms for some errors). 
Why: By then systems will have frequent failures, and it will be necessary to 
anticipate and react to them in order that the application delivers useful results. 

2018-19 

Fully decoupling runtime: dynamically handling all types of resources such as cores, 
bandwidth, logical and physical memory or storage (i.e., controlling replication of 
data, coherency and consistency, changes in the layout as more appropriate for the 
specific cores/accelerators). 
Why: Underlying system complexity and application complexity will have to be 
matched in a very dynamic environment. 

4.1.2.4 Cross-Cutting Considerations 

The runtime functionality interacts with all cross-cutting areas. 

§ Power management: The runtime will be responsible for measuring the application performance 
and deciding the appropriate setups (frequency and voltage, duty cycles, etc.) for the knobs that 
the underlying hardware will provide. 

§ Performance: The runtime will have to be instrumented to provide detailed information to 
monitoring systems such that they can report appropriate measurements to upper levels of the 
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resource management infrastructure (i.e., job scheduler) or to the user. The runtime will also need 
monitoring information about the performance of the computational activity of the application to 
select the most appropriate resource for them or to choose the appropriate power mode.  

o Resilience: The runtime will be responsible for implementing some fine-grained mechanisms 
(i.e., reissue failed tasks, preserve state) as well as for deciding when to fire coarse-grained 
mechanisms and the actual amount of state they should handle. 

§ Programmability: The runtime will have to implement the features needed to support the various 
programming models used on exascale systems. 

Global coordination between levels (architecture, runtime, compiler, job schedulers, etc.) is needed. 

4.1.3 I/O Systems 

4.1.3.1 Technology and Science Drivers for I/O Systems 

Technology and science drivers for I/O systems include architectural alternatives for I/O systems, the 
underlying application requirements or purpose for doing I/O, I/O software stack, the expected 
capabilities of the devices, and fault resiliency. The data management (discussed in detail in the Scientific 
Data Management section), life cycle, and its future usage and availability also influence how I/O system 
software should be designed. Given the current state of I/O and storage systems in petascale systems, 
incremental solutions in most aspects are unlikely to provide the required capabilities in exascale systems. 
I/O architectures, when designed as separate and independent components from the compute 
infrastructure, have already been shown not to be scalable as needed. That is, traditionally I/O has been 
considered as a separate activity that is performed before or after the main simulation or analysis 
computation, or periodically for activities such as checkpointing, but still as separate overhead. This 
mindset in designing architectures, software, and applications must change if the true potential of exascale 
systems is to be exploited. I/O should be considered an integral activity to be optimized while architecting 
the system and the underlying software. File systems, which have mainly been adapted from the legacy 
(sequential) file systems with overly constraining semantics, are not scalable. Traditional interfaces in file 
systems and storage systems, or even in some cases higher-level data libraries, are designed to handle the 
worst-case scenarios for conflicts, synchronization, and coherence and mostly ignore the purpose of the 
I/O by an application, which is an important source of information for scaling I/O performance when 
millions of cores simultaneously access the I/O system. Emerging storage devices such as solid-state 
disks or SCMs have the potential to significantly alter the I/O architectures, systems, performance, and 
software system. These emerging technologies also have significant potential to optimize power 
consumption. Resiliency of an application under failures in an exascale system will depend significantly 
on the I/O systems—its capabilities, capacity, and performance—because saving the state of the system in 
the form of checkpoints is likely to continue as one of the approaches.  

4.1.3.2 Alternative R&D Strategies for I/O Systems 

Many R&D strategies at different levels of the architecture and software stack can potentially address the 
above technology drivers and for exascale systems. The metrics of I/O systems are performance, capacity, 
scalability, adaptability of applications, programmability, fault resiliency, and support for end-to-end data 
integrity. 

1. Delegation and Customization within I/O Middleware: The best place for optimizing and scaling 
I/O is the middleware within user space because that is where most semantic data distribution, 
data usage, and access pattern information are available. The middleware is not only for the 
single-user space; it also cooperates with other user file I/O activities on the machine so that 
system-wide optimization can be performed. The concept of delegation within I/O middleware 
entails the use of a small fraction of the system on which the middleware exists and runs within 
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the user space to perform I/O-related functions and optimizations on behalf of the applications. 
Using the application requirements, it can perform intelligent and proactive caching, data 
reorganization, optimizations, and smoothing of I/O accesses from burst to smooth patterns. This 
approach can provide services to the application in such a way that the application can customize 
the resources used based on its requirements. The delegation and customization approach also has 
the opportunity to perform various functions on data while it is being produced or to preprocess 
the data before it is consumed. The availability of multicore nodes provides the opportunity to use 
one or more cores on each node, to perform I/O services, to use an exclusive set of select nodes, 
and to provide a range of customization options including locality enhancements.  

2. Active Storage and Online Analysis: The concept of active storage is based on the premise that 
modern storage architectures might include usable processing resources at the storage nodes that 
can be exploited for performing various important tasks including data analysis, organization, and 
redistribution. This concept has significant potential to improve performance and knowledge 
discovery by exploiting the significant processing power within the caching and delegate nodes or 
within the storage system. The potential use of both significantly more memory and GPGPUs, as 
well as FPGA types of accelerators for data reformatting, subsetting, analysis, and searching, 
make it even more attractive. However, the potential for developing these should be explored 
within the runtime middleware (e.g., MPI-IO or higher-level libraries) or at the file system layer. 
These layers should be modified to provide appropriate interfaces to enable this capability. Online 
analytics can potentially reduce the need to store certain types of data if all the necessary 
information and knowledge from this data can be derived while it is available. 

3. Purpose-driven I/O Software Layers: The traditional homogeneous I/O interfaces do not 
explicitly exploit the purpose of an I/O operation. A checkpointing I/O activity is different from 
an I/O activity, which stores data for future analysis using some other access pattern. An example 
of the latter is the use of data in analyzing a subset of variables along a time axis. Optimizations 
in the two activities may require different approaches by the software layers. The software layers 
from file systems, middleware, and higher should be modified by incorporating these capabilities 
and by exploiting the purpose of I/O. 

4. Software Systems for Integration of Emerging Storage Devices: Emerging storage devices such 
as solid-state devices and storage class memories (SCMs) offer significant potential to improve 
performance, reduce power consumption, and improve caching; such devices can potentially 
reduce or eliminate explicit I/O activities and traffic on traditional disks if they are transparently 
incorporated within the I/O software layers. Research and development of newer I/O models and 
different layers of software systems, including file systems and middleware, is important for the 
exploitation of these devices. Various approaches must be investigated along with the various 
options for using these devices in the exascale architecture (e.g., an SCM device being part of 
each node’s memory hierarchy or them being part of a separate section of the architecture that 
have these devices). These systems have implications in how various layers are designed and 
optimized and should be topics for research and development. Furthermore, power optimization 
approaches in software layers should be explored. 

5. Extension of Current File Systems: Efforts may be made to extend current file systems to address 
the parallelism and performance needed. However, given the current capabilities and performance 
of these files systems, which are derived from conservative and reactive designs and with strict 
sequential semantics, the chances of success of this approach are limited. 

6. New Approach to Scalable Parallel File Systems: Research is needed for newer models, 
interfaces, and approaches that are not limited by sequential semantics and for consistency 
models that incorporate newer and highly scalable metadata techniques, and that can exploit 
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information available from user and higher levels as well as that can incorporate newer storage 
devices and hierarchies. 

7. Incorporation of I/O into Programming Models and Languages: Important research areas include 
language features and programming model capabilities in which users can use the programming 
models and language to provide the I/O requirements, access patterns, and other high-level 
information. Ideally, it should be possible for compilers to use these enhanced models to optimize 
I/O, pipeline I/O, and intelligently schedule I/O to maximize overlap with other computations. 
Moreover, the models should be usable on multicore architectures, where they can be exploited to 
utilize cores for enhancing I/O performance and specify online analysis functions on delegate 
systems of active storage.  

8. Wide-Area I/O and Integration of External Storage Systems: Scalable techniques are needed in 
which parallelism in accessing storage devices is integrated with parallelism for network 
streaming. Also important is integrating parallel streaming of data over the network, using similar 
principles as those in parallel I/O. 

4.1.3.3 Recommended Research Agenda for I/O Systems 

The recommended research agenda for I/O systems is all items above except item 5. 

Timeframe Targets and Milestones – I/O Systems 

2010-11 
§ I/O delegation concepts in various I/O software layers 
§ New abstractions and approaches to parallel file systems 
§ Protocols for parallel data transfers for wide-area I/O 

2012-13 

§ Initial I/O runtime and file systems for SCM/SSD devices 
§ Develop purpose-driven I/O software layers 
§ I/O delegation optimizations, including analytics and data-processing 

capabilities 
§ Programming language and model constructs for I/O integration 

2014-15 

§ Active storage alternatives in runtime and file systems  
§ Customizable I/O APIs and implementations 
§ Tuned I/O API implementations demonstrated with new memory hierarchy 

components that include SCM  
§ Scalable tools with parallel I/O and parallel streaming for wide-area I/O  

2016-17 

§ Newer programming models and languages capabilities enabled for active 
storage   

§ Fault resiliency and low-power capabilities added in the I/O software layers 
§ Integration of online analysis within active storage architecture with new 

storage devices (SCM) 
§ Protocol conversion capabilities for wide-area I/O 

2018-19 

§ File systems and runtime software layers for exascale I/O optimized for new 
storage devices 

§ Power-performance optimization capabilities in I/O software layers 
§ Scalable software layers for wide-area I/O integrated with schedulers with 

special-purpose protocols for external networks 
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4.1.3.4 Cross-Cutting Considerations 

The architecture of the systems in general, and for storage and I/O systems and their use of emerging 
devices in particular, will influence the I/O system software. Architectures should consider the issues 
outlined above in designing I/O systems. I/O-related communication and storage device usage will 
significantly influence power optimizations. The I/O system software clearly has implications for 
resiliency, the schedulers, the operating systems, and programming models and languages. 

4.1.4 Systems Management  
Systems management comprises a broad range of technical areas. We divided these topics into five 
categories to be able to more tightly describe the challenges, research directions, and impact of each: (1) 
“resource control and scheduling,” which includes configuring, start-up, and reconfiguring the machine, 
defining limits for resource capacity and quality, provisioning the resources, and workflow management; 
(2) “security,” which includes authentication and authorization, integrity of the system, data integrity, and 
detection of anomalous behavior and inappropriate use; (3) “integration and test,” which involves 
managing and maintaining the health of the system and performing continuous diagnostics; (4) “logging, 
reporting, and analyzing information,”  where the data consists of a static definition of machine (what 
hardware exists and how it is connected), the dynamic state of the machine (what nodes are up, what jobs 
are running, how much power is being used), RAS (Reliability, Availability, Serviceability) events 
(warning or error conditions, alerts), and session log information (what jobs ran, how long, how much 
resource they consumed); and (5) “external coordination of resources,” which is how the machine 
coordinates with external components (e.g., how the HPC machine fits in a cloud) and comprises a 
common communication infrastructure, reporting errors in a standardized way, and integrating within a 
distributed computing environment. 

4.1.4.1 Technology and Science Drivers for System Management 

In addition to the fundamental drivers mentioned above (scale, component count failure rates, etc.) there 
are additional technical challenges for system management. The first challenge is the fact there is a “real-
time” component to all system management tasks, with the time periods ranging from microseconds to 
weeks. Whether it is running the right task at the right time, getting the right data to the right place at the 
right time, getting an exascale system integrated and tested in a timely manner, or responding to 
attempted security compromises, all system management tasks have to be responsive. On exascale 
systems the tasks also have to be automatic and proactive in order to stay within response limits.  

Another driver for exascale system management is that the limited resources that have been used in 
system resource control and scheduling for the gigascale to petascale—processors and computational 
operations—are no longer the most constrained resource. DARPA studies listed in this report document 
that data movement, rather than computational processing, will be the constrained resource at exascale. 
This is especially true when power and energy are taken into account as limiting design and total cost of 
ownership criteria. Hence, resource control and management—and the utilization logs for resources—
have to change focus to communications and data movement. Today, most of the data movement 
components of a system are shared and not scheduled, while most of the computation resources are 
controlled and dedicated to an application. That may not be the best solution going to exascale, but we do 
not know.  

System management also has to ensure system integrity, a major factor of which is system security 
(security is used here in the sense of open-system cyber security). Exascale systems will be so varied and 
complex that in order to protect their correct operation, security features (such as authentication and 
authorization, intrusion detection and prevention, and data integrity) will have to be built into the many 
components of the system. The “defense-in-depth” concepts that are successful for facility-wide security 
will have to be extended throughout the exascale system without impinging on performance or function. 
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System complexity is another driver at exascale. HPC systems are exceedingly complex and susceptible 
to small perturbations having extraordinary impact on performance, consistency, and usability. Taking the 
number of transistors multiplied by the number of lines of code simultaneously in use as a measure of 
complexity, exascale systems will be four orders3 of magnitude more complex than their petascale 
predecessors. The system manager’s job is to manage this complexity in order to provide consistent high 
performance and quality of service. Without the reinvention of many of the tools used today and the 
invention of new tools, system managers will not be able to meet those expectations. 

4.1.4.2 Alternative R&D Strategies for System Management 

The obvious alternative is to take an evolutionary approach to extending terascale and petascale system 
management practices. This will result in significant inefficiencies in exascale systems, extended outages, 
and low effectiveness. As a metric, one can extend the Performability (Performance * Reliability) 
measure to also include the effectiveness of resource allocation and consistency (PERC). Given the 
evolutionary approach, it is likely that exascale systems will have a PERC metric within an order of 
magnitude of petascale because of much less efficient resource management, much less consistency, and 
much less reliability. 

Another approach could be to import technical approaches from other domains such as the 
telecommunications industry, which provisions data movement and bandwidth as key resources. Another 
domain that has technology to offer is real-time systems, which use control theory, statistical learning 
techniques, and other methods to manage limited resources in a proactive manner. As a final example, 
some cyber-security intrusion detection technology also has potential to offer stateful, near-real-time 
analysis of activities and logs. Data mining and data analytics also have potential to offer point solutions 
to managing large amounts of event data and identifying key factors that need to be addressed at high 
levels. 

4.1.4.3 Recommended Research Agenda for System Management 

Here we present a representative list of research problems that will need to be addressed in order to 
achieve the goals of exascale system management presented above. 

Category 1: “Resource control and scheduling” and “External coordination of resources” 

§ Better characterize and manage nontraditional resources such as power and I/O bandwidth 

§ Determine how to manage and control communication resources – provision and control, 
different for HPC than for WAN routing 

§ Determine and model real-time aspects of exascale system management and feedback for 
resource control 

§ Develop techniques for dynamic provision under constant failure of components 

§ Coordinate resource discovery and scheduling with exascale resource management 

The first area for research in Category 1 is obtaining a better characterization of non-traditional resources 
such as power and I/O data motion. Related is research into how to control that data motion. As part of 

                                                
3 Estimates of today’s vendor-supplied system software contain between 3 and 18 million lines of code. If one 
assumes that each line of code generates 10 machine instructions, that is 30–180 million instructions. Further 
assume that OS functions use 1/30th of a second (and applications the rest)), there are 1 – 6 million instructions per 
second in every node. Today’s machines have 1,000 to 10,000 OS images, with some having closer to 100,000. A 
simplistic complexity value might be considered as number of instructions * number of images. Today this is 
6*1014. At exascale, there may be 10,000,000 nodes. If the code complexity only doubles for exascale, the 
complexity is 1.2*1014, four orders of magnitude more complex in the simplest case. 
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that study, the community needs to identify whether additional hardware enhancements should be 
designed such as network switches that allow multiplexing streams by percentage utilization. In part, the 
control will need to build on the results of the ability to better characterize the data motion, but it may 
also proceed somewhat independently. Another research initiative that must be undertaken is determining 
how to integrate the characterization and perform the control in real time. The most challenging piece of 
research is determining how to keep the system running in the presence of constant failures. System 
management in the exascale timeframe ideally must be able to proactively determine failures and 
reallocate resources. If a failure is not predetected, the system management infrastructure must be able to 
detect, isolate, and recover from the failure, by allocating additional equivalent resources. While effort is 
underway in the application space to handle failures, system management research should target 
presenting applications with machines where failures are corrected transparently by reallocating working 
resources to replace the failed ones. Moreover, in order to integrate the HPC machine into a larger 
infrastructure, research should be undertaken to provide standardized reporting of machine definitions and 
capabilities that exist in a globally scheduled environment. 

Category 2: “Security”  

§ Provide fine-grained authentication and authorization by function/resources 

§ Provide security verification for software built from diverse components 

§ Provide appropriate “defense in depth” within systems without performance or scalability impact  

§ Develop security-focused OS components in X-stack 

§ Assess and improve end-to-end data integrity 

§ Determine guidelines and tradeoffs of security and openness (e.g., grids) 

For a system as complex as an exascale system, the risk of undetected compromise is too high to rely on 
traditional security at the borders (login nodes). Fine-grained authentication and authorization by function 
and for each resource are needed through all software and hardware components of the system. This has 
to be lightweight so as not to restrict or slow authorized use or limit scalability, while at the same time 
comprehensive enough to assure as complete protection as possible. The security model should be to 
monitor and react rather than restrict, as much as possible, and to enable open, distributed ease of use.  

Because the system is expected to be built from diverse components, created by different communities, 
security verification of software components will have to be done efficiently. This will require a means to 
verify correct functioning, but the challenge will be to accommodate the scale and the diversity of use of 
an exascale resource.   

Since other needs point to creating a novel HPC operating system, a critical feature to be considered is 
making a security focused OS. There may also be hardware assist features that can combine finer-grained 
control and access management. Security requires integrity, so end-to-end data integrity has to be 
included. Moreover, new analysis to provide the right balance between security and openness for 
distributed computing (e.g., grid, web services) needs to be explored. 

Category 3: “Integration and test” and “Logging, reporting, and analyzing information” 

§ Determine key elements for exascale monitoring 

§ Continue mining current and future petascale failure data to detect patterns and improvements 

§ Determine methods for continuous monitoring and testing without affecting system behavior 

§ Investigate improving information filters; provide stateful filters for predicting potential incorrect 
behavior 
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§ Determine statistical and data models that accurately capture system behavior 

§ Determine proactive diagnostic and testing tools 

The first research initiative that must be undertaken to reach the end goal of proactive failure detection is 
determining the key elements that need to be monitored. Much work has already occurred in this area. 
Thus, determination of what will be required for exascale is needed, with potentially new items identified. 
Additional research must be encouraged in the field of mining failure data to determine patterns and 
develop methodologies for doing so. Because the amount of collected data will be vast in the exascale era, 
investigations for filters and statistical models must occur. In both cases, it is critical to significantly 
reduce the volume while accurately capturing system behavior and not losing critical events. For filtering, 
there is a critical need to develop stateful techniques, where the dynamic state of the machine determines 
what events the filter provides. Techniques must be researched to allow this monitoring, filtering, and 
analysis to occur in real time without affecting application behavior running on the system. These 
research initiatives need to feed research of proactively determining where failures will occur by 
monitoring and analyzing filtered data. 

Timeframe Targets and Milestones – Systems Management 

2010-11 

Category 1: Creation and validation of an analytic model and simulation capability 
for exascale resource management that spans different implementations of job and 
resource management systems. This work will enable experimentation of alternative 
designs that will accelerate implementation in the later timeframes. 
Category 2: Fine-grained authentication—being able to provide access to individual 
or classes of resources to a single user or to groups of users. 

2012-13 

Category 1: Dynamic provisioning of traditional resources—being able to provide 
applications with more nodes and memory on the fly. 
Category 3: Unified framework for event collection: providing a community-agreed-
upon standard format for events across machines and subsystems within a machine. 

2014-15 

Category 1: Expanded analytic model and simulation capability for exascale resource 
management to include external coordination of services.  
Category 2: Security validation of diverse components, providing a methodology for 
the different components in a system to ensure that security is maintained across the 
components. 
Category 3): Model and filter for event analysis, using the data produced by the 
above unified framework to produce models representing the system for 
understanding how different policies would impact the system, and providing filters, 
some of which should be stateful (dependent on the dynamic state of the machine). 

2016-17 

Category 1: Integrated nontraditional resources, such as bandwidth and power: by 
using the above models and filters, and the dynamic provisioning of resources, 
providing the ability to manage new important resources such as power and data 
motion. 
Category 3: Continual monitoring and test so that, by building on the unified 
framework for collecting data and filters, real-time monitoring and testing of the 
machine are provided. 

2018-19 

Category 1: Continual resource failure and dynamic reallocation—using the above 
proactive failure detection as input, and the above described dynamic provisioning of 
traditional and nontraditional resources to provide the ability to keep the machine 
running in the presence of continual failures by reallocating resources. 
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Category 2: Hardware support for full system security. “Defense in depth” security is 
needed so that security does not rely solely on access control to the machine. Also 
needed is development of end-to-end methodologies including integrated hardware to 
protect all components of the machine. 
Category 3: Proactive failure detection—building on the above continual monitoring 
and analysis tools to provide the ability to predict failures. 

