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Big data is important in all areas including research, government and commercial applications. The 51 use 
cases gathered in NIST [1] had 34, 8 and 9 use cases in these categories. Indeed the largest datasets are 
possibly those associated with commercial clouds including search and social media [2]. It is estimated 
that this year there are approximately 6 zettabytes of stored data [3] and CISCO estimates [4] almost a 
zettabyte of total IP traffic this year; with largest individual science applications like the LHC with “only” 
around 0.0001 zettabytes (100 petabytes). Other research applications in the NIST study were typically 
fractions of petabytes with much larger astronomy (LSST, SKA) projects underway and imagery (light 
sources, medical, surveillance, radar such as EISCAT-3D) large and growing in size with non-cardiac 
medical imagery around 70 petabytes a year in the USA [2]. This broad interest in Big data has spurred a 
frantic software activity much of it aimed at commercial cloud deployments. This was seen in NIST study 
in both architecture discussions and the details given in many use cases. Here we suggest that it is 
valuable to understand the large scale commercial approaches and understand how they can be made use 
of and as appropriate be integrated in the HPC and exascale data environments. This approach is helped 
by the broad use of Open source technology in the consensus commercial clouds, with in particular many 
Apache software projects contributing to what we can term ABDS or Apache Big Data Stack. This is 
depicted in a layered architecture on the figure on the following page. 

This figure show over 40 Apache Big Data projects [5] with a selection of other commercial and Open 
source technologies. We use ABDS to refer to all the projects and not just those in Apache with HPC-
ABDS denoting the HPC integration. We also color key layers where interaction between HPC and 
ABDS seems either critical or timely. This diagram highlights the rich functionality of ABDS. It is not 
just Hadoop but has important contributions to dynamic deployment; virtualization; file systems; cluster 
management; object data models including consistency, table, key-value, document, graph and SQL; in 
memory caching; messaging middleware; programming model and run time including graph, streaming, 
iterative and classic MapReduce; high level (productivity) systems with well-known analytics and 
machine learning libraries. Workflow and orchestration is also well represented. Not all these projects are 
of the same value and quality but together they represent a highly capable and productive environment 
and we suggest that it will be very valuable to consider how to integrate HPC with ABDS. In our initial 
study [6], we have identified file systems, cluster resource management, file and object data management, 
inter process and thread communication, libraries, workflow and monitoring as areas where HPC-ABFS 
integration will be particularly valuable. Much of this has already started with studies for example of 
Lustre-Object Store-HDFS integration [7], comparison of Yarn with HPC schedulers, experimentation 
with NoSQL stores [8, 9], iterative MapReduce with a variety of communication mechanisms including 
those from MPI community [10]. Study of library performance shows that HPC solutions outrun current 
Mahout [11]; at the workflow level, probably grid and HPC approaches are very competitive/the best as 
they are in monitoring area. We envisage growing Mahout to include the core algorithms used in 
scientific research and by HPC integration deliver libraries of the quality seen in PetSc and Scalapack for 
HPC simulations. This way we will also develop data intensive kernels/patterns that are the equivalent of 
the Berkeley dwarfs [12] and NAS parallel benchmarks [13]. 

We suggest as well as working within these different layers, it is interesting to identify “different cross-
layer pathways” through the ABDS making particular choices at each level and see how the approaches 
compare and integrate. We are looking at end-to-end applications in Image processing, social media 
analysis, exploratory simulations and deep learning [14] as such pathways. Key questions include. How 
much commercial/commodity technology can be re-used by science big data and by exascale systems? 



Can we develop abstractions that allow HPC-ABDS to be independent of hardware details? Can we build 
a consensus big data software stack on HPC-ABDS? Can we use libraries extending Mahout to capture 
mini-apps? 
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