7th IESP Meeting Working Group Report on:

Revolutionary Approaches:
Punctuated Equilibrium or Continuous Evolution

Thomas L. Sterling, Indiana University
Bronis R. de Supinski, Lawrence Livermore National Laboratory
version-4

1. Introduction

Projection of the possible path forward for HPC towards Exascale computing is
guided by two histories. One expresses the success of incremental techniques of
improvement over the last two decades in advancing delivered computing
performance, at least for some applications and their algorithms. The second
exposes as many as half a dozen paradigm shifts over the extended period of 60 to
70 years when progress in underlying device technologies catalyzed dramatic
changes in the way computing was organized and conducted and computing
systems were designed and operated. The evolutionary path successfully supported
an era, Pax MPI, of stability with almost dependable improvements through
incremental changes. The latter revolutionary path over the extended history also
provided marked events of dramaticimprovement but through disruptive change
that demanded redefinition of structures and methods. These two histories, both
valid, provide contradictory lessons and present the HPC community with the
challenge of determining which applies to the potential accomplishment prior to the
end of this decade of realizing sustained Exaflops performance. It is well understood
that if an incremental sequence of enhancements to the status quo can satisfy the
needs of such an achievement then it is far preferable to the alternative more risky
and disruptive strategy. However, if an evolutionary trajectory is inadequate to this
goal, then a revolutionary although uncertain path is essential even in the presence
of incurred costs to refactoring systems, applications, and methods. While the broad
consensus favors an evolutionary strategy, a minority is addressing the more radical
alternative. At the 7th meeting of the International Exascale Software Project (IESP)
conducted in Cologne Germany, a working group was organized from among the
meeting participants to consider the potential needs and approaches of a
revolutionary strategy for Exascale software. This brief note documents the initial
findings of this forum.

The international HPC community dedicated to the realization of Exascale
computing by the end of this decade is divided on the issue of the approach and
strategy of achieving this goal. Four dominant issues prevail: These are the
socialization and controversy of change, the Exascale challenges that may demand
revolution, the candidate system areas where revolution may be achieved, and the
disruptive impact of such revolutionary changes and how they can be mitigated. A



détente is required between those demanding cautionary progress and those
insisting on change in spite of fracturing the means of scalability beyond current
practices. More than gap filling may be required but only through responsible
methods that include continuity with existing legacy codes, models, and skills.
Unfortunately a degree of bipolarization has been insinuated into the community-
wide dialog that inhibits the formulation of a shared constructive middle ground.
Fear of one extreme or the other has precluded the development of a rational all
encompassing strategy to address the daunting challenges while maintaining the
continuity of productive capability from passed software investment in applications
and environments. This note attempts to begin the dialog that may bridge the
current chasm and seek to derive the needed techniques.

2. Opportunities for Possible Revolutionary Approaches

Due to shortness of time the working group on “Revolutionary Approaches” focused
on those areas that appeared to require necessary change beyond incremental
extensions of current and recent practices. These were identified in part by the
admittedly subjective criterion of what scared the participants most about trying to
make it possible to reach an Exaflops performance before 2020. Each issue as it was
put forth was discussed and is reported here in the cases where there was not
strong disagreement. In that sense, this is a conservative take on controversial
ideas; perhaps an oxymoron in itself. Six issues are highlighted here.

2.1 Execution models

The disruptive events in the history of supercomputing that mark the phase changes
of HPC in each case resulted in a new paradigm of computing. A form of reflecting a
computing paradigm is an “execution model.” An execution model is a set of guiding
principles that govern the roles and relationships of the integral component layers
of a computing system and guide their interoperability and possible co-design. Each
execution model responds to advances in underlying enabling technologies that
provide new opportunities for progress in performance while also imposing some
challenges that the execution model must address to achieve its potential. Among
the performance factors are four that every execution model addresses, presented
here as performance degradation. These are starvation, latency, overhead, and
waiting due to contention for shared resources. Starvation requires the model to
exhibit sufficient parallelism to keep system resources productively busy. Latency
needs to avoid blocking for the period of access requests whether to local storage or
for remote services. Overhead is the amount of critical time required to manage
parallel resources and concurrent tasks. Every execution model attacks each of
these problems and with different approaches that depend on the implications of
the base-level technologies and possible hardware architectures that may be
derived using them. The execution model impacts co-design across programming
models and architectures as well as the supporting system software. While the



current predominant execution model is Communicating Sequential Processes it is
not clear what is the right one to best address such challenges as multi-core sockets
or GPU accelerators. The right answer must come from the semantics of the
application information graph and not just the hardware side of the system
definition.

