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Exponentially increasing data traffic
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First"petabyte"day"
expected"in"2020"

Jump"driven"by"data"intensive"
applica9ons""

Major"improvements"
in"TCP"auto!tuning"



Recent Scientific Breakthroughs Enabled by 
Extreme Data Science


•  Discovery(of(the(Higgs(Boson(
•  Measurement(of(the(important!“θ13”(
neutrino(parameter.(One(of(Science(
Magazine’s(TopHTen(Breakthroughs(of(2012.!
–  Last(and(most(elusive(piece(of(a(longstanding(
puzzle:(why(neutrinos(appear(to(vanish(as(
they(travel(

–  ((
•  The(Palomar(Transient(Factory(Discovered(
over(2000(supernovae(in(the(last(5(years,(
including((the(youngest(and(closest(Type(Ia(
supernova(in(past(40(years(

•  Trillions(of(measurements(by(the(Planck(
satellite(led(to(the(most(detailed(maps(ever(
of(cosmic(microwave(background(

•  Four(of(Science(Magazines(breakthroughs(of(
the(last(decade(were(in(Genomics(

•  Materials(project(has(over(5000(users(and(
was(featured(on(the(cover(of(ScienTfic(
American( HEP(

SN"2011fe"
PI:"Shri"Kulkarni"(Caltech)"



•  The observational dataset for the 
Large Synoptic Survey Telescope 
will be ~100 PB 

•  The Daya Bay project will require 
simulations which will use over 
128 PB of aggregate memory 
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Data Rate in gbpsData Rate in gbps

Institution <2 years 2-5 years > 5 years

ALS 5.00E+03 1.00E+04 2.00E+06

NSLS 1.00E+02 5.00E+04 1.00E+05

SLAC 4.00E+03
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•  By 2017 ATLAS/CMS will have 
generated 190 PB 

•  Light Source Data Projections: 
–  2009: 65 TB/yr  
–  2011: 312 TB/yr 
–  2013: 1.9 PB /yr 
–  EB in 2021? 
–  NGLS is expected to generate 

data at a terabit per second  
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Data deluge will continue at DOE 
experimental facilities




Unique data-centric resources will be needed
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Data!Intensive!Arch!Compute!Intensive!Arch!
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(e.g"whamcloud)"

�/�!
(root)!

�Dataset0�!
type,space! �Dataset1�!

type, space!
�subgrp�!

�time�=0.2345!

�validity�=None!

�author�=JoeBlow!

�Dataset0.1�!
type,space! �Dataset0.2�!

type,space!

Spa9ally!oriented"

e.g."3D!5D"Torus"

50GB/s/node"
10TB/s/rack"

100TB/s"

50GB/s"inject"
10TB/s"bisect"

All!to!All"oriented"

e.g."Dragonfly"or"3T"

~1%"nodes"for""

Storage"Gateways"

~10!20%"nodes"for""

Storage"Gateways"

~1%"nodes"for"IP"Gateways"
40GBe"Ethernet"to""

Direct"from"each"node"

Compute Node! I/O Server!

Compute Node!

Compute Node!

. . .!
I/O Server!

Compute Node!

Disks!

Disks!

Disks!

Disks!Metadata Server (MDS)!

Interconnect"
Fabric!

RAID!
Couplet!

RAID!
Couplet!

50GB/s"inject"

0.5TB/s""aggregate"

4GB/s"per"node"

Compute Node! I/O Server!

Compute Node!

Compute Node!

. . .!
I/O Server!

Compute Node!

Disks!

Disks!

Disks!

Disks!Metadata Server (MDS)!

Interconnect"
Fabric!

RAID!
Couplet!

RAID!
Couplet!

I/O Server!

. . .!

Compute"

On!Package"
DRAM"

Capacity"Memory"

On!node!Storage"
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Goal:(Maximum!
computa6onal!density!
and!local!bandwidth!for$

given$power/cost$
constraint.$

"

Maximizes"bandwidth"

density"near"compute"

Goal:(Maximum!data!
capacity!and!global!
bandwidth!for$given$
power/cost$constraint.$

"

Bring"more"storage"

capacity"near"compute"(or"

conversely"embed"more"

compute"into"the"storage)."

