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Scientific and Computing Challenges

Drive Scientific discoveries
- Observational data & simulation data
- High-end computational simulation
- Data inversion and Data assimilation
- Statistical data analytics

Across multiple disciplines
« Astronomy & Astrophysics

- Climate, Atmosphere, Ocean
« Solid Earth Sciences
« Continental surfaces and interfaces

Socio-economical applications
» Climate evolution and forecasting

- Natural hazards (earthquakes, volcanoes,
tsunamis, landslides, floods ...)

- New energetic resources
- Environmental changes

NGC 6964: same scale

* Optical (stars) . radio 21cm (hydrogen gas)
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An increasing wealth of data

Ubiquitous data explosion: 100 PBs era i

LOFAR/SKA Copernicus/Sentinel USArray
~10 exabytes/day SWOT Large seismic arrays
~4 PBs/day ~100 TBs/year

Data explosion:

e | arge throughput instruments; observation and
monitoring systems (spatial, land,ocean and ocean
bottom) at global and regional scales

~20 PBs/night e | arge HPC simulations

Next generation discoveries:
¢ Managing data: streaming data processing, archiving, curation, metadata, provenance, distribution
e Data analytics: statistical streaming data analysis, machine learning methods of high-dimension data
e Data-intensive simulation: scalable, resilient large-scale, multi-physics, multi-scales simulations
e Data-driven inversion and assimilation: high-dimensional "Bayesian” inference methods
e Statistics and stochastic methods: direct-inverse uncertainties, extreme events statistics
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Seismology: data-intensive analysis

R - ...e.  Continuous Waveforms Analysis
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Waveform analysis : data stream workflow

Data ingestion / quality control

A A A
5 JBl | [8 * N-dimensional time (frequency) series
§‘E'p')"g'".i.'s'(.'\is';i')"? e Binary large objects : > ~100 TBs
P T - fine granularity (GBs)

¢ Partitioning, indexing, replication

: i Data processing

P Olg L * Low level data access pattern

E 3 - Linear complexity

¢ fine-grained streaming data workflow
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OFAR Epoch of Reionisation processing (> 100 MHz)
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Challenges

What we value and experience

'—‘\
Researchers are part of the archiving process.

They know what Is relevant to understand their
results.
Automated system should provide support for a

consistent and effective acquisition of provenance
metadata - Selective and extensible Provenance.

[A. Misra] [l. Foster:]

Data stream processing engines

Data Intensive computation, present expensive requirements for provenance
collection, either in terms of size or /O [W. D. Pauw]



Data-Intensive framework

Enable active researchers to invent, refine scalable, statistical data-intensive methods

Support diversity of methods and implementation in a single data-intensive framework with
data-handling services
Researchers remain in full control in their familiar community tools and libraries

Collaborative developments: from theoretical research to proof of concept to sustained use
Python library used to describe abstract workflows for distributed data-intensive applications.
Support for composition: Processing Elements defined with their own internal workflows.

Abstract streaming data flows: can be map and automatically executed in a variety of parallel
environments.

Fine-grained provenance system: analyse and understand data relationship with triggered

actions
a
AN MPI/OpenMP
‘ GPU/MIC
Storm —
Deployed on local Clouds w (—{=] PRAGE From EU VERCE P rOj ect
(MAP-REDUCE streaming model) @



Data-driven computing applications
Data inversion and assimilation




Data-driven applications: inversion and assimilation

Exploration and marine geophysics Global scale tomography

Seismology
e Full Waveform Inversion
e Extended Earthquake source

Geomagnetism
¢ |nversion of secular variation
e Variational data assimilation

Time: 15.300000 z velocity (m/s)

805 405 0 4e5 8e5

Gravimetry o omo
¢ Inversion of gravity field
e Geoid and Earth shape

Toward Bayesian-inference
reconstruction




Orchestrated workflow: data-intensive & HPC

| |

Observed waveforms
Instrument metadata J

v - v

]

Extract Seed files Simulation Solver
& Convert HDFS5/ADIOS ) | N- forward simulations
N-observed HDFS data N-synthetic waveform
files HDFS files
2
(mm

Synchronization; Instrument response; Filtering
Time window selection — Misfit computation

Compute adjoint sources
\_ Perfectly parallel
N-adjoint source HDFS
files

N-forward wave field
HDFS files

A 4

—
Simulation Solver
| N - adjoint simulations

~

-

N-kernel HDFS files ]

¥

-

( Processing stage
Kernel regularization; Kernel summation;
Pre-condition and gradient smoothing

Parallel Complexity

; ¥
Simulation Solver

Jtcp-lengths simulations

— v

Update velocity model
4 HDF5 model file

v

Convergence ?

