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Exponentially increasing data traffic

NERSC daily routed WAN traffic since 2002
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Recent Scientific Breakthroughs Enabled by
Extreme Data Science

* Discovery of the Higgs Boson

* Measurement of the important “
neutrino parameter. One of Saence
Magazine’s Top-Ten Breakthroughs of 2012.

— Last and most elusive piece of a longstanding

puzzle: why neutrinos appear to vanish as

they travel " Doty
: s Me0r hal!

"

* The Palomar Transient Factory Discovered
over 2000 supernovae in the last 5 years,
including the youngest and closest Type la
supernova in past 40 years

* Trillions of measurements by the Planck
satellite led to the most detailed maps ever
of cosmic microwave background

* Four of Science Magazines breakthroughs of
the last decade were in Genomics

e Materials project has over 5000 users and
was featured on the cover of Scientific
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Data deluge will continue at DOE
experimental facilities

- The observational dataset for the * By 2017 ATLAS/CMS will have
Large Synoptic Survey Telescope generated 190 PB
'Ilgb ){IOOPPB y P Light Source Data Projections:
will be — 2009: 65 TB/yr
« The Daya Bay project will require — 2011: 312 TBlyr
simulations which will use over — 2013:1.9PB /yr
128 PB of aggregate memory — EBin 20217
— NGLS is expected to generate
data at a terabit per second
Expected Data Rate Production
0 Cost per Genome
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Source: National Human Genome Research Institute
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Unique data-centric resources will be needed m

Compute Intensive Arch Data Intensive Arch
An-Packaoe

DRAM

Goal: Maximum
computational density
and local bandwidth for
given power/cost
constraint.

Capacity Memory

On-node-Storage

In-Rack Storage

Maximizes bandwidth
Interconnect density near compute




Path Forward for Big Data and
Extreme Computing

Chaitan Baru
Michael Norman
San Diego Supercomputer Center
UC San Diego



Application-level Benchmarking

» TPC-style: Schema + Workload

= E.g.: BigBench: TPC+H with semistructured data and data
mining, machine learning operations

BigBench data model
e N
Structured Data Unstructured
Marketprice Item \ D
Sales Reviews
Web Pag Customer /
( O Adapted
Web Log
h
Semi-Structured Data - BlgBer'u:
J Specific
TERADATA. | aster data

- Several other proposals under development:

= HiBench, BigDecision, BigDataBench, Deep Analytics
Pipeline

» TPCx-HS: TPX Express — Hadoop Systems
G UCSD ——
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Processing Pipelines: Deep Analytics
Pipeline

- An end-to-end data processing pipline:
= Data from multiple sources
= Loose, flexible schema

= Data requires structuring
s ELT rather than ETL

“User Modeling” is a prototypical application

= Retail shoppers, Telecom subscribers, Healthcare patients,
DataCenter HW and SW systems, Users in Ad-based Web

- Applications consist of
= Pipelines of processing
= Running models with data

Integration /
A Extraction '
lc{(élcli)ss(all?lr;/ Cleaning / Aggregatlon/ %dnaéy?ls/ Interpretatio
Annotation/ / Representatio OCCLNS

C2U cLOS
Center for Large-scale Data Systems Reseanrt
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Processing Pipeline: Whole Genome
Sequencing

« By: Kristopher Standish™*, Tristan M. Carland®, Glenn K. Lockwood*", Mahidhar Tatineni*",
Wayne Pfeiffert”, Nicholas J. Schork™

“Scripps Translational Science Institute, *San Diego Supercomputer Center, “"UC San Diego
- Project funding provided by Janssen R&D

5,000 cores (30% of
257 TB Lustre Gordon) in use at once

scratch used at peak
. Map (BWA) 300
. sam to bam (SAMtools)
. Merge Lanes (SAMtools)

. Sort (SAMtools) 250 ~Oasis Scratch | %9%
. Mark Duplicates (Picard)
. Target Creator (GATK) 4,000
. Indel Realigner (GATK)
. Base Quality Score 3,000
Recalibration (GATK)
9. Print Reads (GATK) 100 _f" N————— 2,000

6,000
Cores in Use

“=Oasis Projects

O~NOO L WN=
N
o
S

Terabytes Used
o
o

CPU Cores Consumed

A

50 1,000

36 core-years of computing;
438 full genomes; 50TB compressed data e 90 920 980  10M0 1020 1080

SDSC<UCSD CLDS
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What We Need

- Shared experimental infrastructure at scale for:

» Systems R&D; software development and testing;
and yes, education!

» Co-design, but also “co-education”!