"

Requires$so5ware$and$
programming$environment$

support$for$such$a$
paradigm$shi5$



Path'Forward'for'Big'Data'and''
Extreme'CompuJng''

Chaitan'Baru''
Michael'Norman''

San!Diego!Supercomputer!Center!!
UC!San!Diego!



Application-level Benchmarking 

•  TPC-style: Schema + Workload 
▫  E.g.: BigBench: TPC+H with semistructured data and data 

mining, machine learning operations 

•  Several other proposals under development: 
▫  HiBench, BigDecision, BigDataBench, Deep Analytics 

Pipeline 
▫  TPCx-HS: TPX Express – Hadoop Systems 



Processing Pipelines: Deep Analytics 
Pipeline 
•  An end-to-end data processing pipline: 
▫  Data from multiple sources 
▫  Loose, flexible schema 
▫  Data requires structuring 
▫  ELT rather than ETL 

•  “User Modeling” is a prototypical application 
▫  Retail shoppers, Telecom subscribers, Healthcare patients, 

DataCenter HW and SW systems, Users in Ad-based Web 
•  Applications consist of 
▫  Pipelines of processing 
▫  Running models with data 
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Acquisition / 
Recording 

Extraction / 
Cleaning / 
Annotation 

Integration / 
Aggregation / 

Representation 
Analysis / 
Modeling Interpretation 



Processing Pipeline: Whole Genome 

Sequencing 
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5,000 cores (30% of 
Gordon) in use at once!257 TB Lustre 

scratch used at peak!
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1. Map (BWA) 
2. sam to bam (SAMtools) 
3. Merge Lanes (SAMtools) 
4. Sort (SAMtools) 
5. Mark Duplicates (Picard) 
6. Target Creator (GATK) 
7. Indel Realigner (GATK) 
8. Base Quality Score 
Recalibration (GATK) 
9. Print Reads (GATK) 

•  By: Kristopher Standish*^, Tristan M. Carland*, Glenn K. Lockwood+^, Mahidhar Tatineni+^, 
Wayne Pfeiffer+^, Nicholas J. Schork*^ 

*Scripps Translational Science Institute, +San Diego Supercomputer Center, ^UC San Diego 
•  Project funding provided by Janssen R&D"

36 core-years of computing;  
438 full genomes; 50TB compressed data 



What We Need 
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•  Shared experimental infrastructure at scale for: 
▫  Systems R&D; software development and testing; 

and yes, education! 
• Co-design, but also “co-education”! 
▫  Involve students: CS, science, computational 

science, data science 
• A coordinated effort among science/CS—and 

also among agencies 
• Reality: Ideas as well as funding may need to 

come from multiple sources 



Fukuoka, 26 February 2014 BDEC Workshop 1 

Basic Facts 
• European-led international 

large-scale project 
• EU FET Flagship Programme 
• 10 years duration  (Oct    2013  →) 
• EUR 1.1 billion total cost 
• 12 subprojects 

(of which 2 led by Jülich) 
• 80 partners / 23 countries 

–  More via Competitive Calls 
• Coordinated by EPFL 

(Henry Markram) 
• www.humanbrainproject.eu 

GOAL 
• Build an 

integrated 
ICT 
infrastructure,  
enabling 

• A global 
collaborative 
effort towards 
understanding 
the human brain, 
and ultimately 

• Emulate its 
computational  
capabilities 

Medicine 
Computing 

Data, 
Knowledge, 

Technologies, ... 

