BSC vision on Big Data and extreme
scale computing

Jesus Labarta, Eduard Ayguade, , Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres,
Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra, Enric Tejedor and Mateo Valero

BSC

Science needs in Big Data at BSC

Solving new challenges in most application areas requires handling and processing huge
amounts of data. Most computational groups at the Barcelona Supercomputing Centers
already met this demands, with applications for molecular dynamics, genomic and protein
docking analysis, air quality control, data assimilation, oil exploration, physiological human
simulation, social graph analytics, smart cities and HPC performance analysis and modeling.
We are also cooperating in projects in the human brain simulation and neuroscience analytics
with equivalent demands,

An interesting observation is that each of these research teams has faced the issues from an
individual perspective, experimenting and/or elaborating different solutions for their specific
applications. We believe that this situation within our institution is probably representative of
the current ad-hoc and fragmented approaches in the field, calling for a unification of efforts.

In this direction, BSC is committed in an internal effort (the Severo Ochoa project) to integrate
the activities of application development departments (Life Sciences, Earth Sciences and
Engineering) with the Computer Sciences department working on system software and
architecture. The objective of this co-design project between application, programming
models, runtime systems and architecture teams is to identify and/or develop an
infrastructure to provide a unified, productive, easy to use and efficient environment for our
broad range of applications.

Strategic considerations

Big data means big issues. Topics like applications, algorithms, system architecture and
capacity/bandwidth balance at the different levels, scalability, middleware and APIs, security,
resilience or provenance to name a few are extremely relevant to the area.

Among them, we would like to stress: the importance of algorithmic optimization and tuning,
the increasingly dynamic usage patterns of the infrastructures; the importance of providing
clean programming interfaces integrating the concurrency and data management models; the
responsibility of the runtime in optimizing the mapping of computation and data to available
resources; and the need to develop architectural support for the runtime and application
functionalities. The following subsections further elaborate these topics, exposing the
considerations that drive/inspire our efforts to develop an appropriate systems and
middleware to efficient and productively support the needs of big data applications.



a) Reducing computational and data movement complexities

Algorithmic developments are extremely important. We believe that brute force algorithms
are too often applied relying on the capability of scalable hardware to solve a problem. Better
algorithms that drastically reduce the computational complexity to solve a problem have
always been the best ways to reduce time and energy to solution. With the advent of the
memory wall problem, the high energy cost and long latencies of data movement, the
reduction of the data movement complexity needs to be considered in combination with the
computational complexity. The introduction of asynchrony, avoidance of global
synchronization, allowing for non-structured patterns of concurrency and large look-ahead
capabilities are features that will allow our algorithms to tolerate the latency limitations of the
infrastructures.

Today’s algorithms are frequently used in very simple linear workflows that often correspond
to an analysis process or methodology. We envisage that programs with more flexible control
flow structures will be of great relevance and will bring increased intelligence to the coarse-
grain computational workflows.

b) Usage models and resource management

In the current batch-oriented dominant practice users often launch a lot of computations that
are analyzed (and not always) offline. We anticipate that the usage of big data and compute
infrastructures will need to evolve to allow higher dynamicity and responsiveness. The
incoming rates for streamed data sets may significantly vary along time depending on external
data acquisition and measured system conditions. Interactive and steered usage will
dynamically shift the focus and balance of computation and data processing, potentially
deciding that computations initially scheduled are no longer relevant and unforeseen analyses
or visualizations become suddenly important. Flexible and intelligent computational workflows
will also present variable computational and data access demands as they proceed.

These usage patterns do generate strong requirements on the dynamicity of the resource
management of the infrastructure. Sharing a large infrastructure by several applications and
users has the potential to improve user satisfaction and save a lot of resources if appropriate
resource management policies can be implemented.

Mechanisms supporting malleability have to be developed/introduced to make applications
capable of adapting their internal parallel and data access structure to changes in the allocated
resources (data, communication and compute) as they appear. Dynamic resource
management policies will have to match the demand and availability, redistributing resources
to maximize the efficiency in the use of the overall infrastructure and maximizing the quality of
service experienced by users.

c) Programming models

Ideally, programming models should provide an interface by which the application developer
expresses algorithms and ideas in a platform-agnostic way. The interface should also allow
conveying information/hints to the runtime that could be dynamically used to optimize the
actual mapping of computations and data access/movements to resources. In current Big Data
practices, concurrency and data processing are often considered as independent aspects, with



most of the efforts focusing on one or the other. Furthermore, they are offered through fairly
large APlIs, each of them introducing many concepts and essentially targeting a specific level of
granularity. As a result, large programs with many lines of code dealing with platform
specificities rather than problem related logic are written. The specialization of developers at a
given granularity level can lead to applications that are not optimized at all levels from global
orchestration to low level data access or computational kernels.

We believe that it is important to propose models that better integrate the concurrency and
data processing aspects trying to rely on the same type of abstractions at the different
granularity levels. Particularly relevant is the integration of flexible parallel control flow
structures and query mechanisms to refer to huge data sets. Support for flexible parallelization
strategies (asynchrony, nesting) is needed to free applications from latency limitations,
converting them into throughput based applications where amount of resources (bandwidth,
cores, $) is the limiting factor. By using persistent object-based storage layers we have the
potential of closely mapping the data models in the programming languages to those used to
provide data durability and also to provide a flexible shared communication space between
partially coupled or independent applications. Such integration would simplify programs,
eliminating the programmer need to consider the different models and a lot of the code that
today is devoted to explicit I/O operations.

