BDEC Breakout Arch 1

2014/02/28 AM

Pete Beckman (ANL)
Satoshi Matsuoka (Tokyo Tech.)

Science Communities

Science Services

Digital Pathology **Analysis**

Cosmology Analysis / Image Server

Kbase Service

Developed Services

Workflow / **Event Services**

Data Services

Analysis/ Compute Services

Data Moving & Syncing

Core Facility

Resource & Configuration Management, Resilience

Identity, Communities, Security

Core Software Tools, Services, & APIs

#!/usr/bin/python

Focus of discussion---what do we articulate

- What are the key abstractions?
- What are the missing pieces (gap analysis) c.f. extreme computing?
- Pete's initial layer
 - Developed Services
 - Developed services
 - Core Facility
- Single site or multi-site (Franck) could be location independent?

Gap analysis 1 – core facilities 1

- Resource & configuration management and resilience
- Identity and community management & security
- Core software, services & APIs
 - Persistent service, ad-hoc, interactive service vs. reserved/batch, orchestrated services (throughput vs. response) are they a dichotomy or coexist
 - Variability of runtime acceptable? would like being able to predict certain degree of throughput, but not critical (little "scaling" experiments)
 - No elasticity exists in most systems no ad-hoc addition removal, market-based charging
 - "swarming"
 - Virtual machines managing complexity of hardware and software stack as well as resource management issues. Do we have a EC-capable VM?
 - Interconnect, I/O, node / heterogeneous processors
 - Nascent state of BD middleware may mandate virtualization (including bare metal)
 - The lack of performance expectations and guarantees out of varying performance due to virtualization hinder

Gap analysis 1 – core facilities 2

- Identity management etc.
 - Central management of identity difficult (c.f. Shibboleth, Dropbox w/email identity)
 - Management of data security etc. curation, etc.
 - Analysis vs. sharing is there distinction?
 - Access to data services, not just files
 - Different communites behave differently vs. national data thingy service
 - Can we accommodate all the different curation and securitypolicies?
 - Million clientels, international access,
 - Various identity management and authorization
 - Does the technology exist, and/or is it a management issue
 - How do commercial entity deal with the sheer scale and variations of policies?
 - How do we track the access (curation and provanance issues again)
 - Need flexible policies here, too

Gap Analysis 1 - Developed Services 1

- Data moving & synching, workflow
 - How are they different from the past Grid work
 - Schedulable data transfers
 - Complex workflow
 - Lack of adoption why?
 - Simple data transfers over a TCP/IP network using file staging is a done deal
 - Inability to store data due to Multi-terabit transfer capabilities
 - Lack of Data mover facilities for staging and mid-tier real-time processing
 - Control of terabit scale direct light path to connect the instruments, data archives, compute, etc.
 - Intelligent "SDN" for extreme big data
 - Intelligence of resource control in various service get human out of the loop as much as possible, only when needed

Gap Analysis 1 - Developed Services 2

- Can existing EC machines (cost) effectively support the BD services?
 - Just a matter of procuring cost configuration heterogeneous tiered machines?
 - Resources at least need to be picked automatically
 - Can we be more aggressive, put more intelligence in data devices for local processing?
- Economics and cost model must become more data centric and sophisticated
- Do we understand the (E)BD community well enough as we understand EC (which is akin to telescopes vs. mass market S&E)
 - Community and number and varieties leading to different policies
 - Data discovery services are also important (as is with web vs. web search)
 - Tools, metadata, workflow etc. also needs to be discovered
 - Journals such as Nature mandate publication of data and procedures for scientific reproducibility- need to support such use cases
- Analyzing, monitoring debugging BD architecture
 - We are getting good tools for EC
 - E.g., anomaly could be glitch in the data processing, not real data
- The need of BDEC testbeds and mini-apps

Morning Breakout: Applications

Spatio-temporal Sensor Integration, Analysis, Classification

- Multi-scale material/tissue structural, molecular, functional characterization. Design of materials with specific structural, energy storage properties, brain, regenerative medicine, cancer
- Integrative multi-scale analyses of the earth, oceans, atmosphere, cities, vegetation etc cameras and sensors on satellites, aircraft, drones, land vehicles, stationary cameras
- Digital astronomy
- Hydrocarbon exploration, exploitation, pollution remediation
- Aerospace wind tunnels, acquisition of data during flight
- Solid printing integrative data analyses
- Autonomous vehicles, e.g. self driving cars
- Data generated by numerical simulation codes PDEs, particle methods
- Fit model with data

Typical Computational/Analysis Tasks Spatio-temporal Sensor Integration, Analysis, Classification

- Data Cleaning and Low Level Transformations
- Data Subsetting, Filtering, Subsampling
- Spatio-temporal Mapping and Registration
- Object Segmentation
- Feature Extraction
- Object/Region/Feature Classification
- Spatio-temporal Aggregation
- Diffeomorphism type mapping methods (e.g. optimal mass transport)
- Particle filtering/prediction
- Change Detection, Comparison, and Quantification

Coupled data acquisition, data analysis, modeling, prediction and correction — data assimilation, particle filtering etc.