4.1.4.4 Cross-Cutting Considerations 

System management functionality crosses all aspects of the vertical integration—performance, 
usability/programmability, resilience, and power. System management directly impacts consistency and 
total cost of ownership as well. In addition, system management relies heavily on accumulating, 
integrating, and analyzing disparity data from all system components as well as all applications wanting 
to use the system. Multilevel analysis of system usage, subsystem activities, and component and 
subsystem health are needed to provide dynamic resource provision and to facilitate consistent and correct 
execution of application tasks. 

4.1.5 External Environments 

The term external environments refers to the essential interfaces to remote computational resources (e.g., 
data repositories, real-time data streams, high-performance networks, and computing clouds) that 
advanced applications may need to access and utilize. The use of such resources is already typical for 
many high-end applications, and they form a critical part of the working environment for most, if not all, 
major research communities. 

In the following, “distributed data repositories” are discussed. This discussion complements the views 
presented in, for example, Section 4.3.3, Application Support: Scientific Data Management. In particular, 
while in Section 4.3.3 the main focus is on data management issues and challenges in the data center, this 
section discusses data management issues (i.e., data access/integration) with regard to external data 
repositories (data grids/clouds) and how the exascale roadmap can pave the way toward a transparent, 
efficient, and integrated management of scientific databases distributed across data centers, data grids, 
data clouds, and other external data repositories. Cross-references with other parts of this roadmap can be 
identified in Section 4.3.2 (with special regard to metatools and new data analysis approaches), Section 
4.4 (cross-cutting dimensions such as resilience, performance. and programmability), and Section 4.1.2 
(I/O systems with special regard to active storage and online analysis as well as scalable file systems). 

4.1.5.1 Technology and Science Drivers for External Environments 

Exascale cyber infrastructures will face important and critical challenges, both from computational and 
data perspectives. Increasingly complex and parallel scientific codes will lead to the production of a huge 
amount of data. For instance, climate change scientists are expected to generate hundreds of exabytes of 
data (distributed across several centers) through heterogeneous storage resources (located in data centers 
as well as in external environments such as data grids and data clouds) for access, analysis, post-
processing, and other scientific activities. Collections of data will be stored at different sites and made 
available to users for further analysis.  

The large volume of data and the time needed to locate, access, analyze, and visualize this data will 
greatly impact the scientific productivity. Significant improvements in the data management field 
therefore will be critical to increase research productivity in solving complex scientific problems. 

Since external environments will play an important role in the scene, several challenges must be taken 
into account in developing the exascale roadmap context. The first challenge at such large scale is to 
provide efficient, scalable, resilient and transparent access to the external (with regard to the data center) 
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and distributed (from a geographical point of view) data repositories. Exascale applications will have to 
efficiently manage and access data inside/outside the data center with a high level of performance and 
through common interfaces able to decouple fabric/middleware layers from the application one. Data 
centers will increasingly need access to external data repositories to take advantage of a wide set of data 
collections. This should be made transparent, and this transparency represents a key challenge because the 
heterogeneity of the data environments is expected to further increase as it’s directly connected with 
technology evolution.  

Since external environments will play an important role in the scene,  several challenges must be taken 
into account in developing the exascale roadmap context. 

§ The first challenge at such large scale is to provide efficient, scalable, resilient, and transparent 
access to the external (with regard to the data center) and distributed (from a geographical point 
of view) data repositories. Exascale applications will have to efficiently manage and access data 
inside/outside the data center with a high level of performance and through common interfaces 
able to decouple fabric/middleware layers from the application one. Data centers will increasingly 
need access to external data repositories to take advantage of a wide set of data collections. This 
should be made transparent, and this transparency represents a key challenge because the 
heterogeneity of the data environments is expected to further increase as it’s directly connected 
with technology evolution.  

§ Related challenges that will become critical will be replication and distribution. At exascale, huge 
data repositories will be replicated and distributed across several sites to increase data 
availability, provide higher levels of fault tolerance and locality. For example, in the climate 
change domain, the CMIP5 data repositories will be replicated across the United States and 
Europe, and future scenarios will strongly rely on replication needs and schemas. Distribution and 
replication are expected to be strongly exploited in the near future; and, because of the scale and 
evolution of future exabyte systems, they represent a relevant challenge. 

§ Considering the wide variety of external data repositories available worldwide, uniform access in 
terms of common interfaces will be fundamental. The wide set of interfaces to data services is 
already a challenge. Because of the large-scale environment, the heterogeneity of the platforms, 
and the complexity of the exascale system, interoperability will play an important role in making 
highly feasible, transparent, and productive the interaction among all the involved components 
and services available inside data centers, data grid environments, and data clouds. 

§ Data portals are today the entry points to vast data collections for several institutions, data 
centers, and data clouds. In the exabyte era, stronger support and integration of scientific, 
collaborative, and social aspects are expected in the context of new scientific gateways. Social 
networking capabilities, poorly exploited today for scientific purposes, are strongly needed to 
increase the level of discussions, feedback, exchange of scientific results, and dissemination 
among groups. What is missing today is low-level and pervasive interoperability to enable data 
repositories in data centers, data grids, and data clouds to be transparently accessed and easily 
integrated in order to exploit new multidimensional and multidisciplinary research opportunities. 

§ Data knowledge and discovery will play a critical role as the number of data collections and the 
volume of data stored in distributed (heterogeneous) repositories becomes larger. A high number 
of (heterogeneous) metadata/ontologies sources (from different institutions/centers) are 
anticipated, which describe the available data collections with regard to different domains. 
Metadata provenance will increasingly become fundamental, in order to identify, trace, and 
record the history of data and the related processing and analysis steps in such a multifaceted 
environment. Automatic metadata extraction needs to be improved to support the data publication 
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process at exascale data production rates. Semantic interoperability needs to be further addressed 
to make data integration a reality. 

 
§ Open access will become the key for effective sharing of data. At present, several restrictions and 

access policies make real sharing and easy access to the available data collections complicated, 
creating several nonconnected (isolated) islands of data repositories. This problem must be 
solved, while taking into account that access and usage policies must be preserved as well. What 
is missing is transparent and uniform management of such aspects across several countries and 
institutions. 

4.1.5.2 Alternative R&D Strategies for External Environments  

Access to data repositories in grid and cloud environments raises numerous challenges. In most cases, an 
evolutionary approach seems adequate if we consider the status of existing middleware and technologies 
and the production environments that have been built on top of them in several international initiatives in 
Europe, the United States, and Japan. Obviously, the scale and the requirements in the exabyte era will 
need a reengineering, extension, and improvement of several modules to make the integration feasible. 
New efforts must be devoted to the intermediate layers (e.g., middleware) to have more interoperable, 
robust, and complete support to access the external data environments at exascale.  

Since access to data grids and data clouds is a key element for external environments, the design of 
common interfaces (for middleware components) will be fundamental. What is crucial is the coexistence 
of standards and de facto standards and scientific and commercial actors, which makes more complex the 
entire realm. Stronger efforts in interoperability and standardization need to be globally sustained with a 
co-design approach supported by commercial and scientific partners. Such an approach will enable 
effective access to a larger set of external data repositories and environments. Metadata standards, 
domain-based ontologies. and the associated standardization and discussion processes must be strongly 
addressed. Such efforts will allow us to better describe, at exascale, data related to different scientific 
domains through a widely accepted, known, and adopted set of information. 

Metadata standardization will be an enabling process for effective access and sharing of data, since it 
addresses search and discovery of data collections across different data sources. It is also a driving factor 
for interoperability, obviously implying the need to develop new tools, software, and services able to deal 
with such a new standard at exascale. 

Also critical is further investigation into new algorithms, protocols, replication schemas, placement 
strategies, consistency protocols, lifetime issues, and dynamic aspects. At this layer, a standardized access 
to the external data environments will be needed, access that can be exploited to decouple replication 
aspects from the access ones. 

4.1.5.3 Recommended Research Agenda for External Environments  

The recommended research agenda focuses on three areas:  

1.  Access to external data repositories 

§ Stronger effort in data delivery mechanisms, parallel data transfer, compression algorithms, 
efficient data protocols and data access services 

§ More pervasive use of new and higher performance networks 

§ Further activities on standard interfaces that will provide a stronger level of interoperability 
among different data repositories—an effective collaboration and co-design between industrial 
and scientific partners is recommended 
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§ Further work to make the middleware more robust, to transparently access heterogeneous data 
environments in data centers, data grids, and data clouds 

2.  Replication and distribution of data 
  

§ Further investigation on new algorithms, protocols, replication schemas, and placement strategies, 
which are crucially needed at such large scale 
 

§ Dynamic replication strategies based on historical information and usage patterns 

§ Stronger need to deal with several kinds of transient failures (e.g., network and storage failures) 
providing efficient recovery procedures in case of faults, and better addressing resilience 

3.  Scientific data gateways 

§ Collaborative, easy-to-use, integrated, social-based features, tailored on user access patterns and 
levels that are highly configurable 

§ Complex and distributed dataflow support 

§ Knowledge mining and discovery, starting from advanced and integrated decision support 
systems 

§  Ability to represent the virtual place where people can work together; create communities; 
exploit a wide set of tools; and analyze, visualize, and compare data coming from data centers, 
grids, or cloud environments. 

In short, the roadmap for distributed data repositories must move toward extremely integrated, 
interoperable, and interdisciplinary data environments, where the transparent integration of 
heterogeneous data sources (inside and outside the data center) will allow, at exascale, a better and deeper 
understanding of complex phenomena and problems. 

 
Timeframe Targets and Milestones – Distributed Data Repositories 

2010-11 

Workshops focused on the main topics of the Research Agenda for distributed data 
repositories. 

Metadata management, harvesting capabilities, ontology management, dynamic 
replica management, improved search and discovery capabilities, standardization 
activities on data services 

2012-13 
Advanced web access and workflow capabilities for scientific data portals, 
federated data management, interoperability among data services, semantic data 
integration services 

2014-15 

Resilient services for distributed data repositories, advanced ontology management, 
operational data gateways integrated, collaborative and community-oriented, 
stronger level of interoperability, new data analysis services, advanced support for 
semantic and scalable search and discovery across distributed scientific databases, 
integrated (cross-domain) data platforms. Distributed, efficient, and resilient data-
mining support. 

2016-17 
Operational interoperability related to heterogeneous data-oriented environments, 
production level data services, social collaborative virtual environments, and 
distributed knowledge-based systems. 
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2018-19 

Full data integration and interoperability among heterogeneous environment (data 
centers, data grids, clouds environments). Cross-domain, real-time, and interactive 
data and knowledge discovery, access, processing, mining, analysis, and 
visualization. 

4.1.5.4 Cross-Cutting Considerations  

Four cross-cutting considerations have been identified. 

Performance: Efficient access to external environments is crucial, especially if this step is part of complex 
workflows that start/run inside the data centers and exploit external data sources to enrich their processing 
and analysis. To have data grids or clouds as part of the system, high-performance network connections 
are strongly needed, as well as high-performance data transfer protocols. 

Resilience: External environments relates to distributed environments (i.e., data grids) are characterized 
by many software (i.e., services) and hardware (i.e., routers, switches, storages) components. 
Consequently there could be transient and permanent errors and issues everywhere in the global scenario 
to be addressed at runtime. Making hardware and software components resilient is a strong challenge for 
external data environments. 

Scalability: At such large scale the number of potential users and actors in this milieu, as well as the 
number of data collections, will be high. This situation implies the need to have a scalable architecture 
able to deal with a growing community and an increasing volume of data, without decreasing the level of 
quality of service and efficiency.  

Programmability: The applications developers cannot be expected to manage, at a low level, distribution, 
replication, load balancing, and other issues explicitly in their codes. Complex aspects of distributed 
services need to be available as high-level APIs to allow end users to optimize their code, perform tuning 
operations, and improve their applications. 

4.2 Development Environments 
The application development environment is the software that the user has to program, debug, and 
optimize programs. It includes programming models, frameworks, compilers, libraries, debuggers, 
performance analysis tools, and, at exascale, probably fault tolerance. 

4.2.1 Programming Models  

4.2.1.1 Technology and Science Drivers for Programming Models  

Several challenges have been identified, and possible approaches for addressing these challenges have 
been suggested. 

§ Exascale systems are expected to have a huge number of nodes. Even within the node, much 
parallelism will exist in many core architectures and accelerators such as GPGPU. Programming 
models and languages should support the use of such huge levels of parallelism. 

§ Exascale systems may consist of several kinds of components, including conventional multicore 
CPUs, many-core chips, and general and application-specific accelerators, resulting in 
heterogeneity. Programming models and languages should alleviate the programming difficulties 
arising from such heterogeneity. 

§ Exascale systems will consist of a huge number of components, which will increase the failure 
rate. Programming models can provide a way to handle such failures with fault resilience 
mechanisms. 
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§ Memory bandwidth will be important in exascale systems. Programming models and languages 
should provide models to exploit the data locality to make use of complex memory hierarchies. 

§ The programming model will need to address emerging and on-going applications trends. For 
example, algorithms and applications are increasingly adaptive. Exascale computations will 
perform massive amounts of I/O; the programming model will need to enable highest levels of 
I/O performance. New application domains may require new programming models.  
 

§ The use of deep, large software stacks require the capability to detect and isolate errors at various 
stages (code development, production, compile time, runtime) and report them at an appropriate 
level of abstraction.  

4.2.1.2 Alternative R&D Strategies for Programming Models  

The following strategies are proposed: 

§ Hybrid vs. uniform:  A hybrid programming model is a practical way to program exascale 
systems that may have architectural heterogeneity. Uniform programming models provide a 
uniform view of the computation. They reduce the need for the application developer to be aware 
of the details of the architectural complexity and are often considered to be more productive. 
Their provision is a challenge, however. 

§ Evolutionary vs. revolutionary approaches: Specification of incremental improvements to the 
existing models is a safe approach. Revolutionary approaches may be attractive, but risky. 

§ Domain specific vs. general programming models: For some application areas, domain-specific 
models may provide performance and portability with higher productivity than general purpose 
programming models offer. 

§ Widely embraced standards vs. single implementations: While the latter have the advantage of 
rapid development and implementation, the former are based on the experience of a wider 
community and are often required by application groups. 

4.2.1.3 Recommended Research Agenda for Programming Models  

Research is needed into a variety of promising programming models for exascale computing, including 
system-wide models that provide a uniform approach to application development across an entire 
platform, as well as hybrid programming models that combine two or more programming APIs. Such 
models will need to provide a range of means for the expression of high levels of concurrency and locality 
and may be capable of supporting application-specific fault tolerance. Enhancements to existing 
programming interfaces as well as new programming approaches should be explored. For new models, 
interoperability with existing HPC programming interfaces is highly desirable. Programming models that 
facilitate productive application development are to be encouraged. Other desirable characteristics are 
performance transparency and the ability to support incremental application migration.  

 Timeframe Targets and Milestones – Programming Models 

2010-11 
Interoperability between established programming models for HPC (MPI, OpenMP 
in particular) 
Initial workshops to discuss potential exascale programming models 

2012-13 

Fault-tolerant MPI  
Standard programming model for heterogeneous nodes 
System-wide programming model(s) for petascale platforms available 
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2014-15 
Candidate programming models for exascale systems defined 
 

2016-17 
Candidate programming models for exascale systems implemented 
 

2018-19 
Exascale programming model(s) adopted 
 

	  

4.2.1.4 Cross-Cutting Considerations  

Major characteristics of exascale architectures will have a significant impact on the nature of the 
programming models that are designed to facilitate the creation of exascale-level applications. Hence 
major departures from the envisaged range of system architectures may necessitate a rethinking of the 
dominant features of an exascale programming model. 

The programming model must facilitate efficient support for massive levels of I/O by applications and 
must enable the application developer to write fault-aware applications. 

The implementation technology will need to be developed to realize the programming models that are 
defined for exascale computing. The compiler translation will be critical and will need to be of 
exceptional quality. The runtime system will be expected to provide significant support to the compiler by 
providing features for managing compute threads, implementing a variety of mechanisms for 
synchronization, scheduling computations, supporting efforts to balance the workload, executing 
correctness checks that have been deferred to runtime, collecting performance data, and more.  

Applications and libraries will be created using the programming models defined for exascale computing. 
The programming model will be expected to provide a sufficient range of features to enable the 
expression of their concurrency and locality and the orchestration of the actions of different threads across 
the system. The model also must facilitate the composition of different modules and library routines. 

A variety of programming-model-aware tools will be required to enable productive application 
development, translation, and deployment. For instance, tools to support application development might 
reduce the effort involved in identifying portions of code suitable for execution on certain system 
components. Tools for debugging will need to be created that are aware of the model’s semantics; 
performance analysis and tuning tools will need to be created that reduce the effort involved in program 
optimization and are aware of the specific factors that influence program performance under a given 
programming model. In addition, user annotations may need to be defined to support the actions of the 
compilers and tools. 

4.2.2 Frameworks 

4.2.2.1 Technology and Science Drivers for Frameworks 

Effective use of exascale systems will place many new demands on application design and 
implementation. Left alone, each application team will face a daunting collection of infrastructure 
requirements, independent of the science requirements. Frameworks (when properly developed) have 
successfully provided a common collection of interfaces, tools, and capabilities that are reusable across a 
set of related applications. In particular, challenging computer science issues—which are often orthogonal 
to science issues—can be encapsulated and abstracted in a way that is easy for applications to use, while 
still maintaining or even improving performance. 

A focused effort on frameworks for exascale systems is needed for the following reasons.  
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• We have a large body of existing scalable applications that we want to migrate toward exascale. 
• Many novel exascale-class applications are expected. 
• Frameworks provide the best cost and time approach to application development.  
• Exascale computing provides a new opportunity for multiscale, multiphysics, and 

multidisciplinary applications. 
4.2.2.2 Alternative R&D Strategies for Frameworks 

Two R&D strategies are considered for frameworks. 

No frameworks: Most successful frameworks are constructed in response to substantial experience 
developing individual components, where these components have substantial common requirements, 
natural interoperability relationships, or both. It is certainly possible to ignore the commonalities and 
relationships and focus on one-of-a-kind applications. Initially this strategy may appear attractive because 
it provides the shortest path to single application completion. As more applications are developed, 
however, this strategy produces redundant, incompatible, and suboptimal software that is difficult to 
maintain and upgrade, ultimately limiting the number of exascale applications, their quality, and their 
ability to be improved over their lifetime. 

Clean-slate frameworks: If exascale systems eventually require a completely new programming model, 
the approach we will use to establish exascale frameworks will differ from the case where existing 
applications are refactored. In this case, the framework will be best constructed to solve a minimally 
interesting problem. Then existing applications will be mined for their useful software fragments. This 
strategy was required for many applications when making the transition from vector multiprocessors to 
MPI.  

4.2.2.3 Recommended Research Agenda for Frameworks 

Successful development of exascale-class frameworks will require a decade of effort. Among the critical 
research topics that must be addressed to achieve this goal are the following:  

§ Identification and development of cross-cutting algorithm and software technologies:  For the 
existing scalable application base and for new applications, there will be common requirements 
for moving to exascale systems. For example, partitioning and load-balancing algorithms for 
exascale systems and usage of many-core libraries are common needs.  

§ Refactoring for many-core:  In anticipation of many-core programming model decisions, we must 
still make progress in preparing for exascale systems by understanding the common requirements 
of many-core programming that will be true regardless of the final choice in programming model. 

The table below, which gives the initial timeline for major activities and deliverables, focuses on the 
following elements: 

Workshops: The computational science and engineering communities have many existing frameworks, 
some multi-institutional but most centered at a single institution. As a result, the practices, tools, and 
capabilities of each framework vary greatly, as does the scope of visibility outside the host institution. 
The first priority for successful exascale framework development must be a series of workshops. The first 
workshop will bring together people from existing framework efforts, developers of enabling 
technologies (programming models, algorithms and libraries), and application stakeholders who must 
ultimately use and develop within the proposed frameworks to perform analyses of capabilities and gaps. 
Subsequent workshops will focus on specific R&D issues necessary for success.  

Breadth-first frameworks: The next major effort will be the development of two to three frameworks: 
one for libraries and one or two specific application domains. Although programming models, libraries, 
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and fault-resilient capabilities will probably not be mature, this initial breadth-first approach will facilitate 
co-design of the framework with these enabling tools to ensure compatibility. This effort will also focus 
on mining capabilities from existing applications as appropriate as well as provide a first definition of the 
common tool-chain.  

Full-scope, additional frameworks: In subsequent years, the programming model, libraries, and fault-
resilient strategies should mature, allowing the initial frameworks to solidify these aspects of the design 
and implementation. Shortly after, or perhaps concurrently, several new domain-specific frameworks can 
begin, utilizing the design decisions and tool-chain established by the first frameworks. 

Deployment: In the first years of exascale capabilities, all frameworks should be in a state to demonstrate 
exascale capabilities on the first available exascale-class systems. 

Timeframe Targets and Milestones –-- Frameworks 

2010-11 

Workshops: 2010, 2011, regularly after. 
• Bring together members from key existing framework efforts, algorithm/library 

developers, programming models. 
• Workshop 1:  

– Capabilities/gaps analysis. 
– First opportunities for multi-institutional frameworks. 
– Best practices from existing efforts. 
– Common tool chain requirements. 
– Possible win-win scenarios. 

• Workshop 2: 
– Plan for programming model evaluations. 
– Development of library data model semantics. 

• Workshop 3: 
– Applications-driven resilience models.  