We consider that two features of our designs will be extremely useful to ensure productivity,
maintainability, application integration and portability: first, being able to leverage current
programming languages at the different granularities (sequential or parallel programming
language, scripting languages, or DSL) with minimal extensions; second, using similar
underlying concepts (ie. task based models) at the different granularity levels (workflow,
parallel program).

The models must allow and encourage a holistic optimization considering all levels of
granularity. This should even include potential architecture support with specialized functional
units for computational/data movement tasks and potentially hardware support for the
runtime. The models should integrate clean and simple mechanisms to enable intelligent data
layouts and locality optimizations, allowing the runtime to minimize data movements and/or
move computations close to the data.

d) Intelligent runtimes

The programming models provide the interface for the programmer to describe its
requirements in terms of computations, data accesses and dependences or communications. It
is then up to the runtimes to optimize the mapping of those requirements to the available
resources when the application is run on a given architecture. Different implementations of
the runtimes may vary in overhead, latency or bandwidth, targeting different platforms (from
very distributed to fine-grain parallel) and thus supporting different granularities. Our
philosophy is that runtimes should decide actual data placements, replication, transfers
(whether data to computation, computation to data or intermediate). As stated in the
previous section, the layer above can and should help by providing hints to the runtime but it
is important that this interface is defined in as abstract terms as possible, resulting in
conveying useful information without requiring the programmer or user to control the actual



details of the architecture. This is certainly an area where concurrency and computation have
to be integrally handled and where a lot of intelligence has to be developed and embedded in
the system.

e) Architectural support

Finally, research in architecture and hardware support has a potential huge pay off. This
applies both to processor design and storage system architectures. Of special interest is to
propose processor optimizations for certain functionalities relevant for application algorithms
and programming model support. A particular challenge is to holistically study the
dimensioning of capacity and bandwidths of the different memory/communication/storage
layers in the sight of new technologies, the locality and asynchronous data movement
potential optimizations by the runtime and the algorithm characteristics.

BSC technologies

The BSC effort to develop a middleware to support the different internal application projects
enumerated in the introduction builds around a shared persistent object data management
layer cleanly integrated in the generic StarSs programming model. We also explore different
architectural features that will provide an efficient support for both the data and computation
aspects of these applications.

In the data management area, different teams at BSC have been working in the past on
aspects relevant to Big Data: resource management in MapReduce focusing on task scheduling
driven by actual resource consumption and high-level performance metrics; resource-aware
task scheduling with completion time goals; decoupling user interfaces from data layout in
non-relational databases (using Apache Cassandra as a representative of non-relational
database); usage of specialized hardware architectures as IBM’s BGAS platform for running
some of BSC’s genomics workflows; and integration of its programming models with the BGAS
key/value store.

Within the Severo Ochoa Project we are integrating the research experience of those groups
onto a unified data access and management layer. Our global objective is to devise a persistent
object storage interface that can be mapped on top of different underlying data management
infrastructures and cleanly integrated with the programming model developments described
in the following paragraphs.

At the programming model level, the StarSs concept is that the programmer specifies tasks
and the directionality of the data accesses they perform. The sequential execution of a control
flow instantiates the tasks and their dependences are computed by the runtime based on the
directionality annotations. Key philosophical considerations are malleability, support for
automatic locality management based on the data access annotations that are used to build
dependences, and resource independence (specification of tasks and not threads, processes or
other abstractions). The concept is implemented in COMPSs at the medium/coarse grain (tens
of milliseconds and up) level and in OmpSs at the fine/medium grain (few microseconds to
tenths of milliseconds or seconds) parallel programming level. We think that their hierarchical



combination provides a unified conceptual framework and a simple to use interface leading to
programs focusing on the actual scientific problem they target. The models allow for very
dynamic mapping of computations and data accesses to the available resources by intelligent
runtimes and data management layers that we provide.

COMPSs aim is to support flexible computational workflows. Several language bindings are
available: C, C++ and Java for the original implementation and PyCOMPSs, a recent
development that introduces efficient parallel support in Python. The annotations of argument
directionalities are provided through method interfaces in Java and through decorators in
Python. In its original implementation, the COMPSs runtime computed dependences using the
files read or written by the application, targeting only coarse granularities. In the current
version, the arguments to the tasks can also be objects declared in the language type model
and dependences are also computed based on accesses to such local objects. The execution
engine actually offloads the objects and computations to different cores or nodes, supporting
the efficient parallel execution of medium granularity programs. Tasks from the same
computational workflow can actually be offloaded to different nodes within the local cluster or
to external cloud resources in a transparent way.

PyCOMPSs offers an elegant solution to automatically parallelize/distribute applications in the
widely used Python language. By cleanly integrating the persistent object model in it we
expect to offer to application programmers the possibility to incrementally enable Big Data
requirements in existing applications. The environment will also ease and encourage the
productive programming of more dynamic workflows.

At the finer granularity level, OmpSs offers C, C++ and FORTRAN bindings. Its design follows
the same philosophical considerations as COMPSs: asynchrony (through the dynamic building
of the dependences and dataflow-based execution), nesting and heterogeneity (accelerators).
Major features of the dependence specification mechanism proposed in OmpSs have been
adopted in the latest specification of the OpenMP standard (version 4.0).

Our efforts try to integrate the philosophical guidelines presented in the previous section in
the design and implementation of the different components of our environment. We expect
that the cooperation within the Severo Ochoa project of scientific teams in the different areas
working on the algorithmic aspects and building on top of the middleware and architectural
developments proposed will lead to significant demonstrations of real social impact.