ICT Platforms 

Neuroscience 

Integration 

Thomas Lippert (Leader SP7: HPC Platform) 
Boris Orth (SP 7 Project Manager) 
Bernd Mohr (Task Leader T 7.2.4 

http://www.humanbrainproject.eu


Integration Strategy 

Fukuoka, 26 February 2014 BDEC Workshop 2 



HBP Research Areas and Subprojects 
Sub-projects 

Brain Simulation 
Platform 

Neuroinformatics 
Platform 

High Performance 
Computing Platform 

Medical Informatics 
Platform 

Neuromorphic Computing 
Platform 

Neurorobotics 
Platform 

Theory 

Data 

Research 
Areas 

Platforms 

Applications 

Ethics 

Sub-projects 

Strategic Human Brain Data 

Strategic Mouse Brain Data 

Cognitive Architectures 

Theoretical Neuroscience 

Applications 

Ethics & Society 

• Future Computing 
• Future Neuroscience 
• Future Medicine 

Fukuoka, 26 February 2014 BDEC Workshop 3 



Key technical aspects of 
future HPC platform 

Fukuoka, 26 February 2014 BDEC Workshop 4 

Vision of  Interactive Supercomputing: 
data-intensive interactive simulations, analysis 
and visualization 
• Efficient data management 

– Significantly increased memory capacity to keep data 
within system 

• Tightly integrated visualization 
– Rendering close to data, scalable image compositing 

• Dynamic resource management 
– Dynamic relocation of resources within session and 

dynamic resizing of session resources 
– Co-scheduling of heterogeneous resources 

 



Franck'Cappello'ANL&UIUC'and'Tom'Peterka,'ANL'

The'Need'for'Resilience'Research'in'Workflows'of'
Big'Compute'and'Big'Data'ScienFfic'ApplicaFons''

In'situ'BigCompute'+'BigData:'A'new'Class'of'ExecuFons'
Lincreasing'need'of'coupling'simulaFons'with'Data'analyFcs'

(generated'data'too'large'to'fit'on'storage'for'offLline'analyFcs)'

Ldifferent'types'of'analyFcs:'physics,'visualizaFon'

Produces)raw)par-cles))

View)

Conversion)
to)a)mesh)
tessella-on))

View)
further))
resampiing))

View)

View)

Cosmology))
Simula-on)

Key'problems@Exascale:'
Fail)stop)errors,'process'
crashes''
10'per'day?'
Silent)data)corrup-ons)
1'per'day?''



•  The'execu-on)is'a'mulFLstage'pipeline,'workflows)(graph)'

•  Producers)and'consumers)components'

•  CommunicaFons'as'streams)(UnidirecFonal)'BW'components'

•  Bidirec-onal)(burst)'communica-ons)inside'components'
•  Heterogeneous)parallel'applica-ons)(some'Fghtly'coupled,'some'loosely,'

different'nature,'different'#processes,'etc.)'

•  Performance''implement'communica-on)BW)components)in)memory)

•  PotenFally'Heterogeneous)Hardware/soCware)

•  Different)user)recovery)needs)depending'on'where/when'the'fault'happened'

•  Sta$c&versus&dynamic&in#situ#data#analy+cs#

What'is'the'problem?'

Mix'of'Fghtly'
Coupled'and'loosely'
Coupled'stages'
(simula-on)in)orange)'

MulFple'failure'
Scenarios:'
LsimulaFon'fails'
L2cd'stage'fails'
LMulFple'stages'fail'
LcorrupFon'in''
SimulaFon'
LcorrupFon'in'final'
stage'



'How'users'express)their'resilience'needs/expectaFons?'

 How'do'we'handle)fail)stop)errors?'
 Checkpoint?'How'to'capture'the'state'of'a'giganFc'workflow?'Can'we?'
 Restart?,'from'where:'beginning?,'simulaFon'checkpoint?'Workflow'state?'

 How'do'we'prepare)for)SDCs?''
  Don’t'care?,'try'to'detect'as'much'as'possible?,'depends'on'the'

components?,'on'the'locaFon'of'the'component'in'the'graph?'
 Do'we'use'replicaFon'in'the'data'analyFcs'modules?,'ABFT'for'data'

analyFcs'?'Approximate'compuFng?'More'robust'hardware?'

What'are'the'main'technical'issues?'