2012-13 

Develop first two applications and first library frameworks, 2013. 
• Mining of components from existing capabilities. 

– Implementation of common tool chain, programming model, first 
resilience harness, library interfaces. 

• Breadth-first approach. 

2014-15 

Full development of exascale-specific framework features: 
• Mature framework-library data layout semantics. 
• Fully capable fault resilience capabilities. 
• Fully defined common toolchain. 

2016-17 
Development of two to three additional appllication frameworks, 2017. 

• Leveragiing of infrastructure/design knowledge from first efforts. 
• Development of intercomponent coupling capabilities (e.g., data sharing). 

2018-19 Demonstration of full-scale application capabilities across all frameworks on exascale 
system, 2019. 
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4.2.2.4 Cross-Cutting Considerations 

Framework efforts will be greatly affected by evolving programming models, libraries, and new 
algorithm development, as well as fault-resilient requirements and capabilities. Although MPI will likely 
be part of the picture, with a node programming model underneath, a radical new programming and 
execution model may be needed. In all cases, a framework will be important for rapidly deploying a 
critical mass of application capabilities. 

Ultimately, any frameworks we develop must have buy-in from application development teams, those 
domain scientists who are encoding the physics and engineering models. Without their full support, our 
frameworks will be irrelevant. Computational domain scientists must be part of the framework 
development process as needed to obtain this support. 

Frameworks and the libraries they provide must be part of the software stack for petascale, trans-
petascale, and exascale systems. This approach is essential for providing application developers with a 
common software environment at several scales of computing. 

4.2.3 Compilers 

4.2.3.1 Technology and Science Drivers for Compilers 

Compilers will be a critical component of exascale software solutions. Not only will they be required to 
implement new and enhanced programming models and to generate object code with exceptional quality, 
but they will also need to support the process of program adaptation, tuning, and debugging. The high 
number of potentially simpler (in-order) cores and the existence of specialized components will increase 
the importance of the compiler.  

Compilers for uniform programming models that span entire systems will need to manage the distribution 
of data, locality of computation, and orchestration of communication and computation in such a manner 
that all components of the machine perform useful computations. With substantial support from the 
runtime library, they may also be required to balance the workload across the system components. 
Compilers for node programming models may be required to generate code that runs across a large 
collection of general-purpose cores or across a node that may be configured with general-purpose cores 
along with one or more specialized accelerators.  

Memory hierarchies will be highly complex; memory will be distributed across the nodes of exascale 
systems and will be NUMA within the individual nodes, with many levels of cache and possibly 
scratchpad memory. Compilers will be expected to generate code that exhibits high levels of locality in 
order to minimize the cost of memory accesses. Compilers also  may need to explicitly manage the 
transfer of data between different subcomponents within nodes.  

4.2.3.2 Alternative R&D Strategies for Compilers 

The alternative R&D strategies described for programming models apply equally to compilers, since they 
provide a major part of the implementation of the programming models. By ensuring interoperability 
between different languages and programming models, compilers can be key to mitigating the risk 
involved in selecting an emerging programming model and may increase the adoption of new models by 
offering an incremental path from existing or proposed models (e.g., MPI, OpenMP, UPC, X10, Chapel). 

4.2.3.3 Recommended Research Agenda for Compilers 

Advances in compiler technology are key to the provision of programming models that offer both 
performance and productivity characteristics. The following topics should be pursued:  
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§ Techniques for the translation of new exascale programming models and languages supporting 
high productivity and performance, hybrid programming models, and programming models that 
span heterogeneous systems.  

§ Powerful optimization frameworks. Implementing parallel program analyses and new, 
architecture-aware optimizations, including power, will be key to the efficient translation of 
exascale programs. Improved strategies for automatic parallelization are needed, as are 
techniques for determining regions of code that may be suitable for specific hardware 
components. 

§ Experimentation with new optimizations and online feedback-based optimizations, benefiting 
from recent experiences with just-in-time compilation. Other topics include generation of 
multiple code versions; more aggressive, speculative optimizations; and incorporation of 
lightweight strategies for modifying code on the fly. 

§ Support of strategies for enabling fault tolerance. For example, compilers may be able to help 
reduce the amount of data involved in checkpointing.  

§ Standard interfaces facilitating interactions between the compiler and the development and 
execution environment. Such interfaces could enable tools or application developers to drive the 
translation process in new ways and enable the compiler to drive the actions of tools during 
runtime, for example to gather specific kinds of performance data. Compilers should be capable 
of automatically instrumenting code.  

§ Compiler-based tools for application development. Such tools could support the application 
development process, help interpret the impact of the compiler’s translation on the application’s 
runtime behavior, and explain how the application developer might improve the results of this 
translation. 

§ Innovative techniques. Compilers may be able to benefit from autotuning, may incorporate 
methods for learning from prior experiences, may exploit knowledge of suitable optimization 
strategies that is gained from the development and execution environments, and may apply novel 
techniques that complement traditional translation strategies.  

 Timeframe Targets and Milestones -- Compilers 

2010-11 
MPI-aware compilers supporting MPI implementations.  
Initial interface specified to enable compilers to interact with performance and 
runtime correctness-checking tools. 

2012-13 Compiler support for hybrid programming models 

2014-15 
Standard heterogeneous programming model implemented  
System-wide high-level programming model implemented 

2016-17 
Exascale programming model implemented 
Standard interfaces for interactions between compilers and other tools in 
development and execution environment 

2018-19 
Refinement of architecture awareness  
Compilers that interact smoothly with performance and runtime tools 
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4.2.3.4 Cross-Cutting Considerations 

Compilers must no longer be viewed as a black box but rather as open translation infrastructures that must 
be capable of interoperating with all elements of the development and execution environment, especially 
the runtime system and tools.  

The runtime system will be expected to provide significant support to the compiler by providing a number 
of features for managing compute threads, implementing a variety of mechanisms for synchronization, 
scheduling tasks and other computations, and supporting efforts to balance the workload.  

Compilers need to generate efficient code for the target architecture. Therefore they need to be developed 
in an architecture-aware manner. The use of explicit cost models may simplify the generation of code for 
different hardware configurations.  

4.2.4 Numerical Libraries 

4.2.4.1 Technology and Science Drivers for Libraries 

Numerical libraries underpin any science application developed for high-performance computing and 
offer the potential to exploit the underlying computer systems without the application developer 
necessarily understanding the architectural details. Hence, science drivers are more or less automatically 
built in.  However, we may expect new applications to emerge with exascale systems, and libraries should 
adapt accordingly. 

The technology drivers for library development include hybrid architectures, programming models, 
accuracy, fault detection, energy budget, memory hierarchy and the relevant standards. Numerical 
libraries depend on the formation of various standards that will be needed to ensure the widespread 
deployment of the software components.  The libraries will be equally dependent on the operating system 
and the computer architecture features and how they are communicated to the library level.  

4.2.4.2 Alternative R&D Strategies for Libraries 

The alternative research and development strategies for libraries will be driven by the operating system 
and software environment provided on given architectures. We can assume that we will see models such 
as message-passing libraries, global address space languages, and message-driven work queues. Since all 
three models likely will occur at some level in future systems, matching implementations need to be 
developed concurrently. In particular, the three programming models should be interoperable to permit 
the widest deployment. 

4.2.4.3 Recommended Research Agenda for Libraries 

Existing numerical libraries will need to be rewritten and extended in light of the emerging architectural 
changes. The technology drivers will necessitate the redesign of the existing libraries and will force re-
engineering and implementation of new algorithms. Because of the enhanced levels of concurrency on 
future systems, algorithms will need to embrace asynchrony to generate the number of required 
independent operations.  

The research agenda will need to include the following:  

1. Hybrid and hierarchical based software: efficient implementations need to be aware of the 
underlying platform and memory hierarchy for optimal deployment. 

2. Autotuning: Libraries need to have the ability to adapt to the possibly heterogeneous 
environment in which they have to operate. 

3. Fault-oblivious and error-tolerant implementations: The libraries need to be resilient with 
regard to the increased rate of faults in the data being processed. 
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4. Mixed arithmetic for performance and energy saving: The libraries must be able to find optimal 
mapping of required precision in terms of speed, precision, and energy usage. 

5. Architectural-aware algorithms that adapt to the underlying architectural characteristics: The 
libraries must be able to act on given architectural information to select or generate optimal 
instantiations of library routines. 

6. Energy-efficient implementations to optimize the energy envelope for a given implementation: 
The libraries should have the ability to take the total power usage into account and optimize for 
this parameter. 

7. Algorithms for minimizing communications: Such algorithms are essential because 
communications play such an important role in performance and scalability. 

8. Algorithms for shared-memory architectures: These algorithms have long been a staple, but 
they will have a prominent role on future exascale systems as a way to mitigate the impact of 
increased iteration counts in Schwarz-type algorithms. 

9. Fusion of library routine implementations: Libraries often introduce artificial separations into 
the code, based on the function of each routine. Techniques that permit the fusion of such 
routines (e.g., of the loops in two consecutive library calls) will be needed. 

Timeframe Targets and Milestones – Numerical Libraries 

2010-12 

Standards for hybrid (heterogeneous) computing are needed immediately. 

2011: Milestone: Heterogeneous software libraries 

2012: Milestone: Language issues addressed 

2012-14 
Standards required for architectural characteristics. 

2013: Milestone: Architectural transparency 

2014-16 
2015: Milestone: Self-adapting for performance 

Standards required for energy awareness 

2016-17 
2016: Milestone: Energy awareness 

Standard for fault tolerance required 

2018-19 
2018 Milestone: Fault tolerance 

2019: Milestone: Scaling to billion way 

 

4.2.4.4 Cross-Cutting Considerations 

Libraries will require standards to build on. These will include standards for power management, 
architectural characteristics, programming for heterogeneous environments and fault tolerance. 
Establishing such standards presupposes that the information regarding the underlying architecture, 
energy usage, and so forth, will be available as parameters to be used within the library implementations.  

The libraries need to provide language bindings for existing as well as newly emerging languages. At the 
same time, the calling sequences for their routines should fit in with the various programming models 
available for exascale environments. 
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4.2.5 Debugging  

4.2.5.1 Technology Drivers for Debugging 

Historically debugging has meant the process by which errors in program code are discovered and 
addressed. The scale of modern parallel computers has pushed the boundaries of that definition in two 
ways. Massive concurrency at terascale and petascale has led to profound challenges in the ability of a 
software debugger to encompass the entire parallel application consisting of thousands of processes. 
Additionally, it has initiated the need to debug not just the code but machine and OS environments where 
bugs and contention outside the program code itself may be the underlying cause of faults seen at the 
application layer.  

With exascale computing, we formally broaden the scope of debugging to including finding problems in 
the execution of program code by identifying and addressing application incorrectness as well as 
application failure and critical application performance bottlenecks that may be either reproducible or 
transient. These faults and bottlenecks may have their origins in the code itself or may be consequences of 
hardware or software conditions outside the control of the application. As an example and evident already 
at the petascale, a failed switch adapter on a remote node may cause failures in other jobs or may bring 
communication to a near standstill. For bulk synchronous parallel codes it normally takes only one slow 
task to limit the overall performance of the code.  

The following aspects of exascale technology will drive decisions in debugging: 

§ Concurrency-driven overhead in debugging 

§ Scalability of debugger methodologies (data and interfaces)  

§ Concurrency scaling of the frequency of external errors/failures 

§ Heterogeneity and lightweight operating systems   

These technology drivers are specific instances of the more broadly stated technology trends in exascale 
of concurrency, resiliency, and heterogeneity within a node. If ignored, debugging at exascale will 
become more and more costly, increasing the human effort applied to debugging and diminishing the 
investment in HPC resources by requiring more machine hours to be devoted to costly debug sessions. 
The research strategy for exascale debugging therefore must aim to streamline the debugging process by 
making it more scalable and more reliable.  

4.2.5.2 Alternative R&D Strategies for Debugging 

Exascale is a regime in which the rate of hardware faults will make debugging, in the expanded context 
mentioned above, a persistently needed real-time activity. We therefore suggest a strategy that “plans to 
debug” at compile time and also addresses the data management problems presented by dramatically 
higher concurrencies. The utility in debugging in a separate session will be limited since a large class of 
bugs may not be reproducible. Exascale will require the ability to “debug without stopping.” Scalability in 
debugging has been addressed in previous generations of HPC systems. Research to advance the state of 
the art in scalability will be required.  

Instead of pursuing the development of debuggers as monolithic applications capable of running other 
user applications in a debug environment, we propose research and development to improve the 
information sources from which a variety of debugging frameworks can benefit. This strategy borrows a 
lesson learned in the performance tools community, which has largely moved away from each tool having 
its own means of deriving machine function (reading counters, registers, etc.) toward development of 
robust APIs that deliver that information in a portable manner. For example, PAPI provides a common 
interface for performance information upon which performance tools may be built.  



 
 
 

   
 
 

36 

To build such scalable and reliable sources of information for debugging, we suggest vertical integration 
with compiler, library, runtime, OS, and I/O layers. This integration achieves two important goals at the 
same time. First, it expands the perspective into the application from multiple directions by providing 
multiple layers or contexts in which to debug. Specific aspects of codes such as just communication, I/O, 
specific libraries, or even user-defined quantities or data structures will allow the debugging process to 
zero in on the anomaly or fault in question. Composition of these data sources will allow for cross-
checking and hypothesis testing as to the origin of a fault or bottleneck. This contrasts with the idea of 
using a debugger to step through executing code on an instruction or subroutines basis and moves in the 
direction of having the debugging framework become advisory and participatory in the production and 
execution of codes.  

Second, vertical integration that delivers portable standards for gathering and acting on debug information 
provides efficiency in the design and maintenance of debugging tools. Instead of developing an end-to-
end solution within each debugger, we imagine a lowered barrier to entry to the design of special purpose, 
custom-fitted debuggers that draw on reliable, scalable, and portable mechanisms for monitoring and 
controlling application codes. Moving from a one-size-fits-all perspective on debugging to modularly 
selectable approaches will enhance the ability for applications to incorporate the handling of faults and 
problem scenarios internally. Currently, a large mismatch exists between what the layers underlying the 
application tell the application about faults and what the application needs to know.  

4.2.5.3 Recommended Research Agenda for Debugging 

Debugging technology needs to grow away from monolithic applications toward runtime libraries and 
layers that detect problems and aggregate highly concurrent debugging information into a categorical 
rather than task based context. Pursuing this path raises a variety of research challenges whose solution 
will be critical to finding a successful approach to debugging at exascale: 

§ Methods for scalable clustering of application process/thread states – Many millions of synopses 
can be made understandable by clustering into types or categories. Debuggers will need to have 
the ability to search through this volume of data to find the “needle in the haystack” in order to 
speed root cause determination.  

§ Debugging without stopping (resilient analysis of victim processes) –  Support for debugging will 
be needed in cases where one node has died, and OS and runtime methods are able to migrate 
and/or reschedule failed tasks, keeping the application alive. Debuggers will need interoperability 
with system and runtime fault tolerance technologies.  

§ Vertical integration of debug and performance information across software layers – It will be 
necessary to find ways to move debugging into multiple levels of application development, build, 
and execution in order to get a fuller picture of application problems. Consistent standards in the 
design of these interfaces will be needed to make debuggers and tools more portable as well as 
easer to develop and maintain.  

§ Layered contexts or modes of debugging – Instead of a one-size-fits-all approach, developers will 
need to be able to select custom levels of debug in order to connect the dots between potential 
bugs and their causes. “All the data all the time” will not be an option for full-scale exascale 
debugging. Intelligent selection from a menu of reliable data sources will have to be able to target 
the specifics of a potential bug.   

§ Automatically triggered debugging – Instead of debugging test cases in a separate session, some 
exascale debugging must be delivered as problems unfold. Users will have to be able to advise 
the application about objectives from which deviation is considered a bug. A debugging 
framework with these capabilities would enable applications to advise the user about problem 
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indicators, for example, expanding memory footprint, incorrectness, and sudden changes in 
performance.  

By focusing on the ability of debugging frameworks to scale and communicate well, this agenda will 
lower the barriers to debugging, lower the human and machine costs of debugging, and enhance the trust 
in the reliability of scientific output from exascale systems.  

 

Timeframe Targets and Milestones – Debugging Tools 

2010-11 
Planning and workshops 
Lightweight debugging  at 1e5 cores 

2012-13 Support for heterogeneity in nodes 
2014-15 Simulation at 106 cores 
2016-17 Software development to support 1e6 core production debugging 
2018-19 Near-production exascale 

	  

4.3 Applications 
While IESP may not focus on developing applications per se, they are nevertheless the reason for the 
existence of such systems. It may be that exascale systems are specialized machines, co-designed with 
specific families of applications in mind. Therefore, IESP needs to invest in the technology that makes 
these applications feasible. 

4.3.1 Application Element: Algorithms 

4.3.1.1 Technology and Science Drivers for Algorithms 

Algorithms must be developed to deal with the architectural realities in an exascale system. In addition, 
algorithmic innovation can provide efficient alternatives to computer hardware, addressing issues such as 
reliability and power. 

Scalability is perhaps the most obvious driver for algorithms. Contributing to scalability are problems in 
concurrency, latency, and load balancing. Because an exascale system will have 108 to 109 threads, simply 
creating enough concurrency from an application can become a challenge (a 10003 mesh has one point per 
thread on such a system; the low computation/communication ratio of such a problem is typically 
inefficient). Even current systems have a 103–104cycle hardware latency in accessing remote memory. 
Hiding this latency requires algorithms that achieve a computation/communication overlap of at least 104 
cycles; exascale systems are likely to require a similar degree of latency hiding (because the ratio of 
processor and memory speeds are expected to remain about the same). Many current algorithms have 
synchronization points (such as dot products/allreduce) that limit opportunities for latency hiding (e.g., 
Krylov methods for solving sparse linear systems). These synchronization points must be eliminated. 
Moreover, static load balancing rarely provides an exact load balance; experience with current terascale 
and near-petascale systems suggests that this is already a major scalability problem for many algorithms.  

Fault tolerance and fault resilience are also drivers for algorithms. While hardware and system software 
solutions to managing faults are possible, it may be more efficient for the algorithm to contribute to 
solving the fault resilience problem. Experience shows applications may not detect faults (which may also 
be missed by the hardware); we need to evaluate the role of algorithms in detecting faults. Detecting 
faults in hardware requires additional power and memory. Regardless of which component detects a fault,   
must be repaired. The current general-purpose solutions (e.g., checkpoint/restart) are already demanding 
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on high-end platforms (e.g., requiring significant I/O bandwidth). We need to evaluate the role of 
algorithms in repairing faults, particularly transient (e.g., memory upset) faults. In addition, one can 
imagine a new class of algorithms that are inherently fault-tolerant, such as those that converge 
stochastically. The advantage of robustness on exascale platforms will eventually override concerns over 
computational efficiency. 

Because of the likely complexity of an exascale system, algorithms must be developed that are a good 
match to the available hardware. One of the most challenging demands is power; algorithms that 
minimize power use need to be developed. This will require performance models that include energy. 
Note that this may be combined with other constraints, since data motion consumes energy. As many 
proposals for exascale systems (and power-efficient petascale systems) exploit heterogeneous processors, 
algorithms will need to be developed that can make use of these processor structures. The current 
experience with GPGPU systems, while promising for some algorithms, has not shown benefits with 
other algorithms. Heterogeneous systems also require different strategies for use of memory and 
functional units. For example, on some hardware it may be advantageous for algorithms to exploit 
multiple levels of precision. Exascale systems are likely to have orders of magnitude less memory per 
core than current systems (though still large amounts of memory). Power constraints may reduce the 
amount of fast memory available, adding to the need for latency hiding. Thus we need algorithms that use 
memory more efficiently, for example, more accuracy per byte, fewer data moves per result. The choice 
of algorithm for a particular application may depend sensitively on details of the memory hierarchy and 
implementation; portability between diverse architectures will require algorithms that can automatically 
adjust to local hardware constraints. 

The final driver is this need to re-examine the classes of applications that are suitable for exascale 
computing. Because exascale systems are likely to be different from simple extrapolations of petascale 
systems, some application areas may become suitable again; others (because of the extreme scale and 
degree of concurrency) may become possible for the first time. 

A major concern is that an exascale system may be very different from current systems and will require 
new approaches. 

4.3.1.2 Alternative R&D Strategies for Algorithms 
All strategies for developing algorithms for exascale systems must start with several “strawman exascale 
architectures” that are described in enough detail to permit the evaluation of the suitability of current 
algorithms on potential exascale systems. There are then two basic strategies: (1) refine existing 
algorithms to expose more concurrency, adapt to heterogeneous architectures, and manage faults and (2) 
develop new algorithms.  

In refining algorithms, a number of strategies may be applied. Developing new algorithms requires 
rethinking the entire application approach, starting with the choice of mathematical model and 
approximation methods used. It is also important to re-evaluate existing methods, such as the use of 
Monte Carlo; reconsider tradeoffs between implicit and explicit methods; and replace FFT with other 
approaches that can avoid the all-to-all communication. In creating algorithms that are fault tolerant, a 
key approach is to use or create redundant information in the algorithm or mathematical model. To make 
effective use of likely exascale hardware, methods that make more efficient use of memory, such as 
higher-order methods, as well as the development of more predictive analytic performance models, will 
be key. 