2.2 Changing the way we think

More broadly an area considered potentially in need of revolution is changing the
way we think about the merger of systems and programming. Conventionally the
user believes that he/she controls the machine. It is recognized that in the future we
may have to relinquish this potentially over simplistic assumption. To exploit
dynamic behavior to benefit from runtime information.may have to accept non-
determinacy and variability of the path to execution but still producing dependable
answers, at least within bounded error bars. Thus a change of culture and attitude
may become necessary where we do not control every cycle but rather influence the
execution to find a path to the right answer, while delivering substantially greater
performance than conventional practices.

2.3 Incorporating Intelligent Methods

As systems become more complex, embrace heterogeneity, exhibit highly varying
latencies and overheads, where contention at hotspots may not be predictable, the
use of on-the-fly selection among alternatives at multiple levels may become
essential through the integration of intelligent techniques. Intelligent control
involves detection and measurement of conditions on a continuing basis throughout
a computation, goal driven objective functions that determine what is to be achieved
and how to determine progress towards such goals, policies for selecting among
alternative approaches or paths, and mechanisms for supporting introspective
operation: Such methods must operate in real time but not impose significant
overhead or any potential benefits will be dissipated. Objective functions are
reflected at multiple levels from simple autonomic low-level responses to high-level
complex decisions reflecting difficult choices. For future HPC, intelligent on-the-fly
control must reflect a spatially as well as temporal awareness from a data
perspective and may even require some hardware support for operational
knowledge and predictive control. One approach may involve the implementation of
an Information Backplane that provides a protocol between system layers for
mutual dynamic introspective behavior.

2.4 Operating System

The vast majority of deployed supercomputing systems employ one of several
versions of the Unix operating system with Linux dominating the Top-500 list. While
continually evolving, the basic architecture of this critical software was established
more than 30 years ago. The challenge of managing a billion cores is unprecedented
as well as the scale and layers of memory and their interconnection. Because of the



inadequacies of conventional Unix-like operating systems a number of variations
have been pursued. Among these are lightweight kernels and user runtime systems
for improved efficiencies. But many other challenges such as name space
management, fault tolerance through graceful degradation, protection for security,
dynamic resource management, and energy control all add new factors requiring
integration. During much of the last two decades on clusters and MPPs systems have
really been collectives of many operating systems running side by side instead of a
single system image with some umbrella scheduling package. In addition, system
and core architectures are undergoing significant change with both multicore and
heterogeneous computing elements emerging of significant interest. The role and
methods of future OS software in addressing these additional complexities has yet
to be resolved. Future parallel programming languages may require new classes of
service from the underlying OS as programming models change in the light of
scaling and efficiency requirements. Changes in operating systems may be proactive
with new concepts in system control or they may be reactive in support of dramatic
changes in architecture, programming paradigms, and runtime systems all of which
rely on the OS in some form. In either case, the OS may experience revolutionary
change as it continues to play a fundamental role in HPC systems now and in to the
future.

2.5 Programming Models

Parallel programming models change in response to advances in system structure to
represent parallelism, data structures, and control flow in response to technology
progress. This may be seen as a broader set of system changes commensurate with a
new execution model or simply an alternative means of crafting parallel programs
for a new class of architecture. In either case, a programming model provides a
necessary level of abstraction, coupling the demands of an application with the
resource capabilities and characteristics of the physical system resources. Nowhere
is there more controversy than in the future of programming methodologies for
Exascale computing. A core but by no means only requirement is to devise a set of
semantics of parallelism that will yield concurrency at a sustained level in excess of
a billion-way for Exascale. Thisinvolves forms of parallelism, means of sequencing
operations and the conditions under which they may be performed, synchronization
constructs. But this also entails the interrelationship of control flow with data
structures and their distribution. While it is expected that some application
algorithms may be extended through conventional practices or their incremental
advancement to satisfy this criterion, there are many others that probably can’t as
demonstrated by some of today’s important strong-scaled problems. But there is
much more to a programming environment than just concurrency, as important as
this is. And much has been gleaned over the last two decades that should inform,
perhaps even support, future HPC programming. Of particular importance will be a
migration path for legacy codes and programming models to new classes of Exascale
systems to run seamlessly and without alteration. While it is not expected that such
applications will benefit fully from innovations, they must run as well or better than
native implementations of the programming model. Also critical is the means of