Mix'of'Fghtly'
Coupled'and'loosely'
Coupled'stages'
(simula-on)in)orange)'

MulFple'failure'
Scenarios:'
LsimulaFon'fails'
L2cd'stage'fails'
LMulFple'stages'fail'
LcorrupFon'in''
SimulaFon'
LcorrupFon'in'final'
stage'



Why'is'this'different?'
•  !='Large'scale'parallel'execuFon'(bidirecFonal'communicaFon,'homogeneous)''

•  !='Workflows'on'GRID'(loosely'coupled,'intermediate'storage'on'disk,'security)'

•  !='Coupled'ApplicaFons'(CESM,'etc:'InteracFon'symmetry,'global'checkpoint)'

At)least)4)new)resilience)problems/dimensions)for)the)BDEC)roadmap:)
1)  Understand)the'effects'of'SDC'on'the'workflow'results.''

–  Depending'on'the'data'product,'the'combinaFon'of'resoluFon'and'locaFon'in'the'
workflow'may'make'some'data'products'more'sensiFve'to'SDCs'than'others.''

2)  Establish)clear)response)modes)with'respect'to'failure'modes'+'user'needs'

–  Depending'on'the'failure'type'(FS+SDC)'and'on'where'it'happens'in'the'workflow,'

'sta+c#versus#dynamic#in#situ#analy+cs#

–  Is'speculaFve'execuFon'of'a'module'during'the'recovery'of'another'of'interest?'

3)  Design'workflow'components'&'coupling'methods'

–  Maximize'performance'AND'at'the'same'Fme'maximize'failure'containment''

4)  Architect)the'right'fault'tolerance'approach'for'each'component'and'for'the'
workflow'as'a'whole''more'than'a'problem'of'orchestraFon:'opFmizaFon'



Scientific Process Closed Loop 
 There is a hypothesis 

 Experiments, observations and/or simulations are designed 
around the hypothesis.  
 Often complex multi-stage data analysis involved 
 Analysis might lead to a new hypothesis 
 Process is repeated 

 Data analysis and curation has become comparable or even 
bigger exascale challenge than simulations  

 Workflows for big data and extreme computing share many 
characteristics 
 Many stages in the computations, different algorithms for each 

stage 
 Diverse and often conflicting demands from system resources 
 Interoperability is a challenge 

Holistic View of Composable Data Analysis: Insights From 
Software Frameworks for Extreme Scale Computing 
Anshu Dubey, W. Bethel, Prabhat, J. Shalf, A. Shoshani, B. Van Straalen 



Big Data Analytics Stack 



Experimental Validation and Design 
Through Simulations 

  Data plays the role of intermediary 
  Stream of data from experiments and simulations 

  Gregori et al. (2012) demonstrated in the laboratory the 
generation of magnetic fields by asymmetric shocks – 
a widely invoked mechanism for the creation of seed 
fields in the universe  

  Higher magnetic Reynolds number needed in the 
experiments for the next step 
  Increased laser energy 

  Use FLASH Simulations of two configurations to design 
experiments 

Images from The Flash Center for Computational Science 
Publications: http://www.sciencedirect.com/science/article/pii/S157418181200095X 
                      http://www.sciencedirect.com/science/article/pii/S1574181812001280 
                      http://www.sciencedirect.com/science/article/pii/S157418181200119X 



Insights from Petascale Computations 

 Takes a combination of robust software design, hard-nosed trade-
offs and careful orchestration 

 Software Design: 
 Separating algorithmic concerns from infrastructure 
 Reusable components 
 Well designed, extensible interfaces 
 Framework for composability 

 Trade-offs: 
 Also consider sub-optimal solutions for components 

 Algorithms and implementations 
 Example of a simulation campaign: http://hpc.sagepub.com/content/

27/3/360 
 Orchestration: 

 Take a holistic view of the solution 
 Leverage heterogeneity and  
 Expose optimization possibilities during design 



From Simulations to Numerical Laboratories 

 
•  HPC is an instrument in its own right 

–  Largest simulations approach/exceed petabytes 

•  Need public access to the best and latest 
•  Also need ensembles of simulations for UQ 
•  Creates new challenges 

–  How to access the data? 
–  What is the data lifecycle? 
–  What are the analysis patterns? 
–  What architectures can support these? 