4.3.1.3 Recommended Research Agenda for Algorithms 
A research agenda is shown in the table below, along with comments providing more detail about each in 
the enumerated list below. Not captured in this table is the need to follow two broad strategies: an 
evolutionary one that updates current algorithms for exascale (following the approaches that have 
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successfully been followed to take us to petascale) and one that invests in higher risk but higher payoff 
development of new algorithms. In either case, it is important to develop performance models (and thus 
strawman exascale architecture designs) against which algorithm developments can be evaluated. In 
addition, it is all too easy for applications to define algorithm “requirements” that overly constrain the 
possible solutions. It is important to re-evaluate application needs, for example, evaluating changes to the 
model or approximation to allow the use of exascale-appropriate algorithms. 

Against this background, the critical research challenges that need to be addressed for application 
algorithms that build on the X-stack are as follows: 

§ Gap analysis – need to perform a detailed analysis of the applications, particularly with respect to 
quantitative models of performance and scalability 

§ Scalability, particularly relaxing synchronization constraints 

§ Fault tolerance and resilience, including fault detection and recovery  

§ Heterogeneous systems – algorithms that are suitable for systems made of functional units with 
very different abilities 

Timeframe Targets and Milestones  – Algorithms 

2010-11 

Gap analysis. Needs to be completed early to guide the rest of the effort. 
Evaluation of algorithms needed for applications. Needs to be initiated early and 
completed early to guide allocation of effort and to identify areas where apps 
need to rethink the approach (cross-cutting issue). Needs to develop and use 
more realistic models of computation (quantify need). 

2012-13 

Algorithms for intranode scaling  
Algorithms for internode scaling 
Evaluation on petascale systems 

Better scaling in node count and within nodes can be performed using petascale 
systems in this Timeframe (so it makes sense to deliver a first pass in this 
Timeframe). 

2014-15 

Prototype algorithms for heterogeneous systems 
Heterogeneous systems are available now but require both programming model 
and algorithmic innovation; while some work has already been done, others may 
require more time. This can be viewed as “a significant fraction of algorithms 
required for applications expected to run at exascale have effective algorithms 
for heterogeneous processor systems.” 

2016-17 

Fault resilience 
Fault resilience is a hard problem; this assumes that work starts now but will 
take this long to meet the same definition as for heterogeneous systems – “a 
significant fraction of algorithms have fault resilience.” 
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2018-19 

Efficient realizations of algorithms on exascale architectures  
Efficient implementation includes the realization in exascale programming 
models and tuning for real systems, which may involve algorithm modifications 
(since the real architecture will most likely be different from the models used in 
earlier developments). In addition, the choice of data structures may also change, 
depending on the abilities of compilers and runtimes to provide efficient 
execution of the algorithms. 

4.3.1.4 Cross-Cutting Considerations 
The ability to design and implement efficient and novel algorithms for exascale architectures will be 
closely tied to improvements in many cross-cutting areas. Examples include the following:  

The development of libraries that recognize and exploit the presence of mixed precision mathematics will 
spur the creation of algorithms that effectively utilize heterogeneous hardware. Ideally, the user could 
specify the required precision for the result, and the algorithm would choose the best combination of 
precision on the local hardware in order to achieve it. The actual mechanics would be hidden from the 
user. 

The creation of debugging tools that expose cache use, load imbalance, or local power utilization will be 
critical for the implementation of self-optimizing algorithms in each of these areas. Currently available 
methods of debugging large-scale codes to catch, for example, load-balancing issues are manpower 
intensive and represent a significant barrier to the development of efficient algorithms. 

Runtime systems that make available to the running code information about MTBF on the hardware can 
allow for auto-adjustment of defensive restart strategies. The I/O strategy for even a petascale simulation 
must be carefully optimized to avoid wasting both compute and storage resources. The situation will only 
be more critical at exascale. 

Tuning of algorithms for performance optimization will benefit from compilers and programming 
languages that can recognize and utilize multiple levels of parallelism present in the hardware. Current 
strategies for optimization on HPC architectures result in either one-off, hand-tuned codes or portable and 
inefficient codes, since it is difficult to express multiple possible levels of parallelism into the structure of 
the code. The increased portability allowed by some measure of autotuning will maximize the ROI on 
code development and thus lower the effective cost of entry into HPC. 

4.3.2 Application Support: Data Analysis and Visualization 

4.3.2.1 Technology and Science Drivers for Data Analysis and Visualization 

Modern scientific instruments—for example, in synchrotron science, high energy physics, astronomy, and 
biotechnology—are all experiencing exponential growth in data generation rates through a combination of 
improved sensors, increases in scale, widespread availability, and rapid advances in the supporting 
information technology. Model simulations—for example, in climate, CFD, materials science, and 
biological science—are also producing vast amounts of data as they scale with the exponential growth in 
HPC performance. Experimental science, modeling, and simulation are routinely generating petabyte-
scale data sets. Exabyte-scale data sets are now part of the planning process for major scientific projects. 

The increasing scale and complexity of simulations and the data they produce will be a key driver of the 
research agenda in the area of data analysis and visualization. These will force new approaches to 
coupling analysis and visualization computations to the larger datasets. Considerations of dataset size will 
also drive innovations in analysis techniques, allowing for the advancement of current technology and 
requiring the research and development of new solutions. Analysis and visualization will be limiting 
factors in gaining insight from exascale data. 
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Interactive data exploration will also become increasingly important as dataset scale and complexity 
continue to grow. However, it will become increasingly difficult to work interactively with these datasets, 
thus requiring new methods and technologies. These solutions will need to supply the scientist with 
salient reductions of the raw data and new methods for information and process tracking. 

4.3.2.2 Alternative R&D Strategies for Data Analysis and Visualization 

Several strategies for enabling data analysis and visualization at exascale are available to us. One strategy 
would be to continue to incrementally improve and adapt existing technologies (visualization and analysis 
algorithms, data management schemes, end-to-end resource allocation). This adiabatic expansion of 
current efforts is well traveled and has a lower barrier to entry than others, but it may not provide 
adequate solutions in the long run. 

Inevitably, some combination of existing technologies and the integration of the four approaches 
described next will serve important roles in the necessary R&D enterprise. 

§ New algorithms – It would make sense to pursue development of entirely new algorithms that fit 
well with new large and complex architectures. This approach will be increasingly difficult, 
owing to the need to explicitly account for larger pools of heterogeneous resources.  

§ New data analysis approaches – New mathematical and statistical approaches must be identified 
for analysis of exabyte data sets. 

§ Integrated adaptive techniques – Development of integrated adaptive techniques will enable on 
the fly and learned pattern performance optimization from fine to coarse grain. This strategy 
would provide a range of means to extract meaningful performance improvements implicitly, 
rather than by explicit modeling of increasingly complex systems. 

§ Pro-active software methods – Another strategy is to expand the role of supporting visualization 
environments to include more pro-active software: model- and goal-aware agents, estimated and 
fuzzy results, and advanced feature identification. This strategy will require abdicating some 
responsibility to autonomous system software in order to more rapidly sift through large amounts 
of data in search of hidden elements of discovery and understanding. 

§ Metatools – With a focus on mitigating the increasing burden of high-level organization of the 
exploration and discovery process, it would be advantageous to invest in methods and tools for 
keeping track of the processes and products of exploration and discovery. These will include aids 
to process navigation, hypothesis tracking, workflows, provenance tracking, and advanced 
collaboration and sharing tools. 

§ Collaboration – Deployment of a global system of large-scale, high-resolution (100 Mpixel) 
visualization and data analysis systems based on open-source architectures will link universities 
and research laboratories and facilitate collaborations. 

4.3.2.3 Recommended Research Agenda for Data Analysis and Visualization 

Many of the innovations required to cope with exascale data analysis and visualization tasks will require 
considerable development and integration in order to become useful. At the same time, most would be of 
considerable utility at the petascale. Consequently, it is not only required but could provide up-front 
benefits to aggressively develop the proposed methods so that they can be deployed early, at least in 
prototype form, for extensive use in research situations and rigorously evaluated by the application 
community. 

Among the research topics that will prove critical in achieving this goal are the following: 

§ Identification of features of interest in exabytes of data 
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§ Visualization of streams of exabytes of data from scientific instruments 

§ Integrating simulation, analysis, and visualization at exascale 

Ongoing activities supporting adiabatic expansion of existing techniques onto new hardware architectures 
and R&D of new algorithms will continue throughout the time span. The major milestones and timetable 
reflected in the following table would be supported by development of many of the ideas at smaller scale, 
beginning as soon as possible. 

 

 

 

 

Timeframe Targets and Milestones – Data Analysis and Visualization 

2010-11 

Planning and workshops 
• Assess current tools and technologies 
• Perform needs and priority analysis across multiple disciplines 
• Identify common components 
• Identify new mathematical and statistical research needed for analysis of 

exabyte data sets 
• Integrate analysis and visualization into scientific workflows 
• Develop exascale data analysis and visualization architecture document 
• Commence initial set of projects for common components and domain 

specific data analysis and visualization libraries 
• Plan deployment of a global system of large-scale, high-resolution (100 

Mpixel) visualization and data analysis systems to link universities and 
research laboratories 

 

2012-13 

Develop 1.0 common component data analysis and visualization libraries 
Develop 1.0 priority domain-specific data analysis and visualisation libraries 

    Begin deployment of a global system of large-scale, high-resolution (100 Mpixel)     
visualization and data analysis systems 
    Achieve data analysis and visualization at 105 cores with petabyte data sets 
    Provide support for heterogeneity in nodes 

2014-15 
Integrate data analysis and visualization tools in domain-specific workflows 
Achieve data analysis & visualization at 106 cores with 10–100 petabyte data sets 

2016-17 
Complete 2.0 domain specific data analysis and visualization libraries and workflows 
Complete 2.0 common component data analysis and visualisation libraries 
Achieve data analysis and visualization at 106 cores with near-exascale data sets 

2018-19 Roll out data analysis and visualization at exascale 

4.3.2.4 Cross-Cutting Considerations 

Architecture at coarse and fine grain. Analysis and visualization can use any or all of the computational, 
storage, and network resources in a computational environment. Methods developed to address the 
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driving technology and science issues are likely to intersect with the design and implementation of future 
architectures at all granularities, from wide-area considerations to heterogeneity of available processing 
elements. Also, compiler and debugging tools appropriate for software development on exascale systems 
will need to be developed to meet the needs of the timetable outlined above. 

Opportunistic methods. Many emerging approaches to analysis and visualization leverage opportunities 
that arise from data locality (e.g., in situ methods), synergies of happenstance (as in analysis embedded in 
I/O libraries and data movers), and unused capacity (e.g., background analysis embedded in I/O servers). 
These will each require coordination with fine-grained execution of the numerical algorithms used in the 
simulation, ongoing read/write operations, and system-level resource scheduling. Researchers should 
consider using exascale performance to rapidly perform model simulations, with data analysis and 
visualization integrated into the simulation to avoid storing vast amounts of data for later analysis and 
visualization. This strategy would affect the development of domain-specific simulation codes. 
End-to-end or global optimizations. Improvements in understanding algorithms for large-scale 
heterogeneous architectures and the related advances in runtime and compiler technologies are likely to 
afford new opportunities for performance optimization of the combined simulation and analysis 
computations. These and other benefits may accrue from taking a more holistic view of the end-to-end 
scientific discovery pipeline. Integrating data analysis and visualization into domain-specific exascale 
scientific workflows will be essential to maximizing the productivity of researchers working on exascale 
systems. 

4.3.3 Application Support: Scientific Data Management 

4.3.3.1 Technology and Science Drivers for Scientific Data Management 

Management, analysis, and mining of large data sets already present challenging problems, but these 
activities are critical in petascale systems and will be even more so for exascale systems. Most science 
applications at this scale will be extremely data intensive; individual simulations are expected to produce 
petabytes of data and, when combined with multiple executions, the data could approach exabyte scales. 
Thus, managing scientific data has been identified by the scientific community as one of the most 
important emerging needs because of the sheer volume and increasing complexity of data. The potential 
impact of exascale computing will be measured not just in the power it can provide for simulations but 
also in the capabilities it provides for managing and making sense of the data produced. Clearly needed is 
an end-to-end approach that encompasses all stages, from the initial data acquisition to the final analysis 
of the data. Many common questions arise across various application disciplines. Are data management 
tools available that can manage data at this scale? Although scalable file systems are important as 
underlying technologies, they are not suitable as a user-level mechanism for scientific data management. 
What are the scalable algorithm techniques for statistical analysis and mining of data at this scale? Are 
there mathematical models? Does the “store now and analyze later” model work at this scale? What are 
the models and tools for indexing, querying, and searching these massive datasets and for knowledge 
discovery? What are the tools for workflow management? An emerging model relies ever more on teams 
working together to organize new data, develop derived data, and produce analyses based on the data, all 
of which can be shared, searched, and queried. What are the models for such sharing, and what are 
designs for such databases or data warehouses? Data provenance is another critical issue at this scale. 
What are scalable data formats, and what are the formats for metadata?  

4.3.3.2 Alternative R&D Strategies for Scientific Data Management 

Scientific data management covers many subfields, from data formats, workflow tools, and query to data 
mining and knowledge discovery. For most of the subfields, R&D strategies must simultaneously 
consider the scalable I/O and storage devices for the required scaling for exascale systems.  
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Data Analysis and Mining Software and Tools: Knowledge discovery from massive datasets produced or 
collected will require sophisticated, easy-to-use, yet scalable tools for statistical analysis, data processing, 
and data mining. Scalable algorithms and software must be developed that can handle multivariate, 
multidimensional (and large number of dimensions), hierarchical, and multiscale data at massive scales. 
Scalable tools based on these algorithms must be developed with a capability to incorporate other 
algorithms. Traditionally, analytics and mining specification languages have been sequential and are 
unable to scale to massive datasets. Parallel languages for analysis and mining that can scale to massive 
data sets will be important. Data mining and analysis scalability can also be addressed via the use of 
accelerators such as GPGPUs and FPGAs; and the development of scalable algorithms, libraries, and 
tools that can exploit these accelerators will be important. Techniques for on-line analytics, active storage 
models, and co-processing models should be developed that can run concurrently (potentially on a 
subsystem) with the simulations and can exploit the multicore nature of the systems. Also, maximizing 
the use of data while it is available should be investigated.  
 
Scientific Workflow Tools: Scientific workflow is defined as a series of structured activities, computation, 
data analysis, and knowledge discovery that arise in scientific problem-solving. That is, it is a set of tools 
and software that allow a scientist to specify end-to-end control and data flow as well as coordination and 
scheduling of various activities. Designing scalable workflow tools with easy-to-use interfaces will be 
important for exascale systems, both for performance and for scientific productivity as well as for 
effective use of these systems. Scaling of workflow tools will entail enhancements of current designs 
and/or developing new approaches that can effectively use scalable analytics and I/O capabilities and that 
can incorporate query processing. New design mechanisms, including templates, semantic types, and user 
histories will simplify workflow design and increase dependability. As a part of workflow tools, the 
creation, management, querying, and use of data provenance must be investigated.  

Extensions of Databases Systems: Commercial database systems such as those based on relational or 
object models (or derivation thereof) have proved unsuitable for organizing, storing, or querying scientific 
data at any reasonable scale. Although it is an alternative for pursuing data management solutions, it is 
not likely to be successful. 

Design of New Database Systems: A potential approach to database systems for scientific computing is to 
investigate completely new approaches that scale in performance, usability, query, data modeling, and an 
ability to incorporate complex data types in scientific applications and that eliminate the overconstraining 
usage models, which are impediments to scalability in traditional databases. Scalable file systems will be 
critical as an underlying software layer, but not as a user-level interface for data management purposes. It 
is critical to move to dataset-oriented paradigms for data management, in which the file systems serve the 
data management layer and need to be optimized for limited functionality needed by the data management 
layer, which in turn presents an intuitive, easy-to-use interface to the user for managing, querying and 
analyzing data with a capability for the users to embed their functions within the data management 
systems. 

Scalable Data Format and High-Level Libraries: Scientists use different data formats, mainly driven by 
their ability to specify the multidimensional, multiscale, often sparse, semi-structured, unstructured, and 
adaptive data. Examples of these formats and corresponding libraries include netCDF and HDF and their 
corresponding parallel (PnetCDF and PHDF) versions. Changes in these have been driven mainly by 
backward compatibility. Approaches to adapt and enhance these formats and scale the data access 
libraries must be investigated. Furthermore, new storage formats that emphasize scalability and the use of 
effective parallel I/O, along with the capabilities to incorporate analytics and workflow mechanisms, are 
important areas for research and development. Although the use of new storage devices such as SCM has 
been discussed in the context of I/O systems, their use in redesigning or optimizing storage of data and 
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metadata for performance and effective querying high-level data formats and libraries should be pursued, 
especially given that accessing metadata is a major bottleneck. 

Search and Query Tools: Effective searching and querying of scientific data are critical. New technology 
is needed for efficient and scalable searching and filtering of large-scale, scientific multivariate datasets 
with hundreds of searchable attributes to deliver the most relevant data and results. Users may be 
interested in querying specific events or the presence or absence of certain data subsets. Furthermore, 
filtering of data based on certain query specifications is important, including capabilities to combine 
multiple data sets and query across them. 

Wide-Area Data Access, Movement, and Query Tools: Wide-area data access is becoming an increasingly 
important part of many scientific workflows. In order to most seamlessly interact with wide-area storage 
systems, tools must be developed that can span various data management techniques across a wide area, 
integrated with scalable I/O, workflow tools, and query and search techniques.  
4.3.3.3 Recommended Research Agenda for Scientific Data Management 

The recommended research agenda for scientific data management systems includes all items above 
except for “Extensions to Database Systems.” 

Timeframe Targets and Milestones – Scientific Data Management 

2010-11 
• Extensions and redesign of scalable data formats 
• Extend capabilities of workflow tools to incorporate analytics 
• Design of data mining and statistical algorithms for multiscale data 

2012-13 

• Design and definition of scientific database systems 
• Workflow tools with fault-resiliency specification capabilities 
• Integration of scalable I/O techniques with wide-area SDM technologies  

 

2014-15 

• Analytics and mining for active storage Systems, including functionality for users to 
embed their functions. 

• Scalable implementations of high-level libraries for various high-level data formats 
• Scalable query and search capabilities in scientific database systems 

 

2016-17 

• Comprehensive parallel data mining and analytics suites for scalable clusters with 
GPGPU and other accelerators   

• Extensive capabilities for managing data provenance within the workflow and other 
SDM tools 

• On-line analytics capability and its integration with workflow tools  

2018-19 • Real-time knowledge discovery and insights 
• Comprehensive scientific data management tools 

4.3.3.4 Cross-Cutting Considerations  

Scientific data management clearly has cross-cutting considerations with scalable storage and I/O, 
visualization techniques and tools, operating systems, fault-resiliency mechanisms, the communication 
layer, and, to some extent, programming models. 



 
 
 

   
 
 

46 

4.4 Cross-Cutting Dimensions  
4.4.1 Resilience  
Since exascale systems are expected to have millions of processors and hundreds of millions of cores, 
resilience will be necessary for the exascale applications. If the relevant components of the X-stack are 
not fault tolerant, then even relatively short-lived applications are unlikely to finish, or worse, may 
terminate with an incorrect result. In other words, insufficient resilience of the software infrastructure 
would likely render extreme scale systems effectively unusable. The amount of data needing to be 
checkpointed and the expected rate of faults for petascale and larger systems are already exposing the 
inadequacies of traditional checkpoint/restart techniques. The trends predict that, for exascale systems, 
faults will be continuous and across all parts of the hardware and software layers, which will require new 
programming paradigms. Because there is no compromise for resilience, the challenges it presents need to 
be addressed now for solutions to be ready when exascale systems arrive.  

4.4.1.1 Technology Drivers for Resilience 

Five technology drivers have been identified. 

§ Exponential increases in the number of sockets, cores, threads, disks, and memory size are 
expected. 

§ Because of the size and complexity, there will be more faults and a large variety of errors (soft 
errors, silent soft errors, transient and permanent software and hardware errors) everywhere in the 
system. Some projections consider than the full-system mean time to failure will be in the range 
of one minute. 

§ Silent soft errors will become significant and raise the issues of result and end-to-end data 
correctness. 

§ New technologies such as Flash memory (SSD), phase-change RAM, and accelerators will raise 
both new opportunities (stable local storage, faster checkpointing, faster checkpoint compression, 
etc.) and new problems (capturing the state of accelerators). 

§ Intel has estimated that additional correctness checks on chip will increase power consumption 
15–20%. The need to significantly reduce the overall power used by exascale systems is likely to 
reduce the reliability of components and reduce the mean time to failure of the overall system. 

4.4.1.2 Gap Analysis  

This section briefly identifies the technology gaps that must be overcome in moving from current high-
performance computing to the exascale.  

§ Existing fault tolerance techniques (global checkpoint/global restart) will be impractical at the 
exascale. New techniques for saving and restoring state need to be developed into practical 
solutions.  

§ The most common programming model, MPI, does not offer a paradigm for resilient 
programming. A failure of a single task often leads to killing the entire application. 

§ Present applications and system software are neither fault tolerant nor fault aware and are not 
designed to confine errors/faults, to avoid or limit their propagation, and to recover from them 
when possible. 