Detect and track changes in data during production Invert data for reservoir properties Detect and track reservoir changes

Assimilate data & reservoir properties into the evolving reservoir model
Use simulation and optimization to guide future production

Soft real time and streaming Sensor Data Analysis, Event Detection, Decision Support

- Integrated analyses of patient data physiological streams, labs, mediations, notes, Radiology, Pathology images, mobile health data feeds
- High frequency trading, arbitrage
- Real time monitoring earthquakes, control of oilfields
- Control of industrial plants, aircraft engines
- Fusion data capture, control, prediction of disruptions
- Internet of things
- Twitter feeds
- Intensive care alarms

Typical Computational Analysis Tasks

Streaming Sensor Data Analysis, Event Detection, Decision Support

- Prediction algorithms Kalman, particle filtering
- Machine learning algorithms on aggregated data to develop model, use of model on streaming data for decision support
- Searching for rare events
- Statistical algorithms to distinguish signal from noise
- On the fly integration of multiple complementary data streams

"omics"

- Sequence assembly
- Metagenomics identification/characterization of populations of organisms based on DNA/RNA sequencing
- Phylogenetics, genetic based population biology, cancer mutation landscaping
- Pathway modeling using integrated sequence, expression, epigenetics, protein, glycans
- Genetic/genomic based design of organisms with specific properties

Typical Computational/Analysis Tasks "omics"

- Discrete algorithms hashing, searching, sorting, comparisons, dynamic programming, indexing, similarity search
- Compression
- Statistical algorithms to distinguish biological signal from experimental artifacts/ noise
- Graph construction, traversal, partial/sub graph matching, graph partitioning
- Statistical methods on graphs e.g. Bayesian networks

Population and Social Network Analyses

- Aggregated electronic health data to predict likelihood of disease onset, treatment response, likelihood of re-hospitalization etc
- Predict demand for products, target advertising, store shelf placement
- Characterize influence in social networks

Typical Computational/Analysis Tasks

Population and Social Network Analyses

- Structural properties of graphs PageRank, diameter, radius, connected component
- Graph spectral analysis
- Graph mining
- Machine learning, cluster analysis
- Statistical modeling and analyses
- Natural language processing

Approach

- Detailed example workflows led by application experts
- Key cases involve interplay between simulation and data acquisition "data assimilation"
- Scenarios involving current and future state associated with origin and movement of data between workflow stages
- Definition of workflow components

Follow up

- Yutaka Akiyama
 — Metagenomics
- Geoffrey Fox Components
- Jean-Claude Andre Climate
- Philippe Ricoux Oil exploration/reservoir management
- Joel Saltz Medical imaging

Data Services

James Ahrens, Chaitan Baru

Attendees

- James Ahrens, LANL
- Chaitan Baru, SDSC
- Volker Markl, TU Berlin
- Ian Foster, ANL/Chicago
- Jergi Girona, PRACE/BSC
- Yusong Tan, NUDT, China
- Kenji Ono, RIKEN, Japan
- Robert Triendl, DataDirect
- Maryline Lengert, ESA
- Bodin Francois, IRISA/Univ of Rennes
- Dries Kimpe, ANL
- Kate Keahey, ANL
- Shinji Shimojo, Osaka U
- Yoshio Tanaka, AIST
- Alok Choudary, Northwestern

Describe what is needed in Common/Basic data services

Services

- Store
- Store and Compute
- Querying
- Transfer
- Archive
- Metadata
- Sharing
- Workflow
- Provenance
- Curation
- Visualization/Analytics

General Property of Services

- Performance, Quality of Service (Cost/Access Time), Length of Time of Storage,
- Location, Quality, Resilience, Online/batch, Access latency, Streaming

Who invokes the service, When

What are the most accepted deployed services – on HPC platforms?

Services

- Store yes
- Store and Compute maybe
- Querying no
- Transfer yes
- Archive could be better
- Metadata maybe
- Sharing little bit
- Workflow some
- Provenance no

What are the largest gaps for BDEC science communities

- · Rigid scheduling and processing HPC model
 - Permanent fast data "not allowed"
 - Solution to provide HPC as a service
- Inflexible cost model
 - · Need measure and flexible cost model
 - power, buffer sizes, bandwidth
- Too low level of service abstractions and composition
 - Lack of automatic optimization of composite services
- Type of machine
 - High utilization single user HPC
 - High utilization multi-user cloud
 - Online high throughput pipeline processing
 - Real-time streaming analytics
- No platform at scale to test data services
 - Software and hardware
- Need data benchmarks to measure
 - Not LINPACK, maybe TPH, other benchmarks

What kinds of optimizations /specialization are required for science communities?

- Domain-specific scientific data analytics
 - To build on top of generic capability
 - Example: Library services for data analytics
 - Idea: Idealized statistics package
 - Knowledge processing
- Custom allocation, hardware, networking
 - Heterogeneity
 - Based on specific workflow
 - Relationship between HPC and Experimental facilities
 - Procurement based on specific user workload