= Involve students: CS, science, computational
science, data science

» A coordinated effort among science/CS—and
also among agencies

- Reality: Ideas as well as funding may need to
come from multiple sources

a1 D S———



‘ Thomas Lippert (Leader SP7: HPC Platform)
Boris Orth (SP 7 Project Manager)

I{)} Humaﬂ Bl‘all’l PPOJ eCt Bernd Mohr (Task Leader T 7.2.4

Medicine

BaSiC Facts GOAL Neurc???ience - "': mputing
« European-led international e Build an Rl

large-scale project integrated [/
« EU FET Flagship Programme leT ruct Integration e (CT Plttorms
* 10 years duration (Oct 2013 —) NIras TUCIITS,

N enabling ”

- EUR1.1 b.|II|on total cost . Aglobal s ‘
« 12 subprojects collaborative Qv,y{,{nfv;fd .

(Of which 2 led by JU“Ch) effort towards ‘e x Technolog/gs:...
« 80 partners / 23 countries understanding

the human brain,
and ultimately

 Emulate its
computational
capabilities

— More via Competitive Calls

4
N Coordinated by EPFL
" (Henry Markram)

www.humanbrainproject.eu

Fukuoka, 26 February 2014 BDEC Workshop 1



http://www.humanbrainproject.eu

Integration Strategy

Experimental Data Gathering

Worldwide Published Data,
Models and Literature

L e o Refinement of
Models and Experiments *

Model Building

Analysis and
Visualization

Fukuoka, 26 February 2014

BDEC Workshop 2



Strategic Mouse Brain Data

r HBP Research Areas and Subprojects
y
b

Strategic Human Brain Data

Cognitive Architectures
Neuroinformatics
Platform

Theoretical Neuroscience . .
Brain Simulation

Platform

High Performance

Computing Platform

Platforms
Medical Informatics

Platform

Neuromorphic Computing
Platform

Applications Applications

Neurorobotics
Platform

* Future Computing
» Future Neuroscience
» Future Medicine

Ethics & Society Ethics

Fukuoka, 26 February 2014 BDEC Workshop 3



Key technical aspects of
future HPC platform

Vision of Interactive Supercomputing:
data-intensive interactive simulations, analysis
and visualization

« Efficient data management

— Significantly increased memory capacity to keep data
within system

 Tightly integrated visualization
— Rendering close to data, scalable image compositing
* Dynamic resource management

N — Dynamic relocation of resources within session and
dynamic resizing of session resources

— Co-scheduling of heterogeneous resources




The Need for Resilience Research in Workflows of
Big Compute and Big Data Scientific Applications

Franck Cappello ANL&UIUC and Tom Peterka, ANL

In situ BigCompute + BigData: A new Class of Executions

-increasing need of coupling simulations with Data analytics Key problems@Exascale:

(generated data too large to fit on storage for off-line analytics) Fail stop errors, process
-different types of analytics: physics, visualization crashes
Particles 10 per day?
Produces raw particles ‘it Silent data corruptions
Cosmology A : 1 per day?
Simulation @ plot
2D Density , I*Ql?we_nslt_x

Conversion A\
to a mesh
tessellation
\ % j
é @ EFY

Tessellation




What is the problem? %,

* The execution is a multi-stage pipeline, workflows (graph) &’%

* Producers and consumers components G"/'oﬁ

* Communications as streams (Unidirectional) BW components} J‘x&

e Bidirectional (burst) communications inside components O(}

 Heterogeneous parallel applications (some tightly coupled, some loosely,
different nature, different #processes, etc.)

* Performance =2 implement communication BW components in memory
* Potentially Heterogeneous Hardware/software
* Different user recovery needs depending on where/when the fault happened

e Static versus dynamic in situ data analytics
Multiple failure

Scenarios:
-simulation fails
-2cd stage fails
-Multiple stages fail
-corruption in
Simulation
-corruption in final
o stage

Mix of tightly

Coupled and loosely
Coupled stages
(simulation in orange)

Ceoé



What are the main technical issues?

- How users express their resilience needs/expectations?

- How do we handle fail stop errors?
— Checkpoint? How to capture the state of a gigantic workflow? Can we?
— Restart?, from where: beginning?, simulation checkpoint? Workflow state?

- How do we prepare for SDCs?

- Don’t care?, try to detect as much as possible?, depends on the
components?, on the location of the component in the graph?

— Do we use replication in the data analytics modules?, ABFT for data
analytics ? Approximate computing? More robust hardware?