interoperability between new and old program modules and libraries to support
incremental improvements of conventional programs to new modalities, but one
piece at a time. This also permits new applications to build on top of established and
proven libraries where necessary initially. Far from discarding everything in the
past and slowly replacing it, a bridge should be built to cross from the developments
of the past to the possibilities of the future.

2.6 Correctness and Debugging

One objective widely thought to require a revolutionary approach is the critical
challenges of achieving correctness through methods of verification and debugging.
Frankly, this does not require Exascale performance to impose this need; it is with
us today. But the idea of managing billions of quite possibly distinct threads in an
asynchronous computational soup is daunting. Even the concept of correctness may
have to be replaced with boundedness and quasi reproducibility rather than
absolute exactness. Tools for verification and validation, error detection and
debugging, and confidence in answers at varying scales requires new models, quite
possibly revolutionary, for attacking this problem.

3. Related Factors and Issues

Several related issues were discussed.concerning factors for realizing the potential
revolution in computing systems and techniques responsibly in support of
continued growth in computing capability. Some of the most prominent are touched
on here:

3.1 Managing Revolution

Whatever happens, the work has to continue to get done. If supercomputers of the
future fail to deliver increased performance on user applications, they will not be
deployed and the field will stall, perhaps irrevocably as did commercial aviation in
the 1960s from which flight times have not significantly improved in half a century.
The notion of the oxymoron of an “incremental revolution” may be essential by
which the workload continues to be performed but for which significant
improvements in performance are achieved concomitant with investment in code
refactoring. The employment of a discipline incorporating gradual steps will permit
planning over time by which organizations, agencies, and nations can project their
respective paths across HPC generations. Before change is imposed, a destination
has to be identified; this possibly through preparatory research and proof-of-
concept development. At launch time of the revolutionary system concepts, it is
imperative that the process begins with something credible. It is unlikely to expect
that there is not much of current practice that will convey to future methodologies
and these are to be retained. Nonetheless, for something new experience genesis,
something has to die. Those practiced in the arts of HPC use over time will adopt



new practices and adapt their respective problems to them in order to exploit the
orders of magnitude benefits in science, technology, commerce, and security. This
will require a culture change but one that can be managed and transitioned rather
than disruptive through bridging methods and education. Many of the benefits may
be achieved early through the rewriting of widely used libraries by groups of
experts to the service of the broad community. High level programming models,
even declarative or domain specific programming interfaces may also mitigate the
challenge of transition. All of these approaches and others constitute means of
managing the possibly essential HPC revolution to Exascale capability.

3.2 Intelligence in Systems

Where do we put intelligence in future Exascale systems? There islittle doubt that
except in some special cases future systems will rely, perhaps heavily, on runtime
functionality realized through new runtime system software in cooperation with OS
and architecture driven by compiler and user programming interfaces. With the
incorporation of dynamic control brings the realization of the opportunity for
imbuing systems with higher order intelligent policies of operation. Many methods
are already being pursued to self-adapt codes to underlying core architectures, for
work scheduling, and for dynamic load balancing. Other areas such as fault
management and energy optimization are potential candidates. A new layer of
intelligence managing all of these now disparate goals supported at many levels may
provide a quasi self-aware environment through introspective means capable of
optimizing potentially conflicting requirements to achieve overall “best” operation.