•  On Exascale everything will be a Big Data problem 

 

Alex Szalay (JHU) 
 



Usage Scenarios for Big Simulations 

•  Huge variations in data lifecycle 
–  On-the fly analysis  (immediate, do not keep) 
–  Private reuse    (short/mid term) 
–  Public reuse   (mid term) 
–  Public service portal  (mid/long term) 
–  Archival and curation  (long term) 

•  Very different from supercomputer usage patterns 
•  Not every data set is equally important! 
•  Important data sets are naturally emerging 
•  Opportunity to build network of data resources 



Numerical Laboratories 

•  Similarities between Turbulence/CFD, N-body, ocean 
circulation and materials ccience 

•  Differences as well in the underlying data structures 
–  Particle clouds / Regular mesh / Irregular mesh 

•  Innovative access patterns appearing 
–  Immersive virtual sensors/Lagrangian tracking 
–  User-space parallel operators, mini workflows on GPUs 
–  Posterior feature tagging and localized resimulations 
–  Machine learning on HPC data 
–  Joins with user derived subsets, even across snapshots 
–  Data driven simulations/feedback loop/active control of sims 
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Architectual Challenges 

•  How to build a system good for the analysis? 
•  Need to define razor sharp tradeoffs 

–  Cannot build a system that is everything for everybody 
–  BDEC system is different from supercomputer 

•  Need high bandwidth to data 
–  Computations/visualizations must be on top of the data 
–  For subsetting also need fast random access 

•  Lessons from the database world: 
–  It is hard to schedule complex I/O patterns 
–  For subsets we must use indexing, cache resilient storage 
–  Complex architecture => use a declarative language, 

the users should tell what to do but not how to do it 
•  Big Data in simulations more structured than commercial 
 



Extreme-scale computing for new instrument science  

Ian Foster, Argonne National Laboratory and University of Chicago 

More data 

New 
analysis 
methods 

New 
science 

processes 

New$sensors$with$high$data$rates$
High0performance$simula7ons$
Mul70modal$data$
Databases$and$knowledge$bases$
Scien7fic$literature$

Automated$feature$detec7on$
Flag$interes7ng$events$
Real07me$data$integra7on$
Classifica7on,$clustering,$etc.$

Online$quality$control$
Integrate$observa7on,$simula7on$
Knowledge0based$feedback$
Knowledge0based$control$

Based in part on discussions within DOE “Accelerating Scientific Knowledge Discovery” group: Deborah Agarwal, 
Amber Boehnlein, Ian Foster, Barbara Jennings, Scott Klasky, Kerstin Kleese-Van Dam, Ruth Pordes, David Skinner  

Contact: 
foster@anl.gov 
compinst.org 
globus.org 
ianfoster.org 
@ianfoster 



Discovery Engines for Big Data: 

New knowledge by coupling observation and simulation 

Cosmology:)The)study)of)the)universe)as)a)dynamical)system))

Sample Experimental 
scattering 

Material 
composition 

Simulated 
structure 

Simulated 
scattering 

La$60%$
Sr$40%$

Materials)science:)Diffuse)sca:ering)to)understand)disordered)structures))

Images$from$Salman$Habib$et$al.$(HEP,$MCS,$etc.)$and$Ray$Osborn$et$al.$(MSD,$APS,$etc.)$

Discovery engine = Advanced instruments + large knowledge 
bases + extreme-scale computing + collaborative groups 



Reliable,$secure,$high0speed$
system$integra7on$beyond$
the$machine$room$
$

On0demand$scheduling$to$
match$with$human$decision$
taking$7melines$

New$computa7onal$problems$
that$stress$computer$
architectures$in$new$ways$

Discovery engines and extreme-scale computing 

Urgent)research)agenda)
))