Multiple failure

Z Scenarios:
E/HX Olf t(;ight(ljyl | | : | -simulation fails
oupled and loosely ! A ) .
Coupled stages y { i/(ltdliitalge Ialls il
i . ad : -Multiple stages fai
(simulation in orange) JL I . _corruption in
- Simulation

-corruption in final
S stage



Why is this different?

e |=Large scale parallel execution (bidirectional communication, homogeneous)
* |=Workflows on GRID (loosely coupled, intermediate storage on disk, security)
* |=Coupled Applications (CESM, etc: Interaction symmetry, global checkpoint)

At least 4 new resilience problems/dimensions for the BDEC roadmap:
1) Understand the effects of SDC on the workflow results.

— Depending on the data product, the combination of resolution and location in the
workflow may make some data products more sensitive to SDCs than others.

2) Establish clear response modes with respect to failure modes + user needs
—  Depending on the failure type (FS+SDC) and on where it happens in the workflow,
static versus dynamic in situ analytics
— Is speculative execution of a module during the recovery of another of interest?
3) Design workflow components & coupling methods

—  Maximize performance AND at the same time maximize failure containment

4) Architect the right fault tolerance approach for each component and for the
workflow as a whole = more than a problem of orchestration: optimization
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Holistic View of Composable Data Analysis: Insights From
Software Frameworks for Extreme Scale Computing

Anshu Dubey, W. Bethel, Prabhat, J. Shalf, A. Shoshani, B. Van Straalen

Scientific Process Closed Loop
U There is a hypothesis

O Experiments, observations and/or simulations are designed
around the hypothesis.
0 Often complex multi-stage data analysis involved
0 Analysis might lead to a new hypothesis
U Process is repeated

O Data analysis and curation has become comparable or even
bigger exascale challenge than simulations

O Workflows for big data and extreme computing share many
characteristics

L Many stages in the computations, different algorithms for each
stage
U Diverse and often conflicting demands from system resources
U Interoperability is a challenge



Big Data Analytics Stack

Science Drivers

Scientific Analysis

Climate, Daya Bay, DESI, OpenMSlI, JGI

Pattern/
Anomaly
Detection

Data Fusion
Large-Scale
Inference

Clustering,
Dimensionality
Reduction

Genetic Mapping,
Genome Assembly

Scalable Statistical
Methods

Deep Belief
Networks

Sparse Coding

Stochastic VI
Distributed
MCMC

CUR Nystrom
methods

Direct Graph
Kernel
computation

Big Data Motif

Sparse Linear
Algebra,
Optimization

Stochastic
Optimization

Randomized
Linear Algebra

Sparse Linear
Algebra, Graph
Methods

Optimized Libraries

DistBelief

Graphlab

RandLA

Hardwal’e Multi-Core, GPU, MIC clusters

~
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Experimental Validation and Design

Through Simulations

O Data plays the role of intermediary
O Stream of data from experiments and simulations
O Gregori et al. (2012) demonstrated in the laboratory the
generation of magnetic fields by asymmetric shocks —
a widely invoked mechanism for the creation of seed
fields in the universe

O Higher magnetic Reynolds number needed in the
experiments for the next step

Q Increased laser energy

0 Use FLASH Simulations of two configurations to design
experiments

density (g/cc)

— 1.00e+00

. 2.15e-03 . Ty i .2.]56-03

- 2.60e-06 . v - 4.62e-06

(cm)

- 1.00e-08 1.00e-08

Z-Axis

R-Axis (cm)

Images from The Flash Center for Computational Science

Publications: http://www.sciencedirect.com/science/article/pii/S157418181200095X
http://www.sciencedirect.com/science/article/pii/S1574181812001280
http://www.sciencedirect.com/science/article/pii/S157418181200119X

Grid CH foil
(0.2-1 mm) 40 um

Bdot probe
—
10 kJ, 1 ns
<—><¢—>
lcm 1cm
CH foil
Bdot probe Omega:
iy 10kJ, 1 ns
«—>

1cm 1cm

~
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Insights from Petascale Computations

U Takes a combination of robust software design, hard-nosed trade-
offs and careful orchestration

O Software Design:
O Separating algorithmic concerns from infrastructure
O Reusable components
O Well designed, extensible interfaces
0 Framework for composability
O Trade-offs:

O Also consider sub-optimal solutions for components
U Algorithms and implementations

U Example of a simulation campaign: http://hpc.sagepub.com/content/
27/3/360

O Orchestration:
O Take a holistic view of the solution
U Leverage heterogeneity and
U Expose optimization possibilities during design

aaaaaaa RENCE BER ORATORY



From Simulations to Numerical Laboratories
Alex Szalay (JHU)

« HPC is an instrument in its own right
— Largest simulations approach/exceed petabytes

* Need public access to the best and latest
 Also need ensembles of simulations for UQ

« Creates new challenges
— How to access the data?
— What is the data lifecycle?
— What are the analysis patterns?
— What architectures can support these?