§ There is no communication or coordination between the layers of the software stack in error/fault 
detection and management, nor coordination for preventive or corrective actions.  
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§ Errors, fault root causes, and propagation are not well understood.  

§ There is almost never verification of the results from large, long-running simulations. 

§ There are no standard metrics, no standardized experimental methodology, and no standard 
experimental environment to stress resilience solutions and compare them fairly. 

4.4.1.3 Alternative R&D Strategies  

Resilience can be attacked from different angles:  

• Global recovery versus fault confinement and local recovery  

• Fault recovery versus fault avoidance (fault prediction + migration)  

• Transparent (system managed) versus application directed  

• Recovery by rollback versus replication 

Since rollback recovery, as we know it today, will be not applicable by 2014–2016, research needs to 
progress on all techniques that help to avoid global coordination and global rollback. 

4.4.1.4 Recommended Research Agenda for Resilience 

The recommended research agenda follows two main tracks: 
 

1. Extend the applicability of rollback toward more local recovery – scalable, low overhead, fault 
tolerant protocols, integration of SSD and PRAM for checkpointing, reducing checkpoint size 
(new execution state management), error and fault confinement and local recovery, consistent 
fault management across layers (including application and system software interactions), 
language support and paradigm for resilience, and dynamic error handling by applications 

2. Fault-avoidance and fault-oblivious software to limit the recovery from rollback – improve RAS 
collection and analysis (root cause); improve understanding of error/fault and their propagation 
across layers;  develop situational awareness, system-level fault prediction for time optimal 
checkpointing and migration, fault-oblivious system software, and fault-oblivious applications 

 
Timeframe Targets and Milestones -- Resilience 

2010-12 

Target 1: Extension of the applicability of rollback recovery  

• Design of scalable, low-overhead, fault-tolerant protocols 
• Integration of checkpoint size reducing techniques (compiler, incremental, 

compression, etc.) 
• Demonstration of partial-local replication as complement to rollback 

2013-15 

Target 1: Extension of the applicability of rollback recovery  

• Integration of Phase-change RAM technologies 
• Implementation of error and fault confinement, local recovery, TMR (cores) 
• Development of fault-aware system software 
• Provision of language support and paradigm for resilience 
• Developoment of application and system software interactions (standard API) 
• Consistency across layers (CIFTS or CIFTS like mechanisms) 
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Target 2: Fault-avoidance and fault-oblivious software  

• RAS collection and analysis (root cause), situational awareness 
• Hardware and software integration 

2016-19 

Target 2: Fault-avoidance and fault-oblivious software  

• System-level fault prediction for time-optimal checkpointing and migration 
• Fault-oblivious system software 
• Fault-oblivious applications 

 

4.4.2 Power Management 

4.4.2.1 Technology Drivers for Power Management 

Power has become the leading design constraint for future HPC system designs. In thermally limited 
designs, power also forces design compromises that lead to highly imbalanced computing systems (such 
as reduced global system bandwidth). The design compromises required for power-limited logic will 
reduce system bandwidth and consequently reduce delivered application performance and greatly limit 
the scope and effectiveness of such systems. From a system management perspective, effective power 
management systems can substantially reduce overall system power without reducing application 
performance, and therefore make fielding such systems more practical and cost-effective. The existing 
power management infrastructure has been derived from consumer electronic devices and fundamentally 
never had large-scale systems in mind. Without comprehensive cross-cutting technology development for 
a scalable active power management infrastructure, power consumption will force design compromises 
that will reduce the scope and feasibility of exascale HPC systems.  

From an applications perspective, active power management techniques improve application performance 
on systems with a limited power budget by dynamically directing power usage only to the portions of the 
system that require it. For example, a system without power management would melt if it operated 
memory interfaces at full performance while also operating the floating-point unit at full performance—
forcing design compromises that limit the memory bandwidth to 0.01 bytes/flop according to the DARPA 
projections. In this thermally limited case, however, one can deliver higher memory bandwidth to the 
application for short periods of time by shifting power away from other components. Whereas the 
projected bandwidth ratio for a machine would be limited to 0.01 bytes/flop without power management, 
the delivered bandwidth could be increased to 1 byte/flop for the period of time where the application is 
bandwidth limited, by shifting the power away from floating point (or other components that are under-
utilized in the bandwidth-limited phase of an algorithm). Therefore, power management is an important 
part of enabling better delivered application performance through dynamic adjustment of system balance 
to fit within a fixed power budget.  

From a system management perspective, power is a leading component of system total-cost-of-ownership. 
Every megawatt of reduced power consumption translates to a savings of $1M/year on even the least 
expensive energy contracts. For systems that are projected to consume hundreds of megawatts, power 
reduction makes fielding of such systems more practical. HPC-focused power management technology 
can have a much broader impact across the large-scale computing market. High-end servers, which are 
the building blocks of many HPC systems, were estimated to consume 2% of North American power 
generation capacity as of 2006, and this factor is growing. By 2013, IDC estimates that HPC systems will 
be the largest fraction of the high-end server market. Hence, the direct impact of improved power 
management technology is to reduce the operating cost for exascale HPC systems, but the broader impact 
is to reduce power consumption of the largest and fastest growing sector of the computing technology 
market (HPC systems) and reduce carbon emissions for all server technology. 
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The current state-of-the-art power management systems are based on features developed for the 
consumer-electronics and laptop markets, which make local control decisions to reduce power. 
Unfortunately, the technology to collect information across large-scale systems and make control 
decisions that coordinate power management decisions across the system is not well developed, nor are 
reduced models of code performance for optimal control. Furthermore, the interfaces for representing 
sensor data for the control system, describing policies to the control system, and distributing control 
decisions are not available at scale. Effective system-wide power management will require development 
of interface standards to enable both vertical (e.g., between local components and integrated system) and 
horizontal (e.g., between numerical libraries) integration of components. Standardization is also a 
minimum requirement for broad international collaboration on development of software components. The 
research and development effort required to bring these technologies into existence will touch on nearly 
every element of a large-scale computing system design—from library and algorithm design to system 
management software. 

4.4.2.2 Alternative R&D Strategies for Power Management 

Fundamentally, power management technology attempts to actively direct power towards useful work. 
The goal is to reduce system power consumption without a corresponding impact on delivered 
performance. This is accomplished primarily through two approaches 

1. Power down components when they are underutilized:  Examples include Dynamic Voltage and 
Frequency Scaling (DVFS), which reduces the clock rate and operating voltage of components 
when the OS directs it to. Memory systems also support many low-power modes when operating 
at low loads. Massive Arrays of Redundant Disks (MAID) allow disk arrays to be powered down 
incrementally (subsets of disks) to reduce power. In the software space, operating systems or 
libraries use information about the algorithm resource utilization to set power management policy 
to reduce power. 

2. Explicitly manage data movement: Both algorithms and hardware subsystems are used to manage 
data movement to make the most effective use of available bandwidth (and hence power). 
Examples from the hardware space include solid state disk caches to lower I/O power for 
frequently accessed data, offloading of work to accelerators, and software-managed memory 
hierarchies (local stores). Examples from the software space include communication avoiding 
algorithms, programming models that abstract use of local stores, and libraries that can adapt to 
current power management states or power management policy. 

Current power management features are derived primarily from consumer technology, where the power 
savings decisions are all made locally. For a large parallel system, locally optimal solutions can be 
tremendously nonoptimal at the system scale. When nodes go into low-power modes, opportunistically 
based on local decisions, they create a jitter that can substantially reduce systemscale performance. 
Therefore, localized automatic power management features are often turned off on production HPC 
systems. Moreover, the decision to change system balance dynamically to conserve power requires 
advance notice because there is latency for changing between different power modes. Hence, the control 
loop for such a capability requires a predictive capability to make optimal control decisions. Therefore, 
new mechanisms that can coordinate these power savings technologies at system scale will be required to 
realize an energy-efficiency benefit without a corresponding loss in delivered performance. 

A completely adaptive control system requires a method for sensing current resource requirements, 
making a control decision based on an accurate model for how the system will respond to the control 
decision, and then distributing that control decision in a coordinated fashion. Currently, the control loop 
for accomplishing this kind of optimal control for power management is fundamentally broken. Predictive 
models for response to control decisions are generally hand-crafted (a time-consuming process) for the 
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few examples that exist. There is no common expression of policy or objective. There is no 
comprehensive monitoring or data aggregation. More important, there is almost no tool support for 
integration of power management into libraries and application codes. Without substantial investments to 
create system-wide control systems for power management, standards to enable vertical and horizontal 
integration of these capabilities, and the tools to facilitate easier integration of power management 
features into application codes, there is little chance that effective power management technologies will 
emerge. The consequence will be systems that must compromise system balance (and hence delivered 
application performance) to fit within fixed power constraints, or systems that have impractical power 
requirements. 

4.4.2.3 Recommended Research Agenda for Power Management 

The R&D required for the X-stack to enable comprehensive, system-wide power management is 
pervasive and will touch on a broad variety of system components. The cross-cutting research agenda 
includes the following elements. 

Operating System/Node Scale Resource Management: Operating systems must support quality-of-
service management for node-level access to very limited/shared resources. For example, the OS must 
enable coordinated/fair sharing of the memory interface and network adaptor by hundreds or even 
thousands of processors on the same node. Support for local and global control decisions requires 
standardized monitoring interfaces for energy and resource utilization (PAPI for energy counters). 
Standard control and monitoring interfaces enable adaptable software to handle diversity of hardware 
features/designs. Future operating systems must also manage new power-efficient architectures; 
heterogeneous computing resources, including devices such as GPUs, embedded CPUs, and nonvolatile 
low-power memory and storage; and data movement and locality in memory hierarchy.  

Systemscale Resource Management: Power performance monitoring and aggregation are needed that 
scale to a 1 billion-core system. System management services require standard interfaces to enable 
coordination across subsystems and international collaboration on component development. Many power 
management decisions must be executed too rapidly for a software implementation and hence must be 
expressed as a declarative policy rather than a procedural description of actions. Therefore, policy 
descriptions must be standardized to do fine-grained management on chip. In particular, standards are 
required for specifying reduced models of hardware power impact and algorithm performance to make 
logistical decisions about when and where to move computation as well as the response to adaptations. 
These include analytical power models of system response and empirical models based on advanced 
learning theory. Also needed are scalable control algorithms to bridge the gap between global and local 
models. Systems to aggregate sensor data from across the system (scalable data assimilation and 
reduction) must make control decisions and distribute those control decisions in a coordinated fashion 
across large-scale systems hardware. Both online and offline tuning options based on advanced search 
pruning heuristics should be considered. 

Algorithms: We must investigate energy-aware algorithms that base order of complexity on energy cost 
of operations rather than FLOPs. A good example of this approach is communication-avoiding 
algorithms, which trade off FLOPS for communication to save energy. Since the optimal trade-off is 
context specific however, we must enable libraries to be annotated for a parameterized model of energy to 
articulate a policy to manage those trade-offs on different system architectures. Standardizing the 
approach to specifying lightweight models to predict response to resource adjustment will be important to 
this effort. 

Libraries: To create cross-architecture compatible, energy-aware libraries, library designers need to use 
their domain-specific knowledge of the algorithm to provide power management and policy hints to the 
power management infrastructure. This research agenda requires that performance/energy efficiency 
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models and power management interfaces in software libraries be standardized. Such standardization will  
ensure compatibility of the management interfaces and policy coordination across different libraries 
(horizontal integration) as well as support portability across different machines (vertical integration). 

Compilers: Compilers and code generators must be able to automatically instrument code for power 
management sensors and control interfaces to improve the programmability of such systems. Compiler 
technology can be augmented to automatically expose “knobs for control” and “sensors” for monitoring 
of nonlibrary code. A more advanced research topic is to find ways to automatically generate reduced 
performance and energy consumption models to predict response to resource adaptation. 

Applications: Applications require more effective declarative annotations for policy objectives and 
interfaces to coordinate with advanced power-aware libraries and power management subsystems. 

The proposed research agenda targets the following key metrics for improving overall effectiveness of 
exascale systems. 

§ Performance: Scalable, lightweight, and cross-software hierarchy performance models (analytic 
models and empirical models) need to be constructed that enable predictive control of application 
execution, so that we can find ways of reducing power without having a deleterious impact on 
performance. 

§ Programmability: The applications developers cannot be expected to manage power explicitly 
due to the overwhelming complexity of the hardware mechanisms. Making power management 
accessible to application and library architects requires coordinated support from compiler, 
libraries, and system services. 

§ Composability: There must be standards to enable system components and libraries that are 
developed by different research groups to work in coordinated fashion with underlying power 
systems. Standardization of monitoring and control interfaces minimizes the number of 
incompatible ad-hoc approaches and enables an organized international effort. 

§ Scalability: We must be able to integrate information from the OS, the system-level resource 
manager, and applications and libraries for a unified strategy to meet objectives. 

Timeframe Targets and Milestones – Power Management 

2010-11 

Energy monitoring Interface Standards 

Energy-aware/communication avoiding algorithms 

§ System management 
§ Algorithms 
§ Libraries 
§ Compilers and frameworks 
§ Applications 

2012-13 
Local OS-managed, Node-Level, Energy Efficiency Adaptation 

System-level standard interfaces for data collection and dissemination of control 
requests 



 
 
 

   
 
 

52 

2014-15 

Compatible Energy-Aware Libraries Using Standardized Interfaces 

Ability to annotate libraries for parameterized model of energy to articulate a policy to 
manage trade-offs (different architectures)  

Standardized approach to expressing lightweight performance models for predictive 
control (analytic models and empirical models) 

Scalable algorithms for adaptive control 

2016-17 
Automated Code Instrumentation (Compilers, Code Generators, Frameworks) 

Standardized models of hardware power impact and algorithm performance to make 
logistical decisions (when/where to move computation + response to adaptations) 

2018-19 
Automated System-Level Adaptation for Energy Efficiency 

Scale up systems to 1 billion-way parallel adaptive control decision capability 

4.4.3 Performance Optimization 

4.4.3.1 Technology and Science Drivers for Performance Optimization 

Exascale systems will consist of increasingly complex architectures with massive numbers of potentially 
heterogeneous components and deeper memory hierarchies. Meanwhile, hierarchies of large, multifaceted 
software components will be required to build next-generation applications. Taken together, this 
architectural and application complexity is compounded by the fact that future systems will be more 
dynamic in order to respond to external constraints such as power and failures. As reduced time-to-
solution is still the major reason to use supercomputers, powerful integrated performance modeling, 
prediction, measurement, analysis, and optimization capabilities will be required to efficiently operate an 
exascale system. 

4.4.3.2 Alternative R&D Strategies for Performance Optimization 

In the exascale regime the challenges of performance instrumentation, analysis, modeling, and 
engineering will be commensurate with the complexity of the architectures and applications. An 
instrumented application is nothing but an application with modified demands on the system executing it. 
This makes current approaches for performance analysis still feasible in the future as long as all involved 
software components are concurrent and scalable. In addition to increased scalability of current tools and 
the use of inherently more scalable methods such as statistical profiling, techniques such as automatic or 
automated analysis, advanced filtering, on-line monitoring, clustering, and analysis as well as data mining 
will be of increased importance. A combination of various techniques will have to be applied. 

Another alternative is a more performance-aware and model-based design and implementation of 
hardware and software components from the beginning, instead of trying to increase the performance of a 
functionally correct but poorly performing application after the fact.  

In addition to user-controlled analysis and tuning, especially on higher-level (internode) components of 
the X-stack, self-monitoring, self-tuning frameworks, middleware, and runtime schedulers—especially at 
node levels—are necessary. Autotuning facilities will be of great importance here. 

Worse, all of these approaches might not work for machine architectures that are radical departures from 
today’s machines. This situation likely will need fundamentally different approaches to performance 
optimization.  
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In the performance modeling area, new methodologies will be needed that go beyond a static description 
of the performance of applications running on the system, to capture the dynamic performance behavior 
under power and reliability constraints. Performance modeling will also be a main tool for the co-design 
of architectures and applications. 

4.4.3.3 Recommended Research Agenda for Performance Optimization 

The following considerations are key for a successful approach to performance at exascale: 

§ Continued development of scalable performance measurement, collection, analysis (online 
reduction and filtering, clustering), and visualization (hierarchical) facilities. Here, performance 
analysis needs to incorporate techniques from the areas of feature detection, signal processing, 
and data mining. 

§ Support for modeling, measurement, and analysis of heterogeneous hardware systems. 

§ Support for modeling, measurement and analysis of hybrid programming models (mixing MPI, 
PGAS, OpenMP, and other threading models, accelerator interfaces). 

§ Automated/automatic diagnosis and autotuning. 

§ Reliable and accurate performance analysis in the presence of noise, system adaptation, and 
faults. This work will require inclusion of appropriate statistical descriptions. 

§ Performance optimization for metrics other than time (e.g., power). 

§ Performance observability and control by hardware and software components through appropriate 
interfaces and mechanisms (e.g., counters). The aim is to provide sufficient performance details 
for analysis if a performance problem unexpectedly escalates to higher levels. Vertical integration 
across software layers (OS, compilers, runtime systems, middleware, and application) will be 
needed for this task. 

§ Design of programming models with performance analysis in mind. Software and runtime 
systems must expose their model of execution and adaptation as well as their corresponding 
performance through a (standardized) control mechanism in the runtime system.  

 
Timeframe Targets and Milestones – Performance Optimization 

2012-13 

• Support for hybrid programming models (mixing MPI, PGAS, OpenMP, and 
other threading models, accelerator interfaces) 

• Support for modeling, measurement, and analysis, and autotuning on/for 
heterogeneous hardware platforms 

2014-15 
• Handling of observation of million-way concurrency 
• Predictive exascale system design  

2016-17 
• Handling of observation of hundreds of million-way concurrency 
• Characterize performance of exascale hardware and software for application 

enablement 
2018-19 • Handling of observation of billion-way concurrency  

4.4.3.4 Cross-Cutting Considerations 

In order to ensure performance analysis and optimization at exascale, the various components and layers 
of the X-stack must be transparent with respect to performance. This performance in transparency will 
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result in escalation of unforeseen problems to higher layers, including the application. It is not a new 
problem, but certain properties of an exascale system significantly increase its severity and significance. 

§ At this scale, there always will be failing components in the system with a large impact on 
performance. A real-world application will never run on the exact same configuration twice. 

§ Load-balancing issues limit the success even on moderately concurrent systems, and the 
challenge of locality will become another severe issue that has to be addressed by appropriate 
mechanisms and tools.  

§ Dynamic power management (e.g., at the hardware level inside a CPU) will result in performance 
variability between cores and across different runs. The alternative of running at lower speed 
without dynamic power adjustments may not be an option in the future.  

§ The unknown expectation of the application performance at exascale will make it difficult to 
detect a performance problem if it is escalated undetected to the application level. 

§ The ever-growing higher integration of components into a single chip and the use of more and 
more hardware accelerators make it more difficult to monitor application performance and move 
performance data out of the system unless special hardware support will be integrated into future 
systems. 

§ Performance comes from all layers of the X-stack, so an increased integration with the different 
layers, especially the operating systems, compilers, and runtime systems will be essential. 

An integrated and collaborative approach clearly is needed to handle performance issues and correctly 
detect and analyze performance problems.  

4.4.4 Programmability 
Programmability is the cross-cutting property that reflects the ease by which application programs may be 
constructed. Although quantitative metrics are uncertain (e.g., SLOC) in their effectiveness, a qualitative 
level of effort in programmer time may reflect relative degree, noting that there is no “bell jar” 
programmer by which to make absolute comparisons. Programmability itself involves three stages of 
application development: (1) program algorithm capture and representation, (2) program correctness 
debugging, and (3) program performance optimization. All levels of the system, including the 
programming environment, the system software, and the system hardware architecture, affect 
programmability. The challenges to achieving programmability are myriad, related both to the 
representation of the user application algorithm and to underlying resource usage.  

§ Parallelism – sufficient parallelism must be exposed to maintain exascale operation and hide 
latencies. It is anticipated that 10 billion-way operation concurrency will be required. 

§ Distributed Resource Allocation and Locality Management – to make such systems 
programmable, the tension must be balanced between spreading the work among enough 
execution resources for parallel execution and colocating tasks and data to minimize latency. 

§ Latency Hiding – intrinsic methods for overlapping communication with computation must be 
incorporated to avoid blocking of tasks and low utilization of computing resources. 

§ Hardware Idiosyncrasies – properties peculiar to specific computing resources such as memory 
hierarchies, instruction sets, and accelerators must be managed in a way that circumvents their 
negative impact while exploiting their potential opportunities without demanding explicit user 
control. 

§ Portability – application programs must be portable across machine types, machine scales, and 
machine generations. Performance sensitivity to small code perturbations should be minimized. 
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§ Synchronization Bottlenecks – barriers and other overconstraining control methods must be 
replaced by lightweight synchronization overlapping phases of computation. 