Knowledge$management$and$
fusion$
$

Rapid$knowledge0based$
response$
$

Human0centered$science$
processes$

Reach)many)more)
researchers)than)
extreme>scale)
simula?on)

Challenges)for)exascale)technologies)



Supporting Big Data @ NAS 

•  NASA has enormous collections of observational and model data 
•  Observational Data: 

–  Estimate 100+ active satellites producing 50PBs per year 
•  Solar Dynamics Observation (SDO) satellite produces 1 GB per minute => > 1/2 PB/ year ; 

~  3PB in its 5 year life cycle 
–  NASA Earth Science operates 12 DAACs (archive centers); National Space Science 

Data Center  
•  Model Data: 

–  NAS has 20+ PB storage; 115 PBs archive storage & archiving 1+ PB per month 
•  MITgcm 35K core run produced 1.44 PB in its 5 day run; full run will produce 9-18 PB; 

adding bio-geo-chemistry will increase data 100-fold 

 
Fun Fact: The term “Big Data” was first used by Michael Cox & David Ellsworth of NAS in 
a paper:  “Visualizing flow around an airframe” Visualization 97, Phoenix AZ.  

-  Biggest data set considered 7.5GB; high-end analysis machines had less than 1GB 
memory  

1"

Piyush'Mehrotra'
L.'Harper'Pryor'

NASA'Advanced'Supercompu:ng'(NAS)'Division),'NASA'Ames'
{piyush.mehrotra,laura.h.pryor}@nasa.gov'



Advanced Visualization: hyperwall-2 
and CV  

•  Supercomputer-scale visualization 
system to handle massive size of 
simulation results and increasing 
complexity of data analysis needs 

–  8x16 LCD tiled panel display (23 ft x 10 ft) 
–  245 million pixels 
–  Interconnected to NAS supercomputer via 

IB 
•  Two primary modes 

–  Single large high-definition image 
–  Sets of related images (e.g., a parameter 

space of simulation results) 
•  Traditional Post-processing: Direct 

read/write access to Pleiades 
filesystems eliminates need for 
copying large datasets 

•  Concurrent Visualization: Runtime 
data streaming increases temporal 
fidelity at much lower storage costs: 

–  ECCO: images every integration time step 
as opposed to every 860+ time steps 
originally  

2 



NASA Earth Exchange (NEX) 
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!A!tale!of!two!
droughts/Amazon!
2005!&!2010!

Faster"(24"months"vs."3"months),"consistent"(same"
analy9cal"methods,"quality"flags)"and"reproducible;""

Samantha"et"al.,"GRL,"2010"
Xu"et"al.,"GRL,"2011"

Collaborative Computing for 
Earth Science 

To engage and enable the Earth science 
community in addressing 

 global environmental challenges 

VISION 

To improve efficiency and expand the scope of 
NASA Earth science technology, research and 

applications programs 

GOAL 

NEX: Three-tier environment 
Representative workflow; tools currently being 

investigated VisTrails & ParaView 



Big Data Effort @ NAS 
•  Current infrastructure => Big compute: 

–  Pleiades #16 on Top500, undergoing augmentation to 3.5 PF; Endeavour – SGI 
UV  nodes 2TB & 4TB; 20+ PB storage; 115 PB of archive storage 

•  Big Data Focus: Develop and implement a roadmap for an 
infrastructure to support analysis & analytics 

–  Conducted survey of projects dealing with big data (available soon) 
–  Currently conducting prototype experiments  

•  Challenges (extracted from survey): 
–  Data management – storage/access/transport 
–  Data discovery - Indexing/archiving, metadata – requires semantic reasoning 
–  Tools/models/algorithms: development & discovery 
–  Data Analysis/Analytics infrastructure  

•  Most NASA data is structured, gridded, geospatial 
•  Shared memory systems with large I/O pipes; data preferably co-located with compute 
•  Visualization support 

–  Workflow to tie all components together 
–  Collaboration environments 

•  Dissemination and sharing of results/tools/models/algorithms 
4"