* On Exascale everything will be a Big Data problem
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Usage Scenarios for Big Simulations

Huge variations in data lifecycle

— On-the fly analysis (immediate, do not keep)
— Private reuse (short/mid term)

— Public reuse (mid term)

— Public service portal (mid/long term)

— Archival and curation (long term)

Very different from supercomputer usage patterns
Not every data set is equally important!

Important data sets are naturally emerging
Opportunity to build network of data resources
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Numerical Laboratories

+—+

Similarities between Turbulence/CFD, N-body, ocean
circulation and materials ccience

Differences as well in the underlying data structures
— Particle clouds / Regular mesh / Irreqular mesh

Innovative access patterns appearing

— Immersive virtual sensors/Lagrangian tracking

— User-space parallel operators, mini workflows on GPUs

— Posterior feature tagging and localized resimulations

— Machine learning on HPC data

— Joins with user derived subsets, even across snapshots

— Data driven simulations/feedback loop/active control of sims



......................

How to build a system good for the analysis?

Need to define razor sharp tradeoffs

— Cannot build a system that is everything for everybody
— BDEC system is different from supercomputer

Need high bandwidth to data

— Computations/visualizations must be on top of the data
— For subsetting also need fast random access
Lessons from the database world:
— It is hard to schedule complex I/O patterns
— For subsets we must use indexing, cache resilient storage

— Complex architecture => use a declarative language,
the users should tell what to do but not how to do it

Big Data in simulations more structured than commercial



N
Extreme-scale computing for new instrument science
lan Foster, Argonne National Laboratory and University of Chicago

Contact:
foster@anl.gov

New sensors with high data rates

High-performance simulations compinst.org
. globus.org
Multi-modal data anfoster.org

Databases and knowledge bases | @ianfoster
Scientific literature

More data

New % 3 New

analysis science

methods processes
Automated feature detection Online quality control
Flag interesting events Integrate observation, simulation
Real-time data integration Knowledge-based feedback
Classification, clustering, etc. Knowledge-based control

a Based in part on discussions within DOE “Accelerating Scientific Knowledge Discovery” group: Deborah Agarwal,

Amber Boehnlein, lan Foster, Barbara Jennings, Scott Klasky, Kerstin Kleese-Van Dam, Ruth Pordes, David Skinner
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Discovery Engines for Big Data:

New knowledge by coupling observation and simulation

Cosmology: The study of the universe as a dynamical system

X 6,/ (Mpe/n)

Theory Supercomputing Mock Galaxies o s IR 4o SDSS galaxies Sloan Digital Sky Survey

z=0.28

> Dark Correlatlon
Matter *_ function
* » ¢ sDSS
GaIaX|es
-------- Den5|ty
6, (deg.)

Materials science: Diffuse scattering to understand disordered structures

Sr 40%

I 1 1 1
035 040 045 050 055 060 065

Material Simulated Simulated poener Experimental Sample
composition structure scattering scattering

Discovery engine = Advanced instruments + large knowledge
bases + extreme-scale computing + collaborative groups

. Images from Salman Habib et al. (HEP, MCS, etc.) and Ray Osborn et al. (MSD, APS, etc.)



Discovery engines and extreme-scale computing

Reach many more
researchers than
extreme-scale
simulation

Urgent research agenda

Knowledge management and
fusion

Rapid knowledge-based
response

Human-centered science
processes

Challenges for exascale technologies

Reliable, secure, high-speed
_, System integration beyond
S~ the machine room

)

@@®» On-demand scheduling to
match with human decision
taking timelines

... New computational problems
% . that stress computer
architectures in new ways

(globusWORLD




Supporting Big Data @ NAS

Piyush Mehrotra
L. Harper Pryor
NASA Advanced Supercomputing (NAS) Division), NASA Ames
{piyush.mehrotra,laura.h.pryor}@nasa.gov

« NASA has enormous collections of observational and model data

 QObservational Data:

— Estimate 100+ active satellites producing 50PBs per year

Solar Dynamics Observation (SDO) satellite produces 1 GB per minute => > 1/2 PB/ year ;
~ 3PB in its 5 year life cycle

— NASA Earth Science operates 12 DAACs (archive centers); National Space Science
Data Center

* Model Data:

— NAS has 20+ PB storage; 115 PBs archive storage & archiving 1+ PB per month

MITgcem 35K core run produced 1.44 PB in its 5 day run; full run will produce 9-18 PB;
adding bio-geo-chemistry will increase data 100-fold

Fun Fact: The term “Big Data” was first used by Michael Cox & David Ellsworth of NAS in
a paper: “Visualizing flow around an airframe” Visualization 97, Phoenix AZ.