4.4.4.1 Technology and Science Drivers for Programmability 

As a cross-cutting property of exascale systems, programmability is directly affected by all layers of the 
system stack. The programming model and language provide the application programming interface to the 
user, determine the semantics of parallel computing, and deliver the degree of control and abstraction of 
the underlying parallel execution system. The compiler assists in extracting program parallelism, 
establishing granularity of computing tasks, and contributing to task scheduling and allocation. The 
runtime system is critical to exploiting runtime information and determines the level of dynamic adaptive 
optimization that can be exploited. The operating system supports the runtime system by providing 
hardware resources on demand and providing robust operation. And, while not part of the software 
system, the architecture directly affects programmability by fixing the overhead costs, latency times, 
power requirements, memory hierarchy structures, heterogeneous cores, and other machine elements that 
determine many of the challenges to programming and execution. 

4.4.4.2 Alternative R&D Strategies for Programmability 

The two general strategies for programmability are evolutionary, based on incremental extensions to 
conventional programming models, and revolutionary, based on a new model of computation that directly 
addresses the challenges to achieving exascale computing. The evolutionary strategy is expected to be 
pursued as part of community efforts to extend common practices as far into the trans-petaflops 
performance regime as possible. The MPI-3 Forum, the HPCS program, and the roadmaps for Cray and 
IBM indicate possible trajectories of such incremental approaches. Hybrid programming models derived 
from the integration of MPI and OCL or UPC have been suggested to achieve higher levels of scalability 
through hierarchical parallelism while retaining compatibility with existing legacy codes, libraries, 
software environments, and skill sets. However, it is uncertain as to how far the evolutionary approach 
can be extended to meet the escalating challenges of scalability, reliability, and power. The evolutionary 
strategy also assumes incremental extensions to current operating systems, primarily Unix derivatives 
(e.g., Linux), that can improve efficiency of synchronization and scheduling while retaining the basic 
process, Pthreads, and file model. 

The revolutionary path follows historical patterns of devising new paradigms to address the opportunities 
and challenges of emergent enabling technologies and the architectures devised to exploit them. 
Revolutionary programming models and contributions at other system layers can be created to minimize 
the programming burden of the programmer by employing methods that eschew the constraints of earlier 
techniques while reinforcing the potential of future system classes. 

4.4.4.3 Recommended Research Agenda for Programmability 

Unlike programming models and languages, programmability spans all components of the system stack, 
both system software and hardware architecture, that in any way influence the usability of the system to 
craft real-world applications and have them perform correctly and with optimal performance through 
minimum programmer time and effort. Thus, while research in programmability must include factors of 
programming models, languages, and tools, it will also consider compilers, runtime systems, operating 
systems, and hardware architecture structures and semantics. 

New Model of Computation: In synthesizing the effects of potentially all system layers on 
programmability, a single unifying conceptual framework is required to provide the governing principles 
establishing the functionality and interoperability of the system components to operate in synergy and 
realize critical performance properties. CSP, the common scalable execution model for STEM application 
targeted systems, is already unduly stressed in support of present multicore/many-core heterogeneous 
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systems and cannot, in its current form, be expected to achieve the required functionality for scalability, 
efficiency, and dynamic scheduling. Therefore, research must be conducted to devise a new, overarching 
execution model either as a dramatic extension of current practices or an entirely new (likely based in part 
on experimental prior art) model of computation explicitly derived to address the unique challenges of 
exascale computing.  

New Programming Models and Methods: Research into new programming models and ultimately 
APIs, tools, and methods will be required in order to provide the user interface to construct new 
application (and system software) programs and to determine which responsibilities of control of exascale 
systems will devolve directly to the user and which will be assigned to lower levels of the system, thus 
relieving the user of these burdens (but possible inhibiting needed control as well). An important property 
of any new programming model is a clear separation of logical functionality from performance attributes; 
such a separation distinguishes those aspects of code specification that convey across multiple platforms 
unchanged (portability) from those that must be adjusted on a per platform basis for performance 
optimization (tuning). Preferably, all machine-specific program optimizations will be accomplished by 
lower system layers. New programming models will have to greatly expand the diversity of parallelism 
forms and sizes over conventional control semantics to dramatically increase by many orders of 
magnitude exploitable concurrency. Additionally, whether entirely new or an extended derivative, the 
next-generation exascale programming models will have to  interoperate with legacy codes, both 
application (e.g., numerical libraries) and systems software (e.g., parallel file systems), for ease of 
transition of community mission critical workloads to the new classes of exascale systems architecture. 
Future models need to include semantic constructs in support of the broad range of dynamic graph-based 
algorithms whose access, search, and manipulation can be very different from more prosaic vectors and 
matrices for which current systems have been optimized. Emergent programming methods will require 
new tools and environments to make the best use of them from a programmer perspective. 

New Runtime Systems: Research into advanced runtime systems will be an important means of 
dramatically improving programmability supporting dynamic software behavior, such as load balancing, 
thread scheduling, processing and memory resource allocation, power management, and recovery from 
failures. Only runtime systems (and operating systems to some degree) can take advantage of on-the-fly 
system status and intermediate application software state that cannot be predicted at compile time alone. 
This situation will be particularly true for systems of up to a billion cores and constantly changing system 
configurations. In particular, new runtime software will move most programming practices from a static 
methodology to dynamic adaptive techniques exploiting runtime information for improved performance 
optimization. Examples include the lightweight thread scheduling, context switching, and suspension 
management, as well as interthread synchronization, management of deep memory hierarchies, and 
namespace management. For dynamic graph-based problems, data-directed execution using the graph 
structure to efficiently define the parallel program execution will require runtime support.  

New Compiler Support: While much of the responsibility of future compilers will reflect prior 
techniques for back-end support, many new responsibilities will accrue as well to drive the exascale 
systems of the future. Advanced compiler techniques and software will be required for automatic runtime 
tuning to match hardware architecture specific properties (e.g., cache sizes), for heterogeneous 
architectures, to interface with and support advanced runtime systems, to detect alternative forms of 
parallelism, for employing advanced synchronization semantics and primitives, to take advantage of more 
sophisticated messaging methods (e.g., message-driven mechanisms), and to involve new forms of active 
global address space and its management.  

X-Gen Architectures: Although the actual development of exascale architectures is beyond the scope of 
the IESP program agenda, research in critical system software and programming methods will be 
sensitive to and have to respond to the emergence of new architectures. Of particular concern are methods 
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to reduce the temporal and power overheads of parallel control mechanisms, optimize the exploitation of 
heterogeneous core architectures, support fail-safe reconfigurable system structure techniques for fault 
tolerance, engage in active power management, and support self-aware resource management. 

New Operating System: While the execution model is the machine, as seen from the semantic 
perspective, the operating system is the machine from the usage viewpoint. The OS owns the system, 
manages its resources, and makes them available to the program layer as well as provides many services 
to that layer. A new operating system will be essential for the X-gen architectures and their supporting 
programming environments, including APIs, compilers, and greatly expanded runtime software. One of 
the most important attributes of a new OS is its order-constant scaling property such that it can operate at 
speed, independent of the scale of number of processor cores or memory banks. A second critical property 
is the management of an advanced class of global address space that can support multiple applications 
sharing all resources in the presence of the need for dynamic allocation and data migration, even as it 
provides interjob protection. The new OS must support the greatly expanded role of the runtime system, 
even as it takes on the added complexity of dealing with heterogeneous cores and deeper memory 
hierarchies. The old view of conventional processes and parallel OS threads will have to be revised, 
supporting much more lightweight mechanisms offered by the underlying architectures while yielding 
many responsibilities to the runtime software driven by application requirements and new programming 
models. The operating system will have to provide much more information about system operational state 
so that self-aware resource management techniques can be more effectively developed and applied for 
fail-safe, power-efficient scalable operation. 

4.4.4.4 Cross-Cutting Considerations 

Programmability is a cross-cutting factor affected by all layers of the system stack including software and 
hardware. It also is interrelated with other cross-cutting factors such as performance and potentially 
resilience. Whether there exists a relationship between programmability and power management is 
uncertain. However, when writing system software, one clearly needs to develop power management 
software for the operating system and possibly the runtime system.  

Programmability and performance are tightly coupled. For high-performance computing, a major factor 
affecting programmability has been performance optimization. This relates to the exposure of application 
parallelism, locality management and load balancing, and memory hierarchy management. These 
components are expected to be even more important for exascale systems. The complexity at that extreme 
scale will require that the responsibility for all but parallelism (and even not all of that) be removed from 
the programmer and handled by a combination of compiler and runtime in cooperation with the operating 
system and system architecture. 

With respect to reliability, it may be valuable for the programmer to have the option of dictating the 
required recourse in the presence of faults, such as recovery or prioritized actions (in the case of urgent/ 
real-time computing). However, default options should be prevalent and used most of the time, in order to 
minimize programmer intervention and therefore improve programmability. 

4.5 Summary of X-Stack Priorities 
Below we present a prioritized list of research and development items for each software component area 
in the X-stack. To assure that software efforts receive appropriate attention, we use two attributes for each 
effort: 

§ Uniqueness to exascale: Some efforts are concerned with exascale systems and have little 
relevance for less capable systems. Other efforts are relevant to exascale but will likely impact 
lesser systems (i.e., petascale and upper-end terascale); we refer to this as “spanning.” And some 
efforts are important to all future scales of computing. 
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§ Criticality for exascale:  During early classification discussions, we determined that uniqueness to 
exascale was insufficient for prioritizing activities. In particular, although there are efforts that are 
not unique to exascale, some of these are essential for successful exascale computing. We classify 
an items criticality as either critical, unknown/indeterminate, or non-critical. 

The following are examples: 
 

§ Application-managed resilience - uniquely exascale and critical: Resilience is an issue for 
many efforts. Historically, resilience has not required applications to do anything but 
checkpoint/restart. At present, there is general agreement that the entire software stack, including 
user and library code, will need to explicitly address resilience beyond the classic 
checkpoint/restart approach.  

§ Many-core mathematical libraries –not uniquely exascale but critical: Many-core 
configuration is an essential element of all exascale plans, but libraries for many-core 
configurations are also critical for all levels of computing. Although exascale requirements may 
exceed those of scales, we should recognize and leverage other funding sources for this kind of 
work, clearly identifying and funding the uniquely exascale aspects of this work. 

The table below lists each of the X-stack components along with their needed capabilities. Each 
component capability is followed, to the right, by its uniqueness and criticality at exascale level. The 
following scale is used: 

Uniqueness  Criticality 
Unique = 3  Critical = C 
Spanning = 2  Unknown = U 
Nonunique = 1  Noncritical= N 
 
 

X-‐Stack	  Components	   Needed	  Capabilities	  
Exascale	  
Uniqueness	  

Exascale	  
Criticality	  

Frameworks	  

Resilience	  API	  and	  utilities	   3	   C	  
Multi-‐institutional/multiproject	  collaboration	  plan	   2	   U	  
Tool	  chain	  development/selection	   2	   U	  
Programming	  model	  evaluation/adoption	  	   2	   C	  
Data	  placement	   2	   C	  
Multicomponent	  simulation	  utilities	   2	   U	  
Access	  to	  third-‐party	  libraries	   1	   C	  

Numerical	  Libraries	  

Fault-‐oblivious,	  error-‐tolerant	  software	   3	   C	  
Asynchronous	  methods	   2	   C	  
Overlap	  data	  and	  computation	   3	   U	  
Self-‐adapting	  hybrid	  and	  hierarchical	  based	  
algorithms	  	   1	   C	  
Hybrid	  and	  hierarchical-‐based	  algorithms	  (e.g.,	  
linear	  algebra	  split	  across	  multicore	  and	  GPU)	   1	   U	  
Algorithms	  that	  minimize	  communications	   3	   C	  
Architecture-‐aware	  algorithms/libraries	   3	   C	  
Autotuning-‐based	  software	   1	   U	  
Standardization	  activities	  	   1	   U	  
Energy-‐efficient	  algorithms	   2	   U	  
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Mixed	  arithmetic	   1	   U	  

Algorithms	  

Scalability	   2	   N	  
Fault	  tolerance/resilience	   1	   N	  
Conforming	  to	  architectural	  requirements	   3	   N	  
New	  areas/uses	  of	  algorithms	   1	   U	  

Debugging	  

Concurrency	  and	  architecture	  driven	  high	  
frequency	  of	  errors/failures	   3	   C	  
Scalability	  of	  debugger	  methodologies	  (data	  
volumes	  and	  interfaces)	   3	   C	  
Focus	  on	  multilevel	  debugging,	  communicating	  
details	  of	  faults	  between	  software	  layers	   3	   U	  
Synthesis	  of	  fault	  information	  into	  understanding	  
in	  the	  context	  of	  apps	  and	  architecture	   3	   C	  
Specialized	  lightweight	  operating	  systems	   2	   N	  
Automatic	  triggers,	  need	  compile	  time	  bridge	  to	  
debugging	  that	  removes	  need	  to	  rerun	   2	   N	  
Scalable	  clustering	  of	  apps	  process	  states	  and	  
contexts,	  filter/search	  within	  debugger	   2	   N	  
Vertical	  integration	  of	  debug	  and	  per	  information	  
across	  software	  layers	   2	   N	  
Excision	  of	  buggy	  code	  snippets	  to	  run	  at	  lower	  
concurrencies	   1	   N	  
Heterogeneity	   1	   N	  

I/O	  

Customization	  with	  I/O,	  purpose-‐driven	  I/O	   3	   C	  
New	  I/O	  models,	  SW,	  runtime	  systems	  and	  libs	   3	   C	  
Intelligent/proactive	  caching	  mechanisms	  for	  I/O	   3	   N	  
Fault-‐tolerant	  mechanisms	   3	   C	  
I/O	  into	  programming	  models	  and	  languages	   3	   N	  
Balanced	  architectures	  with	  newer	  devices	   2	   N	  
File	  systems	  or	  alternative	  mechanisms	   2	   N	  
Active	  storage	   2	   N	  
Wide-‐area	  I/O	  and	  integration	  of	  external	  storage	  
systems	   2	   N	  
Special-‐purpose	  network	  protocols	  for	  parallelism	   2	   N	  
Balanced	  architectures	  with	  newer	  devices	  
embedded	  with	  the	  node	   1	   N	  

Scientific	  data	  
management	  

Scalable	  data	  analysis	  and	  mining	  SW	  and	  tools	   3	   C	  
Scalable	  data	  format	  and	  high-‐level	  libraries	   3	   C	  
Scientific	  workflows	  tools	   2	   C	  
Search	  and	  query	  tools	   2	   N	  
Wide-‐area	  data	  access	  movement	  and	  query	  tools	   2	   N	  
Scientific	  databases	   2	   N	  

Programming	  models	  
Exascale	  programming	  model	   3	   C	  
Scalable,	  fault-‐tolerant	  MPI	   3	   C	  
Applications	  development	  tools	   3	   N	  
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Heterogeneous	  node	  programming	  model	   2	   C	  
Domain-‐specific	  programming	  models	   2	   N	  
Language	  features	  for	  massively	  parallel	  I/O	   2	   U	  
Language	  support	  for	  adaptive	  computation	   2	   N	  
Interoperability	  between	  models	   1	   2N	  

Compilers	  

Implement	  exascale	  languages	   3	   C	  
Support	  for	  resilience	   3	   C	  
Implement	  heterogeneous	  programming	  models	   2	   C	  
Support	  for	  massive	  I/O	   2	   C	  
New	  optimization	  frameworks	   2	   N	  
Interactions	  between	  compilers	  and	  tools,	  runtime	   2	   C	  
Dynamic	  compilation,	  feedback	  optimization	  	   2	   N	  
Autotuning-‐based	  software	   2	   N	  
Enhancements	  to	  existing	  languages/APIs	   1	   N	  
Automatic	  parallelization	   1	   N	  

Operating	  Systems	  

Define	  the	  base	  OS	  (Standard	  API)	   3	   C	  
APIs	  for	  resilience	  (access	  to	  RAS,	  etc)	   3	   C	  
Collective	  OS	  operations	   3	   N	  
Scalable	  system	  simulation	  environment	   2	   C	  
Improved	  APIs	  for	  scalable	  performance	  
monitoring	  and	  debugging	   2	   C	  
New	  APIs	  for	  energy	  management	   2	   U	  
Improved	  APIs	  for	  explicit	  memory	  management	   1	   C	  
Improved	  APIs	  for	  threading	   1	   U	  

Performance	  

Extremely	  scalable	  performance	  methods	  and	  
tools	   3	   C	  
Performance	  measurement	  and	  modeling	  in	  
presence	  of	  noise/faults	   3	   C	  
Automated/automatic	  diagnosis	  and	  autotuning	   2	   N	  
Predictive	  future	  large-‐scale	  system	  design	   2	   C	  
Vertical	  integration	  across	  SW	  layers	   2	   N	  
Performance-‐aware	  design	  and	  implementation	   2	   U	  
Performance	  optimization	  for	  other	  metrics	  than	  
time	   2	   U	  
Support	  for	  heterogeneous	  hardware	  and	  hybrid	  
programming	  models	   1	   C	  

Power	  

Power	  performance	  monitoring	  and	  aggregation	  
that	  scales	  to	  1	  billion	  core	  system	   3	   C	  
Power	  control	  system	   3	   C	  
Scalable	  control	  algorithms	  to	  bridge	  gap	  between	  
global	  and	  local	  power	  models	   2	   C	  
Power-‐aware	  and	  scalable	  resource	  control	  and	  
scheduling	   2	   C	  
Optimally	  tuned	  system	  power	  based	  on	  control	  
loop	   1	   N	  
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Power	  instrumentation	  and	  control	  
standardization	   1	   N	  

Programmability	  

New	  models	  of	  computation	   3	   C	  
New	  runtime/OS	  interface	  for	  environment	  aware	  
programming	   2	   C	  
Programmability	  to	  decouple	  exascale	  system	  
issues	  from	  applications	  programming	   1	   C	  

Resilience	  

Performance	  measurement	  and	  modeling	  in	  
presence	  faults	  	   3	   C	  
Better	  fault	  tolerance	  protocols	   2	   C	  
Fault	  isolation/confinement	   2	   C	  
NV-‐RAM	  for	  local	  state,	  cache	  of	  file	  system	   2	   C	  
Replication	  (TMR,	  backup	  core)	   2	   U	  
Proactive	  actions	  (migration)	   2	   U	  
Domain-‐specific	  API	  and	  utilities	  for	  frameworks	   2	   C	  
Applications-‐guided	  fault	  management	   2	   C	  
Language/compiler/runtime	  support	  for	  resilience	  
(fault-‐aware	  programming,	  API	  from	  OS,	  RAS)	   2	   C	  
Fault-‐tolerant	  MPI	   2	   C	  
Fault-‐oblivious,	  error-‐tolerant	  numerical	  libraries	   2	   C	  
Resilient	  applications	  and	  algorithms	   1	   N	  
Fault-‐oblivious	  system	  software	   2	   C	  
Fault-‐aware	  system	  software	  and	  API	  for	  resilience	   2	   C	  
Prediction	  for	  time	  optimal	  checkpoint/migration	   2	   U	  
Fault	  models,	  event	  log	  standardization	  root	  cause	  
analysis	   2	   C	  
Resilient	  I/O,	  storage,	  and	  file	  systems	   2	   C	  
Situational	  awareness	   2	   C	  
Experimental	  environment	   2	   C	  
Fault	  isolation/confinement	  +	  local	  management	   2	   C	  

Runtime	  Systems	  

Load	  balance	   3	   C	  
Asynchrony,	  overlap	   2	   C	  
Hierarchical	  execution	  models	  and	  scheduling	   3	   N	  
Scaling/optimization	  of	  communications	   3	   C	  
Memory	  management	  and	  locality	  scheduling	   2	   C	  
Heterogeneity:	  scheduling	   2	   U	  
Fine-‐grained	  mechanisms	  at	  node	  level	   1	   U	  

5. Application Perspectives and Co-Design Vehicles 
Standing at the beginning of the road to exascale, application communities that are highly motivated to 
take that road are well aware of the challenges confronting them. Many of the applications for which 
exascale systems will be built exist today in high-performance implementations. But all of them will have 
to be rewritten substantially, in terms of data structures, algorithms, and possibly even mathematical 
formulations; any new applications under development should be formulated from the start with exascale 
in mind. As applications custodians and exascale customers, we respond by considering how particular 
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applications—so-called co-design vehicles, or CDVs, after the principal new programming paradigm in 
the exascale regime—will migrate to the exascale. Here, we summarize several factors that we believe are 
key to exascale success for application communities. We then present the concept of CDVs; describe 
some of their issues, limitations, and requirements; and give the first examples of what we hope will be a 
diverse portfolio of CDVs that can help drive the X-stack development process and start producing 
exascale science at the earliest possible date. 

5.1 From Here to Exascale: An Application Community View 
The application leaders who have been informing the development of the IESP roadmap over the past 
year recognize a certain disconnect between the planning effort the IESP has initiated and the current state 
of major science applications. Specifically, although the shared goal is to enable exascale science on 
exascale systems by the end of the decade, the reality is that today only a scant few applications can 
successfully exploit the power of current and emerging petascale systems. The difficulties involved in 
finding the support and recruiting the interdisciplinary teams needed to create such leading-edge 
applications is, no doubt, part of the explanation for this disconnect. But these same difficulties, perhaps 
in even higher degree, will confront the communities aiming toward exascale.  