Adapted from Tromp, Komatitsch et al.

Full Waveform Inversion (FWI)
e non-linear Bayesian inversion
¢ adjoint-based inversion

High-performance parallel codes
e forward and adjoint wave simulations
e billion of coresOrchestrated workflow
e data-intensive analysis and HPC
e CPU and Data-intensive architecture

Big N
¢ synthetics and observed wave forms
e Earth model and wave propagation
¢ |[/O and CPU balance (~10s Gb/s, 100Tb
per iteration)
e higher-oder abstract file format (HDF5)
¢ indexing and Data Bases



FWI compute and data analysis

Convergence @ Simulation |
of data with

Misfit Analysis Working Spaces

Raw Data
Download and
Archive
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production e data and computing infrastructures providers.

* Services/access policies: data-transfer, job control, task-oriented workflows
* Transient storage for users’ work in progress and intermediate data.

* Shared persistent and caching storage: optimise costs of data movement,
assembly, processing, distilling and simulations over multiple investigations



Challenges

What we want: flexibility and reactive systems and
users

- Provides Run-Time feedback on the process with tuneable metadata and
controlled data movements

- Avoids useless waits for long and unfruitful runs

- Fosters Dynamic Steering, Diagnostics, saving computing cycles, storage ($

$) and energy!



Turning large simulations into numerical laboratories



Turning large simulations into numerical laboratories

Mantle convection geodynamics

Strong motion prediction

Time: 15.300000 z velocity (m/s)
-8e5 4es 0 4e5 8e5

-0.0001

Molecular dynamics : High Pressure and High Temperature Physics



The AMA-D

A TGCC-CURIE grand challenge
e 550 billion particles
e 2.5 trillion computing points

e 50 million CPU hours (> 5700 years)

¢ 76 032 cores & 300 Tb memory
e > 50 Gb/s data throughput (PFS)

e 1 500 Pbs reduced on fly to 1 500 Tbs

Challenges

¢ dynamic load balancing

smart parallel I/0 optimisation
reduction of raw data (time) ->
direct post-processing
physical objects -> on-the-fly
processing workflow

IAP, courtesy of J.-M. ALIMI

—US application: N-

BSody simulation

21.0 h''Gpc
550 billion particles

10.8 h''Gpc
375 billion particles

3.0 h''Gpc
303 billion particles
B
5

Millenium XXL - 09/2011
www.mpa-garching.mpg.de/millennium/

DEUS FUR - 03/2012
www.deus-consortium.org/

Horizon Run 3- 12/2011
astro.kias.re.kr/Horizon-Run23/

Intermediate snapshots Sample : files [ size
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4752 nodes THE AMA-DEUS WORKFLOW Main snapshots H s Ligthcones : files /size
files / size (per output) ' (per lightcone)
Y Y 3 ¥ Y
DYNAMICS . MAIN | |  POWER HALOES § 8 g 3 § M $
SOLVER SNAPSHOTS 3x38016ﬁ|es/:utput SPECTRUM CATALOG RYgT g™ § 2
% s : :
INITIAL INTERMEDIATE A5 outputs FOF HALO HALOES EoEo & g o
1 =p  ~120To/output > 8L 8L 8 © 2—
CONDITIONS SNAPSHOTS 3x38016 files/output DETECTION PARTICLES STRT2RE
0 " ] e
1 $ s
> 3 g o
ACDM 474 outputs - = = 2
+| SAMPLE [+ = -sTo ——»|  SLICER o| PARTICLES | C2 x 8222
1 ~250000 files CUBE E - § olk Y
DEUS FULL % S S
UNIVERSE RUN | Lkmcongs Ly, 7cumsiscons SHELLS GRAVITY | %.2 F
~15 To/light x x = o—
-3 - ~1200000°t{|:Iegs/‘licg(::one MERGING CUBES 3 ] § ?
\ 4
CONCATE-
|
BACKUP NATION

Snapshots

~16 x16 TB

Halos/catalogs
~50 TB

Samples
~40 TB

Lightcones
~5x10 TB



Numerical laboratory: Shared Data Analysis

RPCDM SUCDM

Consortium DEUS
¢ scientific teams coordination
e DEUVO DB: physical objects and some raw data