- Biggest data set considered 7.5GB; high-end analysis machines had less than 1GB
memory

National Aeronautics and Space Administration



Advanced Visualization: hyperwall-2
and CV

Supercomputer-scale visualization
system to handle massive size of
simulation results and increasing
complexity of data analysis needs

— 8x16 LCD tiled panel display (23 ft x 10 ft)
— 245 million pixels

— Interconnected to NAS supercomputer via —
IB

Two primary modes
— Single large high-definition image

— Sets of related images (e.g., a parameter
space of simulation results)

Traditional Post-processing: Direct
read/write access to Pleiades
filesystems eliminates need for
copying large datasets

Concurrent Visualization: Runtime
data streaming increases temporal
fidelity at much lower storage costs:

— ECCO: images every integration time step
as opposed to every 860+ time steps
originally
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NASA Earth

Collaborative Computing for
Earth Science

To engage and enable the Earth science
community in addressing
global environmental challenges

To improve efficiency and expand the scope of
NASA Earth science technology, research and
applications programs

N

droughts/Amazon
2005 & 2010

Samantha et al., GRL, 2010
Xu et al., GRL, 2011

PuBLIC
USERS EARTH SCIENCE COMMUNITY USERS
Specific privileges and access to resources governed
by individual user credentials and allocations
Portal Sandbox NAS HPC
Point of entry to NEX Dedicated NEX Environment for
collaborative environment compute environment Computing at scale

NEX Data Holdings
Data resources to support

NEX: Three-tier environment

National Aeronautics and Space Administration

70W 60w 50°W

0.25°x0.25° Precip. standardized anomalies 1x1km? NDVI standardized anomalies
<20 45 40 10 15 >20 <20 45 40 10 15 >20

Faster (24 months vs. 3 months), consistent (same
analytical methods, quality flags) and reproducible;

Landsat Archive MODIS Archive m
MODIS U.S. Climate

LEDAPS Workiow |
‘ Surfaces, DEMs,
Arghive

3 —— Downscaled CMIP3,
3 : land covét soils' ICRONEY
QA/QC Workflow priny g Downscaled CMIPS
Mosaic Workfiow i v -
Composite Workflow WRF Workflow  |!

v J 3 ’ Carbon Cycle Models (Biome-BGC. CASA, LPJ, BEAMS,

' SIMCYCLE), Biodiversity / niche models
Landsat & MODIS 7
Surface reflectance, NDVI I 2 o 5

- — b Madeling Workflows + Climate Scenario Workflow |

TOPS Anomaly Workflows for modeling Y
Detection LAl Biomass, Disturbance, Spp. I primary pi o iration, runoff
Workflow Niche, Crops . . .
L Moror | e ! L v
USGS DWR N. American Forast | US.LAI/ ISIMIE NPS Climate Climate Change
At |  CMS - — Change Impacts on
gunwed P! e (A Biomass Pilot Modeling of shifis in Madeling NASA Canters
Global CA Crop Water spp. ranges
Biodiversi ,Df 'I“‘i"’ METRICET |, NCA: Chimate &
Bay-Delta SESAME / Modeling land use change e
Salmon Modeling Cons. Intl. Fire Risk \
| Modeling \ i
Global 250-m Drought \
Mapping /!
[ v e
Dissemination of Results
[ Requirements for new projects }——V NEX Lecture Series |<'—1 Requirements for new projects |

Representative workflow; tools currently being
investigated VisTrails & ParaView 3



Big Data Effort @ NAS

« Current infrastructure => Big compute:

— Pleiades #16 on Top500, undergoing augmentation to 3.5 PF; Endeavour — SGI
UV nodes 2TB & 4TB; 20+ PB storage; 115 PB of archive storage

 Big Data Focus: Develop and implement a roadmap for an
infrastructure to support analysis & analytics
— Conducted survey of projects dealing with big data (available soon)

— Currently conducting prototype experiments

« Challenges (extracted from survey):
— Data management — storage/access/transport
— Data discovery - Indexing/archiving, metadata — requires semantic reasoning
— Tools/models/algorithms: development & discovery

— Data Analysis/Analytics infrastructure
» Most NASA data is structured, gridded, geospatial
« Shared memory systems with large I/O pipes; data preferably co-located with compute
* Visualization support

— Workflow to tie all components together

— Collaboration environments
Dissemination and sharing of results/tools/models/algorithms

National Aeronautics and Space Administration