At the same time, participating application representatives have expressed a clear desire for exascale 
computational power in order to make fundamental progress in their respective areas. The sources of this 
desire are largely intrinsic to the process of scientific exploration: scientists want to resolve their models 
at their full, natural range of length or time, to accommodate physical effects with greater fidelity, to 
create models with degrees of freedom in all relevant dimensions, to better isolate artificial boundary 
conditions or better approach realistic levels of dilution, to combine multiple complex models, to solve 
inverse problems, or perform data assimilation, to perform optimization or control and to quantify 
uncertainty and make statistical estimates with orders of magnitude more accuracy.  

The computational obstacles to achieving these goals are easy to quantify for some applications, such as 
QCD, cosmology, and seismic inversion, which are already scaling extremely well and experiencing 
processing bottlenecks. The situation is harder to quantify but equally important for less uniform 
applications (e.g., reservoir monitoring) with complex geometry, adaptivity, and multiple phases with 
different physics. Such differences between application groups make it clear that the former group will 
not be able to adequately proxy for the latter in terms of defining X-stack requirements.  

But some common obstacles, which are bound to become more prominent on the road to exascale, are 
already appearing in the experience of many groups. At the level of hardware architecture, for example, 
the most commonly envisioned path to exascale is thousandfold many-core at 1 GHz each, within a 
tightly coupled network of about 1 million such nodes. However, memory bandwidth is already limiting 
today’s low core count nodes to less than 10% of peak on most applications, whose kernels offer little 
cache reuse (e.g., stencil operations or sparse matvecs). Processors are cheap, small in chip area 
(compared to memory), and relatively low in power, so there is no harm in having them in excess most of 
the time; but the opportunities for exploiting the main new source for performance are undemonstrated for 
most applications. At the much higher and more abstract level of interdisciplinary research, while there 
are opportunities for combining today’s individually high-capability simulations into more complex 
simulations, there is no silver bullet for merging the data structures of the separate applications. 
Moreover, given the current state of software infrastructure, the data copying inherent in the code 
coupling will likely prevent exploitation of the apparent concurrency opportunities 

Surveying such experiences in the light of projections by the IESP community about the probable path to 
exascale, we have identified the following items as keys to success for many application communities: 

§ Programming model: Prior to possessing exascale hardware, applications groups can prepare 
themselves by exploring new programming models on many-core and heterogeneous nodes. 
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Attention to locality and reuse is valuable at all scales and will produce performance paybacks 
today and in the future. New algorithms and data structures can be explored under the assumption 
that FLOPs are cheap and moving data is expensive. Considering mixed-precision algorithms and 
using lower precision wherever possible can also reduce bandwidth pressure. 

§ Data I/O: Many communities are already struggling to cope with a growing deluge of data, and 
this data flood presents both tremendous opportunities and challenges. In simple terms, an 
exascale machine, once the data is loaded up, is a 32-petabyte fast store, with lots of processors to 
graze over it. We expect that there will be many new and exciting applications to take advantage 
of such storage, for example, data mining in climate modeling and astrophysics. Such 
applications can begin to be explored today in miniature on petascale computers with 300 
terabytes. But it is widely agreed that the I/O—reading data in and writing data out for analysis, 
checkpointing, visualization, etc.—is already a bottleneck for some applications and is likely to 
become one for many fields as data quantities escalate.  

§ Fault tolerance:  Applications people reluctantly recognize that fault tolerance is a shared 
responsibility. It is too wasteful of I/O and processing cycles to handle faults purely automatically 
through checkpoint/restart. Different types of faults may be handled different ways, depending on 
the consequences evaluated by scientific impact. For example, application developers and users 
can orchestrate strategic, minimal working set checkpoints. 

§ Reproducibility: Applications people realize that bit-level reproducibility is unnecessarily 
expensive most of the time. Although scientific outcomes must be runtime independent and 
machine independent, we have no illusions about bit-level reproducibility for individual pairs of 
executions with the same inputs. Since operands may be accessed in different orders, even 
floating-point addition is not commutative in parallel and on homogeneous hardware platforms. A 
new feature in the context of co-design, with an emphasis on low power (low-voltage switching), 
is that lack of reproducibility may emerge for many other (hardware-based) reasons. If 
applications developers are tolerant of irreproducibility for their own reasons (e.g., for validation 
and verification through ensembles), then this has implications for considering less expensive, 
less reliable hardware. 

5.2 IESP Application Co-Design Vehicles 
Co-design vehicles are applications that provide targets for, and feedback to, the software research, 
design, and development efforts in the IESP. These are required because there are several possible paths 
to exascale, with many associated design choices along the way. The earliest realizations will include 
some of today’s terascale or petascale applications that have a clear need for exascale performance and 
are sufficiently well understood that the steps required to achieve it can be mapped out. CDVs are 
accordingly a key part of the exascale design and development process. However, the specific domain 
applications themselves are not necessarily the scientific or societal drivers for developing exascale 
capabilities.  

A CDV must satisfy the following criteria: 

1. It is a petascale or near-petascale application today with a demonstrated need for exascale 
performance. 

2. In progressing to exascale, it should achieve significant scientific goals in an area that is expected 
to be a scientific or societal driver for exascale computing, such as basic physics, environment, 
engineering, life sciences, or materials. Ideally, the results of the application should be amenable 
to experimental validation. This criterion is designed to help ensure that the effort elicits the 
necessary support from at least one agency. 
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3. It should offer realistic and a definable set of steps to exascale that can be mapped out over 10 
years or less. 

4. The community developing and supporting the CDV application should be experienced in 
algorithm, software, and/or hardware developments and be willing to engage in the exascale co-
design process. In other words, there must be at least one organized research group, considered to 
be among the leaders in the field, that is interested in and willing to work with the IESP. 

5. The CDV should be modular and open enough to stimulate the development of additional 
modules addressing related questions in the area. 

6. Since the X-stack will need to be stressed along a number of different dimensions, the CDV 
should fill a slot in the portfolio of extreme-scale application needed to test all these dimensions. 

The IESP will identify a manageable portfolio of CDVs (e.g., 4 or 5) that span the full range of 
anticipated software challenges. A short list of the most important science drivers in a specific 
application’s domain will be articulated, and then a description provided of what the barriers and gaps 
might be in these priority research directions (PRDs). The primary task for each candidate CDV is to 
demonstrate the need for exascale and what will be done to address the PRDs. A major component of this 
activity is to identify what new software capabilities will be targeted and to what purpose. Further, it is 
necessary to describe how the associated software R&D can be expected to help the targeted application 
benefit from exascale systems, in terms of accelerating progress on the PRDs. With regard to developing 
an appropriate roadmap for this activity, it will be important to identify the timescale on which 
involvement in the path to exascale R&D can produce significant exascale-enabled impact.  The choice of 
CDVs will be informed by the matrix of HPC applications versus software components (Section 5.3). 

Different categories of CDVs include (1) societally relevant simulations (e.g., climate, patient-specific 
medicine); (2) more likely readily scaled simulations (e.g., QCD, cosmology); (3) data-processing 
problems (e.g., Square Kilometer Array in Australia, which generates 1 EB/s of data and needs FFTs per 
image while data is streaming); and (4) surprise outsiders, not currently practical at the terascale or 
petascale.  

5.3 Initial Considerations for CDV Analysis 
The application participants in the IESP have begun to develop an analysis of the issues, limitations, and 
needs to be addressed to make good use of CDVs in the X-stack research and development process.  

 
Issues for Scaling Up CDVs: The big question in terms of CDV scalability concerns whether the 
software for co-design factors or whether all the inefficiency, over time, involves data copies at interfaces 
between the components. In selecting CDV applications to move toward exascale, in a staged co-design 
process, types that need to be examined include the following:  

 

• Weak-scaling applications, up to distributed-memory limits and/or proportional to the number 
of nodes  

• Strong-scaling applications, beyond distributed-memory limits and/or proportional to cores 
per node/memory unit 

• Applications whose workflow scales, proportional to the number of instances (ensembles) 
and/or in integrated end-to-end simulation 

Limitations to Be Explored by CDVs:  
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• Strong scaling algorithms may be limited in terms of sufficient coarse-grained parallelism 
and may encounter problems with load imbalance due to irregular task/data size; bulk 
synchronous algorithms on 1 million nodes are not currently tolerant to load imbalance worse 
than one part per million for a synchronous task. 

• For acceptable single-node performance, compiler-generated code for hybrid/multicore may 
be limited. Linear algebra kernels typically come with autotuning. But for nonstandard linear 
algebra kernels, we will need the autotuning tools, not just their output. 

Needs to Be Addressed by CDVs:   

• CDV developers need tools to generate domain-specific languages and to provide for 
powerful source-to-source transformations; to enhance composability in order to enable new 
science and expand developer and user communities (which implies decreasing complexity 
as we go to exascale); to write performance-portable code (retargetable) that can extend the 
effective lifetime of code over generations of hardware; and to implement domain-specific 
frameworks that both provide solutions of significant HPC problems and are interoperable, so 
as to facilitate collaboration in an increasingly multidisciplinary future.  

• Expanded or new programming models are needed that move more of the burden of 
managing the scheduling of computation and placement of data to runtime; expand 
intrinsically fault tolerant programming models to be relevant to a broader class of 
algorithms; and increase the interoperability of programming models (GAS, MPI, Cilk, 
HPCS, etc.) that we already have. 

• CDV developers must understand the design space trade-offs associated with options for 
power consumption and resilience, taking into account the nature of expected faults, 
including common signaled faults and especially silent faults. 

5.4 Representative CDVs 
To provide specific examples of CDVs that conform to the selection criteria, we focus here on the high 
energy physics/QCD and the plasma physics/fusion energy sciences areas. It should not be inferred that 
these are the highest priority applications in the path-to-exascale portfolio. The IESP is considering a 
range of applications as CDVs, including simulations with special relevance to vitally important problems 
(e.g., climate change, patient-specific medicine), and applications that involve extremely data-intensive 
analysis (e.g., the Square Kilometer Array in Australia). We expect to recruit more CDVs as IESP 
partners in 2010 in order to stress all critical aspects of the X-stack. 

5.4.1 High Energy Physics/QCD 

Simulations of QCD, the theory of the strong interaction between quarks and gluons that are the basic 
building blocks of hadrons, have played a pioneering role in the development of parallel and high-
performance computing since the early 1980s. Today, lattice QCD codes are among the fastest-
performing and most scalable applications on petascale systems. Through 30 years of efforts to control all 
sources of numerical uncertainty and systematic errors, the current state of the art is that fully realistic 
simulations are possible and starting to provide results for a range of quantities needed by the 
experimental program, relating to the masses and decays of hadrons, with uncertainties at the few-percent 
level. Expected discoveries at the LHC will drive the need to extend these simulations to other quantum 
field theories that might describe new physics underlying electroweak symmetry breaking. 

Lattice QCD already has a long track record of acting as a CDV. Specifically, it meets all of the above 
criteria for exascale co-design: 
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§ Lattice QCD codes sustain multi-teraflops performance today and appear capable of scaling 
linearly through the petascale range. They are compute-limited, specifically demanding a balance 
between compute and on-/off-node memory access speeds, so that scientific progress requires the 
highest possible sustained performance. In order to deliver realistic and sufficiently precise 
results for the range of quantities needed by today’s experiments, lattice sizes must at least 
double, increasing the computational cost by a factor of more than 1000. Even larger lattices will 
open up more hadronic quantities to first-principles computation and require performances well 
into the exascale range.  

§ As lattice QCD codes sustain multi-petaflops, the original goal of the field—to solve QCD at the 
few-percent level for many of the simplest properties of hadrons—will be achieved. Not only will 
this be a major milestone for theory, but it will also enable experiments to identify possible 
discrepancies with the Standard Model and, hence, clues to new physics. In approaching 
sustained exaflops, sufficiently large lattices will be employed to extend these computations to 
multi-hadron systems, permitting nuclear physics to be computed also from first principles. 
Depending on what is discovered at the LHC, petascale/exascale simulations may help explain 
electroweak symmetry breaking. 

§ The pathway to early exascale performance for QCD requires developing multilayered algorithms 
and implementations to exploit fully (heterogeneous) on-chip capabilities, fast memory, and 
massive parallelism. Optimized single-core and single-chip complex linear algebra routines, 
usually via automated assembler code generation, and the use of mixed-precision arithmetic for 
fast memory access and off-chip communications, will be required to maintain balanced 
compute/memory access speeds while delivering maximum performance. Tolerance to and 
recovery from system faults at all levels will be essential because of the long runtimes. In 
particular, use of accelerators and/or GPGPUs will demand algorithms that tolerate hardware 
without error detection or correction. The international nature of the science will demand further 
development of global data management tools and standards for shared data. 

§ The lattice QCD community has a successful track record in co-design, extending over 20 years 
and three continents: for example, the QCDSP and QCDOC projects in the United States, the 
series of APE machines in Europe, and CP-PACS in Japan. Notably, design features of QCDOC 
influenced IBM’s Blue Gene. In all cases, QCD physicists were involved in developing both the 
hardware and system software. Typically, these projects resulted in systems that achieved 
performances for QCD comparable to the best that could be achieved at the time from 
commercial systems. The community has also agreed on an international metadata standard, 
QCDML. 

As a CDV, lattice QCD has already been adopted by IBM for stress testing and verification of new 
hardware and system software. Other cross-cutting outputs from a QCD CDV are likely to include 
performance analysis tools, optimizing compilers for heterogeneous microprocessors, mechanisms for 
automatic recovery from hardware/system errors, parallel high-performance I/O, robust global file 
systems and data sharing tools, and new stochastic and linear solver algorithms.  

5.4.2 Plasma Physics/Fusion Energy Sciences  

Major progress in magnetic fusion research has led to ITER—a multi-billion-dollar burning plasma 
experiment supported by seven governments (EU, Japan, US, China, Korea, Russia, and India) 
representing over half of the world’s population. Currently under construction in Cadarache, France, it is 
designed to produce 500 million watts of heat from fusion reactions for over 400 seconds with gain 
exceeding 10, thereby demonstrating the scientific and technical feasibility of magnetic fusion energy. 
Strong research and development programs are needed to harvest the scientific information from ITER to 
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help design a future demonstration power plant with a gain of 25. Advanced computations at the petascale 
and beyond, in tandem with experiment and theory, are essential for acquiring the scientific understanding 
needed to develop whole device integrated predictive models with high physics fidelity. 

As a representative CDV, the fusion energy sciences (FES) area meets the criteria for exascale co-design:   

§ FES applications currently utilize the leadership computing facilities at ORNL and Argonne as 
well as advanced computing platforms at LBNL, demonstrating scalability of key physics with 
increased computing capability. Two  high-performance computing FES topics with significant 
scientific impact were identified at the major DOE Workshop on Grand Challenges in FES & 
Computing at the Extreme Scale (April 2009): high physics fidelity integration of multi-physics, 
multiscale FES dynamics and burning plasmas/ITER physics simulation capability.  

§ A productive FES pathway of over 10 years can be readily developed for exploitation of exascale. 
This includes carrying out experimentally validated confinement simulations (including 
turbulence-driven transport) and demonstrates the ability to include higher physics fidelity 
components with increased computational capability. This is needed for both of the areas 
identified as PRDs, with the following associated barriers and gaps:    

o While FES applications for macroscopic stability, turbulent transport, edge physics 
(where atomic processes are important), and others have demonstrated, at various levels 
of efficiency, the capability of using existing LCFs, a major challenge is to 
integrate/couple improved versions of large-scale HPC codes to produce an 
experimentally validated, integrated simulation capability for the scenario modeling of a  
whole burning plasma device such as ITER. 

o New simulations of unprecedented aggregate floating-point operations will be needed for 
addressing the larger spatial and longer energy-confinement time scales as FES enters the 
era of burning plasma experiments on the reactor scale. Demands include dealing with 
spatial scales spanning the small gyroradius of the ions to the radial dimension of the 
plasmas (i.e., an order of magnitude greater resolution is needed to account for the larger 
plasmas of interest such as ITER) and with temporal scales associated with the major 
increase in plasma energy confinement time (~1 second in the ITER device) together 
with the longer pulse of the discharges in these superconducting systems.  

§ With regard to potential impact on new software development, each science driver for FES and 
each exascale-appropriate application approach currently involves the application and further 
development of current codes with respect to mathematical formulations, data structures, current 
scalability of algorithms and solvers (e.g., Poisson solvers) with associated identification of 
bottlenecks to scaling, limitations of current libraries used, and “complexity” with respect to 
memory, flops, and communication. In addition key areas being targeted for significant 
improvement over current capabilities include workflows, frameworks, verification and 
validation methodologies including uncertainty quantification, and the management of large data 
sets from experiments and simulations. As part of the aforementioned ongoing FES 
collaborations with the LCFs, assessments are moving forward on expected software 
developmental tasks for the path to exascale with the increasingly difficult challenges associated 
with concurrency and memory access (data movement approaches) for new heterogeneous 
architectures involving accelerators. Overall, new methods and exascale-relevant tools can be 
expected to emerge from the FES application domain. With respect to potential impact on the 
user community (usability, capability, etc.), the two FES PRDs noted earlier will potentially be 
able to demonstrate how the application of exascale computing capability can enable the 
accelerated delivery of much needed modeling tools. The timescale in which such impact may be 
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felt can be briefly summarized as follows for the FES application: 10 to 20 petaflops (2012) for 
integrated plasma, core-edge coupled simulations and 1 exaflop (2018) for whole-system burning 
plasma simulations applicable to ITER. 

5.4.3 Strategic Development of IESP CDVs 
The technology drivers for CDV applications are, for the most part, connected to advanced architectures 
with greater capability but with formidable software development challenges. The need to address 
concurrency issues and to deal with complex memory access/data movement challenges for emerging 
heterogeneous architectures with accelerators is expected to drive new approaches for scalable algorithms 
and solvers. For risk mitigation, alternative R&D strategies need to be developed for choosing 
architectural platforms capable of effectively addressing the PRDs in the various domain applications 
while exploiting the advances on the path to the exascale. Beneficial approaches include the following:   

§ Developing effective collaborative alliances involving computer science and applied mathematics 
(e.g., following the SciDAC model) 

§ Addressing cross-cutting challenges shared by CDV applications areas through identification of 
possible common areas of software development, appropriate methodologies for verification and 
validation and uncertainty quantification,  and the common need for collaborative 
interdisciplinary training programs to deal with the critical task of attracting, training, and 
assimilating young talent.  

5.5 Matrix of Applications and Software Components Needs 
The matrix below was created to stimulate and inform thinking about CDVs. Clearly all science areas and 
engineering areas that contain potential CDVs need something in all the software areas, but for the 
purposes of this exercise we tried to sort out areas of emphasis for each application domain, i.e., where we 
expect the major challenges will be for that domain. For example, all areas need some I/O, but the ones 
checked were deemed to need considerable I/O, based on the problems that exist today. Likewise, the 
areas that have less software maturity (e.g., health and energy) have more Xs in the programming, 
languages, and debugging columns. 
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6. Perspectives on Cooperation between IESP and HPC 
Vendor Communities 

In order to meet the many challenges involved in programming exascale machines, the components of the 
X-stack that the IESP community aims to produce must entrain a whole software ecosystem. As the size 
of the ecosystem grows, vendors will be increasingly motivated to leverage and contribute to the 
community’s efforts to satisfy that ecosystem’s requirements. In order to achieve this goal, however, 
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several challenges must be overcome, including (1) finding a suitable structure to agree on common APIs; 
(2) producing a coordinated, interlocked effort between vendor partners, the IESP and scientific 
communities, and HPC facilities, with meaningful deliverables and time tables; (3) balancing the time 
needed for research and exploration to overcome the exascale hurdles with the need to produce timely, 
concrete implementations that can be integrated by the vendor partners and used by the IESP and 
scientific communities to run on the exascale systems; and (4) finding appropriate development, support, 
intellectual property, and funding models that allow vendor partners to incorporate software produced by 
the community, that can be supported by the community and funded by the interested government 
agencies. 

Recent discussions among vendors as part of the IESP process have produced a number of considerations 
that need to be taken into account. We first expand on the likely challenges that need to be overcome for 
vendor partners to utilize the research and development efforts of the IESP community. We then present a 
taxonomy that describes the different models of development and support for software that might 
structure cooperation within the X-stack ecosystem. Next we describe the requirements and methods of 
such software. We conclude with a set of recommendations to help guide both the IESP community and 
vendors to effectively collaborate to produce the kind of ecosystem this collective effort needs. 

6.1 Challenging Issues for Vendor/Community Cooperation 
Common APIs: It is critical to agree on common and open APIs. The development and evolution of 
APIs must occur in a way that produces the kind of stability that IESP vendor partners need, but must also 
be flexible enough to incorporate early research and exploration of alternatives. Waiting to achieve 
agreement through slow-moving, formal standards processes may not be timely enough to meet the 
expected needs of X-stack software. There are components of the system software that need to take into 
account hardware-specific characteristics or that can be better tuned by exploiting hardware-specific 
features. Because multiple vendor partners will be working on such low-level aspects, it becomes even 
more important to the community to find a methodology to agree on common APIs, at least for the 
exascale effort. 

X-Stack Co-Development: The IESP community, vendor partners, and HPC facilities must work 
together to produce the software stack. The IESP community’s message about the importance of vendor 
participation should be communicated clearly and repeatedly. If it appears that the community is going to 
fund all or most of the components of the X-stack, vendor partners will find it challenging to achieve the 
levels of software testing expertise and resources required to work with their results.  