In-situ data reduction

On-the-Fly
e ety e MPI-based power spectrum

| e MPI-based parallel Halos finder
e Halos properties

Shared data analysis

Services on top of the data
e Higher-order statistics for matter field and Halos
e Topological analysis

o8 EgsDEUS Dark Energy Universe Virtual Observatory Y Dynamical anaIySIS

E— e e Visualisation

aaaaaa

Data life-cycle: persistent storage, provenance, publication




Climate and weather modelling

A continuum of time and space scales

From days to months, years, decades, and millennia

4 glacial cycles recorded in the Vostok ice core
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Detection, attribution and prediction of extreme events and modes of climate variability



Climate simulations and observations
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The IPS

-CM application

IPSLCMé6
Modéle Systeme Terre IPSL

Ocean Atmosphere LMDZ
Sea-Ice
. . Land ORCHIDEE
Biogeochemistry
NEMO Chem/Aerosols INCA
\ J
MPI process MPI process L
OpenMP thread N
Oasis Oasis

MCT ]-[ MCT

XI0S XIOS
client client
Asynchroneous mode ‘ > Asynchroneous mode

one output NEMO ocean file one output atmospheric file

one output land file

OpenMP Master thread

XI0s
server

XI0s
server

one output NEMO sea-ice file

TGCC-Curie, IDRIS-Ada

Large number of models with
a number of configurations
a number of experiences
an ensemble of realisations

Large number of variables, and files

Large volume of secondary data

~ 10 PBs scale

Modéle du CNRM-CERFACS Modéle de NPSL

RCP 45




A resilient and flexible runtime environment

fallback
procedure
IPSL
- —
v
daemonized message consumers
—g e e—— * 100 utilisateurs

* qgs 10 job/jour

_ IPSL -> PROD -> CLIMNP5.222.2 10]
VIE! CONFIG CARD OMPUTEJOBS 1 0 1 F ‘ST PROCESSING JOBS

MongoDB Postgres

dB server

web server

jupyter notebook

A flexible, resilient and reactive provenance-driven system

e Providing Run-Time feedback on the process with tuneable metadata and provenance-driven
controlled data movement

e Avoiding useless waits for long and unfruitful run
e Fostering Dynamic Steering, Diagnostics, saving computing cycles, storage and energy ($$)!



Numerical laboratory:

~ 10 PBs scale

Web processing service (WPS)

7 . N\
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IPSL, courtesy of S. DENVIL
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Climate Model Assessment Framework (CLiMAF)

e Exploration and analysis of climate simulations
e Share data processing and analytic methods

and tools

e Advanced management of simulations and

analysis

¢ Induction of a broad community of researchers

and users

e Accelerate the full path of data use from

capture to delivery of information

e Web services on top of data analysis platforms

- Pervasive provenance system



From HPC simulations to data-intensive platforms

Largest simulations at the petabytes scale

¢ From regional to global scales (climate, seismology, magnetohydrodynamics, etc.)

o From supernovae to turbulence

¢ Need for community access/reuse of the best and the latest secondary data through numerical
laboratories with pervasive provenance system

Create new challenges:

» How to move/output data during simulations (vertical re-use, I/Os, parallel storage)

¢ How to reduce data through in-situ analytics

¢ How to stag in and stag out data (high-speed transfer protocol, access policies)

¢ How to explore/visualise data (render on top of the data, immersive analysis)

¢ How to analyse/instruments data (data analytics, immersive analysis, value added services ...)

Research-driven
Huge variations in Data lifecycle and commitments

o On-the-fly (in-situ) analysis and visualisation (immediate, do not keep)

» Collaborative reuse and analysis secondary data (short/mid term, local)

» Community services and analytic tools (mid /long term, community commitment)

o Archival, curation, provenance, trust of secondary data (long term, community commitment)

Different from today supercomputer usage and access policies
A variety of data and computing resource access patterns

! Dump data into large HPC providers, move data out to analysis platforms



Compute and

Data-analysis federated infrastructures

a research-driven strategy



A research-driven variety of infrastructures

Ashby’s Law of
Requisite Variety



Data-intensive analysis platform and HPC

e Caches and persistent caching storage Simulation Site Analysis Site (i)

close to data-intensive analyse platform : Lo :
_ _ _ _ : Simulation Machine : : Analysis :
e Data-intensive computing architectures ! + Data Reduction and Indexing L Machine .
and HPC simulation architectures i + Analysis and Visualization i i i
.
* Render on top of the data together with i E £ quoset || i
value added services, data analytics | el |
.
¢ Induction to a broad research and user i I >_<r; Site -
community (access and security) | Archive ! :’ """"""" i
i i : ‘ bExperlr.nenfladW \ i
Bridges and Gateways .. JI :_ - _ci fej‘ia?(inf_ ftf_ _
7 i H R ARYRR m\v RRRRRRR
System-building: technology-basedand  SeEaee 0
research-driven services S L \ R
Technology transfer across domains and 7 e RERRRRY
locations: variations of original design and 2 e
emergence of competing systems |
Gateways consolidation: AN : |
research-driven technical solution with /~///// "/ | - T
social choice integrated within #SSAR = el A
research communities of practice -
federation of dissimilar autonomous y
systems into research-driven networks -