3.3 Over Reliance on Compiler.Technology

Historically compilers have dictated system usage. Remarkable progress in
advanced compiler technology over several decades has bred a culture of strong
reliance on this system layer. But it has also limited progress in efficiency and
scalability to those issues with which compiler could effectively deal. With limited
predictability, compilers are often conservative in their choice of operation.
Problems like inter-procedural analysis and automatic parallelization are still topics
of research even after decades of admittedly good work. With the emergence of new
runtime systems applied to the field of HPC, an entirely new class of opportunities is
becoming available. Yet the common culture of many to rely on compilers alone is
hindering future directions to deliver superior capabilities. Compilers cannot alone
provide the necessary understanding to fully proscribe how large-scale systems
must operate. But with runtime systems and even some advances in hardware
support compilers will continue to play a crucial role, although in some ways
different from the past, in guiding the computation of Exascale systems and their
applications.

3.4 Persistent Storage



There is an entire array of application challenges that are largely data-intensive and
bound by the capabilities of the large-scale storage systems. Our field has relied on
the basic model of mass storage in the form of file systems derived from the 1960s
with some semantics that go back to the 1940s (e.g., rewind). Even with important
strides such as MPI-10, HPF5, and RAID mass storage is still treated as an entirely
separate system than the in-memory computation. Indeed, in many cases it is an
entirely separate system. The problem will only be aggravated as the imbalance
between compute throughput capability and main memory capacity continues to
degrade and future applications demand the processing of enormous data sets. Once
a specialty area, out of core computation may become increasingly prevalent.
Vertical movement of data, especially with the likely addition of NVRAM technology
adding yet another layer to the hierarchy, may be seen to increase with respect to
today’s practices. The principal distinguishing characteristic between to two classes
of storage is that of ephemeral data (in-memory) versus persistent data (spinning
bits). Far more lightweight and agile transition between the two storage
technologies may be required and new programming methods unifying these
classes in a single name space may be essential to achieve dynamic reactive data
movement. Here too, revolutionary strategies may beneeded to fully embrace the
potential of Exascale computing for the widest array of applications.

4. Conclusions

We, the International community considering the necessary capabilities of Exaflops
(and other measures) performance, are uncertain at this time of the software
architecture and the software components of which it is comprised for in support of
Exascale systems anticipated by the end of this decade. While not proven, it is
expected by some that some elements of such a software system may reflect
revolutionary methods in order to support part or all of the workload applied. This
brief note has summarized the tentative conclusions of a self-selected
representative group on behalf of the IESP as a product of the 7t [ESP meeting
working-group on “Revolutionary Approaches.” Four questions were considered
important to answer by IESP as it establishes its long-term strategy including: 1)
socialization of the topic to eliminate the current climate of polarization of the issue,
2) the areas of functional need most likely to demand some form of revolutionary
technique, 3) possible revolutionary approaches to address requirements, and 4)
means of mitigating the potentially disruptive effects of revolutionary approaches.
This report due to limited time addressed questions 2 & 3 with an emphasis on the
latter. Although revolutionary in direction, the deliberations reflected in this note
were conservative in that they stressed the importance of responsible paths to
realizing Exascale including means of mitigating the potential disruptive
consequences. Also, only those topics, issues, and directions that had a sense of
working group consensus are included in this report. If this group has correctly
represented the need for revolutionary approaches as part of the path to Exascale, it
also urges that there is much more to be learned through targeted research before



any such approach can with confidence be undertaken by the international HPC
community.

Contributors:

e Pete Beckman, Argonne National Laboratory

* Ron Brightwell, Sandia National Laboratories

e Barbara Chapman, University of Houston

e Jack Dongarra, University of Tennessee, Knoxville

e Anshu Dubey, University of C

e Al Geist, Oak Ridge National Laboratory

¢ Andrew Jones, NAG

* Alice Koniges, Lawrence Berkeley National Laboratory
* Jesus Labarta, Barcelona Supercomputing Centre

¢ Bob Lucas, USC Information Sciences Institute

* Paul Messina, Argonne National Laboratory

e Hiroshi Nakamura, University of Tokyo

e Hiroshi Nakashimi, Kyoto University

* Thomas Sterling, Indiana University (Co-Chair)

e Shinji Sumimoto, Fujitsu Inc.

* Bronis de Supinski, Lawrence Livermore National Laboratory (Co-Chair)
e Kenjiro Taura, University of Tokyo

* Rajeev Thaker, Argonne National Laboratory

* Anne Trefethen, Oxford University

e Vladimir Voevodin, Moscow State University



