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Rapidly evolving data rates, analysis methods, and science processes within the experimental and 
observational science communities (see Figure 1) are driving dramatic increases in computational 
requirements—increases so large that these communities will soon require exascale-class 
computational environments to be productive. Instrument science thus has the potential to greatly 
expand the impact of exascale technologies. 
The science communities in question work with exceptionally powerful 
new scientific instruments such as light sources, tokomaks, telescopes, 
accelerators, and genome sequencers. These communities face a range 
of big data challenges, as innovations in sensor technologies increase 
data volumes and velocities at rates often greater than Moore’s Law. 
But the true challenges faced by instrument sciences—and the reason 
why exascale technologies are so important to their future—relate to the 
need to transform instrument output (and other data) into actionable 
knowledge and then act on that knowledge in human-useful timeframes. 
The scale of both these challenges and the associated opportunities mean that these science 
communities are increasingly embracing team science methods, in which communities collaborate 
to develop, extend, and apply substantial knowledge bases—an approach that until recently was 
limited to a few big-science communities such as high energy physics. 

Consider, for example, the use of a light source such as Argonne’s Advanced Photon Source to 
study the internal structure of candidate battery materials. Today, the typical science process 
followed in such experiments involves sequential steps of material synthesis, data collection, and 
data analysis—a process that can easily take months from start to finish. With exascale 
technologies, it becomes possible to imagine far more rapid science processes in which, for 
example, knowledge bases constructed from past experiments, the literature, and simulation models 
are used to flag “interesting” features in data as it is generated; instrument output is assimilated, as 
an experiment is running, into a simulation model that is then used to guide future data collection; 
and an evolving integrated knowledge base is used to guide the choice of future experiments.  
The successful realization of such scenarios requires innovations in not only the hardware and 
software technologies typically considered by the exascale community [1, 2] but also in three areas 
relating more specifically to scientific knowledge: 

1. knowledge management and fusion, to permit the rapid integration of large quantities of 
diverse data and the transformation of that data into actionable knowledge;  

2. rapid knowledge-based response, to enable the use of large knowledge bases to guide fully 
or partially automated decisions within data-driven research activities; and  

3. human-centered science processes, to enable rapid specification, execution, and guidance of 
science processes that will often span many resources and engage many participants. 

Rich bodies of work exist on the development and use of knowledge-based methods within many 
fields. However, the unique characteristics of modern instrument science pose unique challenges 
relating, for example, to data volume, variety, and complexity, and the need to balance the 
complementary capabilities of human experts, computational methods, and sensor technologies. 
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Figure 1: Major drivers of new 
instrument science 



The integration of simulation and instrument represents an important example of emerging new 
science processes within instrument science. In general terms, the opportunity is this: computational 
simulations capture the best available, but imperfect, theoretical understanding of reality; data from 
instruments provide the best available, but imperfect, observations of reality. Confronting one with 
the other can help advance knowledge in a variety of ways. 

The Discovery Engines for Big Data project at Argonne is pursuing opportunities in this area, with 
problems from cosmology and materials science as application drivers. As illustrated in Figure 2, 
the work in cosmology is comparing virtual skies, constructed from large-scale simulations, with 
the “real sky” as revealed by digital sky surveys, with the goal of constraining potential theories of 
dark energy, while in materials science, simulations are being used to determine which defect 
structures within disordered materials may best explain observed diffuse scattering data. In both 
cases, large-scale computation is required to process instrument data and to prepare the simulated 
realities with which observations are compared. In the materials science application, the opportunity 
exists to use feedback from simulation-observation comparisons to guide experimentation.  
These and other application projects within DOE and elsewhere are generating a growing awareness 
of the opportunities inherent in new science processes based around the knowledge-based 
integration of large quantities of sensor data, large-scale computation, and human expertise. With 
care, these opportunities can serve as an important driver for emerging exascale technologies. 

 
Figure 2: Two examples of new science processes that couple instrument and simulation. Above: using digital sky survey data 
to constrain models of dark matter (source: Salman Habib, Argonne). Below: using simulation models to infer defect 
structure in disordered materials (source: Ray Osborn, Argonne). 
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