(adapted from Edwards et al., 2007) . / / / ] »/ = )»/ // ]




—-Infrastructure challenges and strategy

System and infrastructure Big data analysis

Where should the caches and persistent storage be ?

o Caches and persistent caching storage: sharing large chunk of observations and
simulated data, optimise costs of moving data

o Not directly at the supercomputer (too expansive storage)

o Analysis computations and visualisations on top of the data

o High-speed transfer protocols from/to data sources (HPC, large instruments, data
archives)

Complex data movements scheduling

o Data and metadata bases (scalability)

¢ Provenance-driven triggering and management

o Extended file management systems and model

o Augmented services with added-value to large community

Data organisation

o Most of these data are not hard to partition (scale-out)

o Provenance management system and lineage metadata
¢ Fined grained data streaming flows

o Tier of large memory systems (random access)




Challenges and strategies

* Difficulty getting things to run in multiple providers contexts

e explore new virtualisation technology and Sand boxed environment
e Linux Containers, docker, Google Kubernetes
e support software developments and maintenance
e prepare the new generation of HPC architectures (exascale challenge, in-situ data analytics)

* Difficulty to provide uniform access, trust and security model
* |everaging existing identification systems across infrastructures

* Difficulty handling data and computation strategy

*» reduce computational costs
¢ well-matched architectures to each stages

“* reduce data movement costs
¢ in-situ analytics, persistant storage, caching strategy, compression

* re-use of calculations and data
¢ effective metadata and provenance system information
* Align methods with research infrastructures
¢ balanced and aligned investment for the full path of data use
¢ maximise overall value of generating, collecting, preserving, curating data

* HPC and Data Infrastructures tailored by scientific use cases
¢ a variety of access and usage patterns requirements

* Interdisciplinary task forces

e share mutual understanding of methods and technologies (Astrophysics, Climate, ...)
* |nterdisciplinary task forces
e Computer scientists must meet flexible federation challenges

30



Data-intensive analysis platforms

A scientific e-science environment capable of “observing” (explore, analyse and model)
massive and complex data generated by large-scale instruments, observation and
monitoring systems, and numerical simulations in the sciences of Universe.

* |nnovative methods, software, ICTs for large scale data-intensive computation and massive
data statistical analysis that ultimately induce a broad base of researchers to new
research practices

e Emergence of cross-disciplinary expertise in data-intensive computing and data analytics
across scientific domains, research informatics, HPC and Data system engineers

e Accelerates full data use path: valorisation of massive data generated by large-scale
instruments, observation and monitoring systems

e Training and ‘intellectual ramps” to engage a new generation of researchers to harvest
data capabillities in their research practices to address new research challenges

e Community building around simulation and data analytics shared application-software
together with provenance and services for open research and application science

e Consider full path of data use and data life cycles -> federation of HPC and data-intensive
analysis platforms

A flexible and scalable federation of autonomous infrastructure providers/organisations

Data resources - Data-intensive analysis platforms - HPC infrastructures



—-Infrastructure and data Management CRA

BELMs=NT

F O R U M Data-intensive e-Infrastructure Action Theme 3

http://www.bfe-inf.org

A Place to
Stand: e-
Infrastructure
and Data
Management
for Global
Change
Research

Belmont Forum e-
Infrastructures & Data
Management Community
Strategy and Implementation
Plan

“Give me a place to stand, and I will
move the world”

- Archimedes

E-Infrastructures and Data Management Steering Committee

¢ |dentify and fund interdisciplinary use-cases for federated
data- and e-infrastructures in environmental and global change
challenges.

¢ Identify and fund large-scale Data and Model Inter-comparison
Projects (DMIP) that are relevant to global change research.

e Through the above outcomes, inform data- and e-infrastructure
policy with case-proven best practices that respond to
concrete issues.

Milestones

29-31 August 2016, Paris, France: 2 scoping workshops in
Paris: cross- and trans-disciplinary data-intensive use cases

analysis; data and model inter-comparison (DMI) use cases

10-16 September 2016, Denver, Colorado: International
Data Week: 2017 Belmont Call finalisation for data-

intensive cross and trans disciplinary use cases and DMI

projects

Contact: Mark Asch (ANR, France),mark.asch@agencerecherche.fr
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