Research Time vs. Development Time: Research and early investigation are necessary in addressing 
exascale software challenges. It is also crucial that when the hardware becomes available, the software is 
sufficiently mature. For the interim system, targeted for 2015, time is short for making decisions on high-
level issues (e.g., is programming model X the correct one for exascale?). It is important that funding 
agencies realize the urgency in producing solicitations and making funding available for the early 
investigations. 

Support: Providing sufficient, on-going support for the components may be the largest nontechnical 
challenge facing the HPC community. Software researchers have typically not provided the level of 
support provided by vendor partners, and few research groups provide the level of support needed for 
HPC facilities to meet their traditional quality of service requirements. Further, to date there has not been 
a strong track record for the community coordinating with vendor partners tightly enough so the vendor 
partners could include software components in their product plan. In order to produce the rich software 
ecosystem the X-stack needs, a novel structure needs to be put in place to address these support issues.  
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6.2 Taxonomy of Development/Support Models 
The vendor partners, funding agencies, and research and development community must have each 
software component in the X-stack categorized in terms of two key characteristics: (1) who is expected to 
develop/supply the component, and (2) who is expected to maintain and support the component. The 
figure below shows the four quadrants defined by these characteristics and how some of the component 
areas of the X-stack sort into them. 

 
Elements in X-stack software roadmap categorized relative to supplier/support criteria from the vendor 
perspective. Cross-cutting areas—resilience, power management, performance optimization, and 
programmability—are not shown since they affect components at all layers and which may fall in different 
quadrants. As components are designed, the project owners should clearly identify the appropriate category for 
the component. 

 
In Q1, the system provider both supplies and supports the component. This is the typical model of system 
providers who supply a proprietary software stack. However, the software components in this quadrant 
may also be open source, community-developed, co-developed, and/or third-party software components 
for which the system provider also provides support. In this context, then, “supplies” basically means 
“tests and packages for the system.”  Linux and MPI are often in this category for vendor partners. 

In Q2, the system provider supplies a community-developed component, and the community provides the 
support. In this case, the system provider builds the component and supplies it to customers for each 
installation. Although the system provider does not maintain or support the component, it may be one of 
the contributors for that component in the community. PeTSC, ScaLAPACK, and gcc are examples from 
this quadrant. 

In Q3, the component is developed/supplied and supported by the community. The facility and/or end-
user obtains, builds, and installs the software on the system and works with the community for 
maintenance and support. For example, NWCHEM and gnu software are in this quadrant.  

In Q4, the component is developed by the community, but the system provider is expected to be 
responsible to fully maintain and support the component. Examples in this quadrant are typically unique 
to specific customers. From the perspective of the vendor partners, this quadrant is an undesirable 
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quadrant because, while they are expected to take responsibility for maintenance and support, they do not 
have enough control to sufficiently influence the component development/support community or control 
the destiny of the component. Consequently, facilities have difficulty obtaining the quality of support they 
are interested in. 

From the system provider’s perspective, components in Q1 and Q2 are appropriate as RFP requirements. 
However, only components in Q1 are appropriate as strong acceptance criteria. The Q3 is extremely 
difficult for the system providers and should be avoided whenever possible. There are no restrictions on 
Q4 from the vendor partners, but there may be issues regarding the expectations of facilities managers 
and scientific users, and some of these issues may require alternative resource and/or funding streams.  

While the system providers may participate in developing software in any of the quadrants, it is likely that 
system providers will be more active in the development of components in Q1 and Q2.  

6.3 Requirements and Methods 
The goals of the IESP effort challenge not only the technical capability of the HPC community but also 
the social and economic models that the community uses to create, integrate, test, and support software 
for emerging extreme-scale systems. Policies surrounding open source software offer one illustration of 
the challenge. On one hand, many government funding organizations require that software developed 
with public funds be available as open source. However, the absolute requirement for all software thus 
created to be open source makes it difficult for the providers of systems and the facilities deploying and 
supporting them as scientific tools to meet the quality of service objectives that the user community has 
come to expect. Pulling in the other direction, however, is the recognition that the HPC community is 
relatively small, while many hands are needed to craft viable solutions in the time available. This 
recognition is one of the primary reasons for trying to harness the entire international community to the 
effort. To engage everyone, there needs to be a shared and open way to work together. By its very nature, 
proprietary code tends to thwart goals and reduce the number of hands that can contribute. 

To describe this tension and evaluate the tradeoffs, we define the requirements that science users have for 
the large X-stack software development effort, many of which we believe can be met by open software. 
The goals and expectations of computing center management, the software research community, and the 
scientific application users include the following: 

§ The community does not want to be limited to proprietary solutions over which they have little or 
no control. The features and improvements that have to wait for commercial providers to supply 
them can be problematic. Often these providers have priorities not always aligned with the 
HPC/exascale community, making improvements and/or corrections less timely and/or less 
functional than needed. 

§ Many aspects of exascale have a degree of uncertainty (risk) that strongly suggests having 
alternatives for risk mitigation and being prepared to replace components of the software stack in 
a timely manner. 

§ Software developers, ranging from application developers to system tool and feature developers, 
need well-defined and consistent APIs to which they can write code.  

§ Government organizations need to be able to leverage their investments of public funds in 
software development, so that results in one project or area can be reused for the multiple 
exascale hardware targets and for other non-exascale projects or areas as well. 

§ Government organizations need to be able to protect their investments of public funds in software 
development from being lost. In the past, significant publicly funded software (and hardware) 
investments have been lost when companies go out of business or change to other business 
models. 
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§ Applications teams will be working to create highly scalable applications that run effectively on 
multiple system targets. These application teams want to have a cross-platform, or easily portable, 
programming and development environment to increase productivity. 

§ Exascale systems will be advanced scientific instruments. As part of the scientific process, 
scientists need to know how the devices work for scientific reproducibility and accuracy. 
Treating the system software as a black box run by code that cannot be examined or verified does 
not accomplish this goal.  

System providers have their own requirements, some of which were expressed in the above provisioning 
and support graphic. The primary requirement is that system providers not be held responsible or liable 
for the correctness or performance of software over which they do not have control. Providers want the 
freedom, based on their business models, to use open source and other software components to meet 
requirements at their own risk. For example, they may decide to offer an open source component but 
budget the effort to provide the necessary support themselves. On the other hand, providers should not be 
held accountable for software they do not control. Sound business practices also dictate that providers be 
able to protect their proprietary information (e.g., low-level system hardware design), as has historically 
been the case. 

The facilities that will deploy the exascale systems and help scientists make efficient use of the systems 
have traditionally made both explicit and implicit quality of service commitments to users and have 
accepted quality of service expectations/metrics from the funding agencies. Just like vendor partners, 
facilities are hesitant to rely on casual support agreements (e.g., open source) to resolve problems and 
make improvements in software that are critical to their success, particularly if they do not have the 
resources to provide their own full support for the component. Facilities, as surrogates for government 
stakeholders, also have to ensure the systems they deploy are the best value possible. 

While there are overlaps, the methods below capture, to first order, the primary methods for developing 
and supporting software. 

§ Open source is defined, in the current context, as when all software is provided as buildable 
source code, with licenses that allow full rights for others to change and use the software without 
infringement to anyone’s intellectual property. Support for the software may be casual to 
nonexistent. An example is the Perl scripting language. 

§ Open source with formal support is an enhancement of the open source in which all software is 
buildable source, as above, but in which there also exists a formal, or in some cases paid, 
arrangement for support of the software. An example is Lustre. 

§ Open software should be differentiated from open source. “Open software” refers to software 
where all APIs are published and supported and are not changed arbitrarily or unduly, but the 
buildable source code is not released with rights to use or modify. Open software allows software 
developers to create software that interfaces with other component (including application codes) 
and allows components to be replaced as long as the component has the same API. 

§ Collaborative development is a method that extends to both joint development and joint 
ownership of the software IP with a formal agreement defining roles, responsibilities, and rights. 
These agreements typically define a way to provide on-going support as well as original 
development. An example is the HPSS Collaboration. 

§ Co-development is a method that captures more ad hoc arrangements for joint development and 
support efforts. Co-development may co-exist with open software and/or open source. Examples 
in this category include MPICH and the ACTS toolkit. 
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§ Proprietary development is the funded or unfunded development and support by an organization 
that retains the IP rights. For example, DARPA HPCS efforts fund vendor partners to create 
software that in some cases remain proprietary. 

§ Proprietary development with code escrow is the funded or unfunded development and support 
where the provider retains IP but formally agrees to release all software without restriction if 
certain conditions occur, such as the provider leaving the business.  

Requirement  Open 
Source  

Open Source 
with Formal  
Support  

Open 
Software  

Collaborative 
Development  

Co -
development  

Proprietary 
Development  

Proprietary 
Development 
with Escrow  

Community         

Does not want to be 
limited to a fully 
proprietary solution  

X X X X ?   

Flexibility to 
replace components 
of the stack  

X X X X ?   

Open API  X X X X X   

Leverage Gov’t 
investment  

X X  X X X  

Protect Gov’t 
investment  

X X  X X X X 

Applications have 
compatible 
environment  

X X X X X ? ? 

Scientists need to 
how their devices 
work for 
reproducibility  

X X  X ? ? ? 

Provider         

Not held responsible 
for components that 
they do not have 
control over  

 X X X  X X 

Protect other 
provider proprietary 
information  

   X  X X 

Facility         

Level of Quality   X  X X X X 

Best Value   X  X X X X 
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Table 1 – Matrix mapping the requirements for exascale software to methods of software development and support. 

Table 1 characterizes which software development and support methods address which requirements of 
computing center managers, software research and development groups, and scientific application groups. 
An X means the method substantially addresses the requirements. A question mark means it may, with 
some restrictions, address the requirements. A blank space means the method does not support the 
requirement. 

This table shows that the Collaborative Development approach addresses all the requirements, because 
there is shared responsibility and defined roles. More important, there is shared ownership of the 
software, so if one partner drops out of the relationships, other partners can continue. Open Source with 
Formal Support addresses all the requirements except for protecting the system provider from proprietary 
details if the software components have to interface to the hardware system at the low level (e.g., low-
level interconnect features); in this case, releasing the code may implicitly release the proprietary 
hardware details.  

6.4 Software Testing 
So far, for the sake of simplicity, we have focused on software component development and support. In 
any large software development project, however, integration and testing (I&T) must be an integral and 
well-planned effort to ensure success, often taking at least as much effort and time as the actual code 
development. For the X-stack project, the situation is complicated by the fact that machines at this scale 
are unique resources, so they are the only place where testing can be done. As a consequence, all exascale 
and pre-exascale systems must, as part of their design, support the community I&T. Vendor partners are 
expected to take the responsibility for I&T in Quadrants 1 and 2 and are concerned that there are either 
explicit or implicit unfunded requirements for I&T in Quadrants 3 and 4. On the other hand, with a few 
exceptions, funders and facilities do provide sufficient resources to do the appropriate level of I&T 
without a vendor or facility incurring penalties. 

In the case of X-stack, with the limited number of systems planned, the aggressive increase in scale, and 
the potential radical departures in hardware and software, the IESP roadmap must have a credible plan 
with clear responsibilities for integration and testing at expanding scales. 

6.5 Recommendations 
Discussion between the vendor partners, funding agencies, facilities, and IESP and the scientific 
community has yielded the following recommendations. 

1.  The IESP community should produce a methodology for categorizing software components into the 
development and support model they will fit. This should be broken down by each planned component, 
for example, OS, runtime, programming models. It is also possible that different instantiations within a 
component may be categorized differently. For example, within programming models, MPI and OpenMP 
may be treated different than UPC. Therefore, this process may need to iterate to gain a meaningful 
understanding of the X-stack creation and support plan. The result should be a “living document” and be 
refined as more information is learned about each of the components. 

2. Interlocking (between vendor partner, community, facility) milestones should be clearly defined. In 
order to work effectively together and provide a mechanism for vendor partners to have confidence 
including “not invented here” components into their product plan, these milestones will allow the vendor 
partner, as the product roadmap progresses, to ensure the requirements are on track to meet the required 
schedule. As illustrated in the requirement versus method grid (Sec. 6.3), the co-development model, with 
joint ownership and responsibility with a formal agreement, meets the requirements. 
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3. The community should produce a model that allows for components to become mature before inclusion 
into the product stack. Linux, for example, was not supported by vendor partners until it had been in 
existence for at least ten years. While this amount of lead time may not be needed for all components, a 
mechanism for allowing components to mature before inclusion is important. 

4. As part of meeting co-development goals, the roadmap committee should interact with the application 
groups to identify key application characteristics, early enough to enable the characteristics to influence 
the hardware and software design tradeoffs. These characteristics can then be used as input into the 
overall software architecture, requirements, and design; and hardware architecture teams can also use 
them. 

5. Funding agencies should apply resources to integration, testing, maintenance, and support as well as 
development of X-stack software. Enabling the community to effectively deploy and utilize the X-stack 
components requires a non-trivial investment of resources. Funding agencies, aware of this fact, need to 
be prepared to help underwrite that investment. Furthermore, there must be a model in place that allows 
the community to support that software. A good rule of thumb is that for every dollar dedicated to 
researching and developing a component, there should be a dollar dedicated for testing, maintenance, and 
support. Insuring the success of the IESP effort will require a well planned program of resource 
integration and testing. 

6. Open source licenses from non-profits and publicly funded efforts should be vendor friendly. The 
pedigree of the code should track with contributor agreements, clearly indicating that the code is free of 
IP entanglements from the start. The license should be “nonviral” in order to allow the software to be 
included into vendor commercial products. In fact, this model should be encouraged, since it facilitates a 
more sustainable software base, not just for exascale, but for other efforts as well. 

7. The community should start working early on to draft IP agreements with the goal of producing the 
bulk of the IP agreement that can be agreed to across countries, agencies, vendor partners, regions, 
components, and so forth. This is likely to need an even longer lead-time than the technology, so starting 
as soon as possible is highly recommended, since it will resolve many important questions and issues 
earlier rather than later. 

7. IESP Organization and Governance 
Initial discussions of a long-term organization and governance model for the IESP took place at the April 
2010 meeting in Oxford. A relatively large group of representatives from participating governmental 
agencies, including representatives from the US (DOE, NSF, DARPA), European Commission, and Japan 
(MEXT, RIKEN), as well as national funding agencies from the UK (EPSRC, BBSRC, STFC), France 
(ANR, GENCI), Germany, and the Netherlands (NOW), considered potential governance models in 
various aspects. Below we present some of the main considerations on which the views of the participants 
converged. 

7.1 Importance of a Business Case 
Taking seriously the possibility of formally organizing the IESP and providing it with ongoing support 
means, first and foremost, acknowledging the validity of basic questions about the need for such an 
organization: Is the research and development of software for exascale systems really something new, 
especially as compared to the road to petaflop/s computing? Why is a separate project or program 
needed? What would happen if the funding agencies were to say, “Why bother: this regulates itself?” 
Deliberations about IESP governance began with such questions, which were pursued in something of a 
“devil’s advocate” spirit. Although we concluded that there is, indeed, something new and uniquely 
challenging about the expected path to exascale software infrastructure, so that the IESP will require more 
formal organization and ongoing funding, it was also clear that documenting a business case for this will 
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be essential in order to involve the funding agencies and provide them with the policy resources necessary 
to enable them to raise the funding. The costs and benefits for doing a common (i.e., international) project 
will have to be made clear.  

Contents of a business case typically contain budget estimates, timelines, expected actors, roadmaps, 
risks, and contingency plans. It is believed that each funding agency will need a general business case, but 
should also have room for aspects in the business case that are of local importance to the country of the 
funding agency. This approach will ensure compatibility of business cases between the funding agencies. 
Another important aspect is the scope of IESP. There is some question, for example, as to whether the 
IESP will end with the delivery of the first exascale system or whether it represents a distinctly new 
phase, which happened to begin just last year, of a continuous movement that will extend into the future.  

A third important aspect that should be addressed by a business case is what can be called a tree or 
pyramid effect. Show that parts that are developed in IESP could and would be leveraged by a much 
broader user community several years after deployment. Such effects make funding agency and vendor 
interest stronger. 

7.2 Application of Current Funding Mechanisms 
One aspect to be addressed is the need for coordination of funding between the funding agencies (both 
within and among nations), once the business case has been validated. Currently, some types of funding 
calls can be identified, ranging from loose to much more regulated (loosely coupled, coordinated, joint, or 
in a well-specified legal framework). Either coordinated or joint funding models are considered the best 
options for the IESP. For example, a coordinated call might have characteristics such as the following: 
issued at the same time, having the same text proposal, and including several subjects within one call. 
Based on experience, it certainly seems feasible to have a few funding agencies working together to issue 
a coordinated call; but the larger the set of funding agencies participating, the better the coordination 
between the efforts will be. In this regard, an important aspect is the alignment of the subjects of the calls 
to the priorities of the funding agencies. Coordinated or joint call models should enable such appropriate 
alignments. 

7.3 Governance Model 
One of the key items of a working governance model for the IESP is the fact that the agencies funding the 
effort will need to remain in control of what they fund, why, and when. We believe that IESP should 
deliver to the funding agencies the analysis and planning resources that they will require to make such 
coordinated solicitations regarding exascale software infrastructure possible. One approach might be to 
have two separate tasks (and the entity to perform these tasks): one defining and one monitoring. The 
defining task would constitute the software roadmap and the breakdown of this roadmap into components, 
including timelines, procurable elements, and deliverables. This roadmap would need to take the business 
case as input and could be viewed as a practical plan of execution for IESP. The monitoring task would 
monitor progress on the roadmap, but across disciplines, borders, and agency domains, and would report 
and advise the funding agencies. The funding agencies could then decide on continuation of funding 
based on progress. Periodic updates and contingency plans will be needed. We view an approach based on 
such defining and monitoring tasks as a plausible and realistic way to move forward. 

7.4 Vendor Interaction 
An important aspect of sustainable relationships between vendors and funding agencies is the 
classification of software components with respect to ownership and ongoing or long-term support. 
Vendor perspectives on these issues are discussed in detail in Section 6. From an agency perspective, in 
the ideal situation, each software component of the X-stack would be open source. This approach was 
strongly advocated, if not firmly posed, as a requirement by the funding agencies represented in our initial 
discussions. But common sense dictates that some relaxation of this requirement will probably be 
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appropriate if the software comes closer to the individual hardware components (e.g., firmware) because 
these components are likely to involve elements proprietary to the vendor. We also remark that this issue 
is not directly relevant if a vendor is not funded for the development of that component. The open source 
discussion has at least two facets. First, if X-stack research and development are to be funded by the 
government with public funds, funding agencies take the view that the results of such publicly funded 
research results should be open (source) to the people who paid for it. Second, the view that scientific 
experiments must be described in all detail and be reproducible is now being expressed by the community 
with increasing strength; to achieve this goal in research that uses exascale systems, all details of the 
software will have to be known. This requirement is independent of the IP rights discussion. It is more a 
matter of principle with respect to what constitutes valid scientific research. Licensing and IP issues are 
obviously related to practical questions about how valid scientific methods can be implemented and 
pursued in the coming era of exascale science. Although all details on these matters are not available yet, 
it clearly makes sense to try to anticipate the consequences of different rule sets and to plan accordingly, 
at an early stage of the IESP project. We plan to work with the results from the discussions of IESP 
vendor partners (Sec. 6) to begin fashioning such a plan. 

7.5 Timeline 
The timeline for the process will depend on the end point(s), the funding models and the levels of national 
and international cooperation and organization within the IESP. The end point(s) will be a function of the 
long-term requirements and goals of the different funding agencies involved in the process. At this time 
the first planned deployments are anticipated to be by the U.S. Department of Energy. This first 
deployment sets the initial timeline for the overall software process. 

In addition, there is clearly a need for a test and integration process and an intermediate scale facility to 
prepare for the initial deployment, which is likely to occur in 2015. Given these two points in the process 
and the current status, we can construct an initial timeline for the overall process. The early part of the 
process and the final state can be reasonably defined. The intermediate stages are still subject to 
considerable uncertainty.  

The timeline below does not address other important issues about which discussions have already begun: 
security (rely on community-developed software components), testing and integration facilities, practical 
aspects of co-design, and funding of multiple approaches for similar software components. These items 
are slated for further development and will be included in future timelines. 

Timeframe Targets and Milestones – Performance Optimization 

2010 

• Initial mission-based software solicitations by DOE NNSA and Office of 
Science in the fall, with an expected emphasis on conservative technology 
choices  

• Creation of software roadmap, including requirements based prioritization, 
critical paths, funding and software clearinghouse, support models developed 
among the group of international agencies involved 

2011 • Initial solicitations for software development programs based on the software 
roadmap for international partners 

2012-13 • Initial software deliveries and evaluations  

2014-15 
• Delivery of final components of software stack, integration and testing in 

process on non-exascale platforms  
• Early technology delivery of a mini-exascale system of ~200 PF with a minimal 

but functional software stack 
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2016-17 
• Ability to handle observation of hundreds of million-way concurrency 
• Characterization of performance of exascale hardware and software for 

application enablement 

2018-20 
• Initial delivery of full system with a full, integrated software stack  
• Ability to handle observation of billion-way concurrency  
• At-scale testing, debugging, and early scientific runs  

2020 • Exascale systems in production 
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