

Collaborative Research into Exascale Systemware, Tools and Applications

Dr Mark Parsons

EPCC Executive Director Associate Dean for e-Research

The University of Edinburgh

CRESTA

- Collaborative Research into Exascale Systemware, Tools and Applications
- Developing techniques and solutions which address the most difficult challenges that computing at the exascale can provide
- Focus is predominately on software not hardware.
- European Commission funded project
 - FP7 project
 - Projects started 1st October 2011, three year project
 - 13 partners, EPCC project coordinator
 - €12 million costs, €8.57 million funding

www.cresta-project.eu

Partnership

Suomi Sverige Consortium Finland Sweden Gulf of Bothnia Norge Leading Et bwners and Norway. • EPCC sity – Abo, • HLRS -Eesti **Baltic Sea** Estonia CSC – E. Göteborg Latvija North Sea - Jyvaskyla, Glasgow O dinburgh PDC – S¹ Danmark O Malmö Lietuva United Kingdom Lithuania Denmark Gdańsk Minsk Belfast O O Kiel (Мінск) A world lea Vilnius 🗚 ndon – Hamburg O. Беларусь Ireland Nederland Belarus Cray UK Birmingham Polska len Poland Belgie Deutschland & Belgique IJK World lead Česká Rep Czech Rep Celtic Sea Paris, France Technisc Moldova (Vampir) Magyarország many France Bay of România Allinea L Biscay Hrvatska Србија

Toulouse

Sarajevo

Key Principles

- Two strand project
 - Building and exploring appropriate systemware for exascale platforms
 - Enabling a set of key co-design applications for exascale
- Co-design is at the heart of the project. Co-design applications:
 - provide guidance and feedback to the systemware development process
 - integrate and benefit from this development in a cyclical process
- Employing both incremental and disruptive solutions
 - Exascale requires both approaches
 - Particularly true for applications at the limit of scaling today
 - Solutions will also help codes scale at the peta- and tera-scales
- World leading hardware vendor as project partner Cray
- Committed to open source interfaces, standards and new software

Choosing what to study

- As we all know the Exascale research domain is enormous
- A €12million project can only tackle a small part of the overall problem
- We decided very early not to focus on hardware but on the problems of massive heterogeneous parallelism
- Research selection process
 - Capture and categorisation of problems
 - Each partner asked to indicate their interests
 - Topics selected based on
 - Amount of interest
 - Complementary skills
 - Viability within funding constraints
- In supercomputing it is too easy to tie a ribbon around new hardware and much more difficult to tie a ribbon around people

Co-design Applications

- Exceptional group of six applications used by academia and industry to solve critical grand challenge issues
- Applications are either developed in Europe or have a large European user base
- Enabling Europe to be at the forefront of solving world-class science challenges

Application	Grand challenge	Partner responsible
GROMACS	Biomolecular systems	KTH (Sweden)
ELMFIRE	Fusion energy	ABO/ JYU (Finland)
HemeLB	Virtual Physiological Human	UCL (UK)
IFS	Numerical weather prediction	ECMWF (International)
OpenFOAM	Engineering	EPCC / HLRS / ECP
Nek5000	Engineering	KTH (Sweden)

Example of incremental and disruptive approaches

- FFTs are a challenge at Exascale because
 - Very large number of HPC applications use them
 - Distributed memory parallel FFT is already a major performance issue today – we accept some FFTs will not scale further
- Two approaches:

Incremental approach	Disruptive approach	
 Through optimisations, performance modelling and co- design application feedback 	 Work with co-design applications to consider alternative algorithms 	
 Look to achieve maximum performance at Exascale and understand limitations e.g. through sub-domains, overlap of compute and comms 	 Crucial we understand maximum performance before very major application redesigns undertaken 	

Systemware

- Software components required for grand challenge applications to exploit future exascale platforms
- Underpinning and cross cutting technologies
 - Operating systems, fault tolerance, energy, performance optimisation
- Development environment
 - Runtime systems, compilers, programming models and languages including domain specific
- Algorithms and libraries
 - Key numerical algorithms and libraries for exascale
- Debugging and Application performance tools
 - World leader's in Allinea's DDT, TUD's Vampir and KTH's perfminer
- Pre- and post- processing of data resulting from simulations
 - Often neglected, hugely important at Exascale

Systemware: integrated set of software components

Conclusion

- CRESTA focuses on software not hardware
- Far too little money is being spent on software worldwide at present
- We need both incremental and disruptive approaches
- Exascale computers challenge our basic understanding of how we model and simulate numerical problems
 - CRESTA can only look at a small number of problems
 - There needs to be much more engagement from the mathematics and computer science communities
- Exascale should enable previously impossible simulations
 - There are a huge number of opportunities but we need the right tools
- By focussing on co-design of applications and systemware we expect CRESTA to play a key role in the exascale roadmap

www.cresta-project.eu

